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1 What is nonequilibrium

An isolated system tends to an equilibrium state, which is macroscopically static and
uniform. Chemical reactions tend to an equilibrium state, where forward and backward
reactions are in balance.

Suppose a gas is confined in a half region of a box separated by a wall from the other
half region of vacuum. When we remove the wall which separates gas and vacuum, the gas
diffuses into the vauum region. This transient process is nonequilibrium with the gas flow.
If one waits long enough, the whole system will be in an equilibrium state.

In order to keep a nonequilibrium state, we put the system in contact with baths, which
have different temperatures or different chemical potentials on both sides of the system.
Then heat flow or matter flow is sustained. We may also sustain velocity gradient by the
shear of the two boundaries of the fluid.

In this case, viscosity is regarded as the transfer of momentum from a fast-flow region
to a slow-flow region.

When we say "nonequilibrium", it implies not only a transient state towards an equilib-
rium state but also a stationary state, sustained by nonequilibrium boundary conditions.
In this lecture, we first generalize entropy in order to include velocity of fluid as an inde-
pendent variable of entropy. If we formulate nonequilibrium thermodynamics in terms of
entropy, we can discuss fluctuations in an equilibrium state, since by Boltzmann-Einstein
principle, we have the probability of having fluctuation X in the form of

Peq(X) = es^'k

This can be extended to nonequilibrium fluctuations by constructing a master equation for
the nonequilibrium probability P(X, t) by assuming that the master equation should have
the equilibrium state Peq(X) = esm/k.

Also, we can give a basis to "fluctuation dissipation theorem"1 purely phenomenolog-
ically. The reason why I insist on phenomenology is that it is the most sound basis of
statistical physics and I hope to be able to extend thermodynamics to complex systems.

1 This is in principle due to M. S. Green J. Chem. Phys. 35 (1956) 836.



2 Nonequilibrium Thermodynamics

Here we extend thermodynamics of equilibrium systems to nonequilibrium systems. We
consider particularly multi-component fluids. Nonequilibrum thermodynamics of solid
states has not yet been well studied. For the moment, I have no idea how to formu-
late nonequilibrium thermodynamics of solids which may contain defects, such as point
defects, dislocations, surfaces etc. .

An equilibrium system is described in terms of a set of extensive variables; internal
energy [/, volume V', mass Mk of the k-th component. The Gibbs relation reads

TdS = PdV -
k=l

The Gibbs Duhem relation, which is derived from the extensivity of entropy, is

k=i

VdP - = SdT
k=l

We consider a non-equilibium system, in which there are flows of heat, matter or mo-
mentum. These are caused by the spatial gradient of temperature, chemical potential or
velocity field. In order to deal with such continuum fluid, it is more convenient to use
quantities per unit mass rather than absolute quantities, such as [/, V and Mk.

S U VI
8"W U~W ^ ~ M ~ V Cfc= M

Then we need not refer to the size of the local subsystems. By using these quantities per
unit mass, we consider the system as a continuum, in which these quantities are spatially
distributed. Then the Gibbs-Duhem relation reads,

u + Pv ~

vdP

= Ts

= sdT
k=i

Of course, for a one-component system, we have

u + Pv - fi = Ts

vdP - n = sdT

Now we want to consider hydrodynamic phenomena in the framework of thermodynamics.
First, we note that the viscosity is an irreversible process, in which the kinetic energy of



macroscopic flow is transformed into internal energy. So the viscosity should be related
to entropy production. Therefore entropy should contain velocity as an independent vari-
able. Another point is that in the presence of convective flow, internal energy is no more
conserved but the sum of internal energy and kinetic energy is conserved. The irreversible
transport of a conserved quantity is related to the spatial gradient of the associated inten-
sive parameter. For example, we consider a conserved quantity X.

Before the transport, we have XA in the box A and XB in the box B. Thus the total
entropy before the transport is SA(XA) + SB{XB)> After the transport of the amount AX
from A to B, we have the entropy SA(XA — AX) + SB(XB + AX). Thus the net increase
of the total entropy is

The second law requires that the transport AX > 0 takes place in the spatial direction
of the increasing intensive parameter. Thus in order to deal with irreversible transport of
energy, we express the entropy as a function of total energy and the irreversible energy flow
is caused by the gradient of the associated intensive parameter which will be the inverse
of temperature. It should be noted that irreversible processes of non-conserved quantities
obey different laws. For example, local magnetization or polarization can grow or decrease
without any transport. A non-conservative variable evolves in the direction of increasing
entropy. So its associated intensive parameter itself is the thermodynamic force.

Let us consider also hydrodymanic phenomena of viscosity. The velocity of fluid is small
near the rest boundary. As the distance from the boundary increases, the velocity grows.
This causes the spatial gradient of the velocity. From the part with faster velocity to the
part with slow velocity, there is irreversible flux of momentum. Thus the viscosity is the
irreversible flow of momentum.

In order to describe such fluid motion with viscosity in the frame of thermodynamics, it
is desirable to have momentum as an independent variable of entropy. If we read standard
books of fluid mechanics, say, Landau-Lifshitz "Fluid Mechanics", the entropy production

uv \
-—^- . It may be interpreted as the product of flux and force. When I
dy J

first read this part, I did not understand how to separate the flux and force. There should
be some definitions of flux and force from a general principle. Somehow, any textbook of
nonequilibrium thermodynamics did not give me any satisfactory answer. This was my
first encounter with nonequilibrium thermodynamics.

External Contact
Depending on how a system contacts with environments, we can distinguish "isolated

system", "system in contact with a thermal bath" and "system in contact with two different
baths". In the last case, we can keep the energy flow if the two baths have different
temperature. If they have different chemical potentials, mass flow is sustained in the



system. If there is flow of energy, mass or momentum due to the contact with baths, we
may call the system " nonequilibrium open system"2 .

3 Kinetic energy of one-component fluids

We consider here one-component fluids. As we noted above, internal energy u is not
a conserved variable. We constitute thermodynamics in terms of total energy instead of
internal energy.

\v\2

If we put this to the Gibbs-Duhem relation, we have

Then we differentiate both sides,
I 1 9 N

psdT + Td(ps) = d(pe) - d p—- I - pdfi - fidp + dP

Then subtracting both sides by the Gibbs-Duhem relation psdT — dP — pd//, we obtain

d{ps) = -d(pe) - ^ • d(pv) - - U - -^ - j dp

Certainly this is reduced to the equilibrium relation

d(ps) = -d(pu) - j^dp

when there is no convective flow ( v = 0 ). In this extended Gibbs relation, we have the
momentum density pv as an independent variable of entropy density ps. When we write

d(ps) —
j

where a,j is the density of an extensive variable, we may call Fj intensive parameter asso-
ciated with the extensive variable a,j. Thus we have the following table.

extensive variable density intensive parameter
total energy pe 1/T
momentum pv —v/T

mass p -^-\v£)/T
Since the momentum is conserved, the force which causes the irreversible flow of mo-

mentum, namely viscosity stress, is the spatial gradient of the intensive parameter —v/T.
The total energy is also conserved. Thus the thermodynamic force, which causes the ir-
reversible flow of energy, namely, heat, is the spatial gredient of 1/T. From the extended
Gibbs relation, we may discuss the viscosity phenomena in the framework of irreversible
process in nonequiibrium thermodynamics.

2 G. Nicolis, "Introduction to Nonlinear Science" ( Cambridge University Press, 1997 )



4 Hydrodynamics of one-component fluids

Fluid is an idealized concept of gas and liquid. Fluid can change its shape freely as
the boundary imposes. Real liquid behaves as fluid or as elastic body, depending on the
speed of phenomena. For a very high speed, or a very high frequency, liquid can behave as
elastic3 . For a slow motion, liquid can change its shape freely.

Fluid is charecterized by the mass density p(r,t) and the velocity t?(r,t), which are
functions of space and time, pv is the flux of mass, which passes through a unit area per
unit time. Thus the mass conservation can be written as

This can be understood by the analogy with the continuity equation in the electromagnetic
theory.

d f f dp f f
— / pdV = / -rrdV = — I div(pv) — — I (pv) • ndS
dtJvH Jv dt Jv yH J JsKH }

Thus the growth of mass in a local region V is due to the in-flux of the mass through the
surface S.

Now I explain the equation of motion of fluid. In order to obtain the equation of motion,
we consider a mass element in the fluid which moves with a given velocity v(r,t) at
each point of space and time. The position of the mass element at time t is denoted as
R(t) = (X(t), Y(t), Z(t)). The velocity of the mass element is the velocity of the fluid at
the position. Namely

—jj—=v(R(t),t)

If we write the component of the vector explicitly we have

= vx(X(t),Y(t),Z(t),t)

= vy(X(t),Y(t),Z(t),t)

= vz(X(t),Y(t),Z(t),t)

dt

dY[t)
dt

dZ(t)

dt

The acceleration of the mass element is obtained by differentiating the velocity with respect

3 D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions (Benjamin,
Frontiers in Physics 47, 1983).



to time. For example, the x component of the acceleration is

dvxdX(t) dvxdY(t) dvxdZ(t) dvx

dx dt dy dt dz dt dt

dvx dvx dvx dvx

= (v • V)vx +

' dz dt

dvx

dt

For the mass element contained in a small volume dxdydz, the force acting from the other
part of the fluid is called "stress". More precisely, we define the stress P^ as follows.

Suppose a surface Si which is perpendicular to the i-direction! Ji = x, y, z! ¥&t x^. The
force which is exerted from the part Xi > Xi$ on the part X{ < Xio is denoted by a vector

p.Q. — (p q p q. p q.\

Here Si is the area of the surface.

The the equation of motion, say, for the x-component is

(v • V)ux + —j J

= Sx [Pxx(x + dx, y, z) - Pxx(x, y, z)] + Sy [Pyx(x, y + dy, z) - Pyx(x, y, z)]

+SZ [Pzx(x, y,z + dz) - Pzx(x, y, z)]

, Q dPxx dPyx dPzx~ dxSx— 1- dySy-^- + dzS
ox dy

A A A

= dxdydz

1- dySy-^- + dzSz-——
ox dy dz

dPyx dPzx\
+ )yx+ + ) .

Thus by deviding both sides by dxdydz we obtain

p[(vV)v + jp[(vV)vx + j = ̂  + + J.

In general the strss tensor can be written as

Pit = -PSi:i + IU3



The first term on the right hand side stands for hydrostatic pressure, which is negative and
always perpendicular to the surface. The second term is the viscosity tensor.

_ (dvi dvj 2n =r>{ + 6

Especially when the fluid is incompressible, we have divv = 0. Thus we have

Uij =V (f^T + f a )
\ 3 l /

In this incompressible case, we have

We can see that the viscosity is the diffusion of momentum.

5 Evolution equation of entropy
In the extended Gibbs relation for a one-component fluid,

d(ps) = -d(pe) - ^ • d(pv) - - I p - — \ dp

the derivative denoted by d can be understood as time derivative.

d(ps) 1 d(pe) v d(pv) 1 / \v\2\
dt T dt T dt T X 2 J dt

The time derivative is of the order of r = l/vth, where / is the mean free path and vth
is the thermal velocity vth — JkT/m. We substitute the Navier-Stokes equation and the
continuity equation in the second and the third terms on the right hand side. For the time
derivative of the total energy density, we substitute pe — pu + - | ^ | 2 . Then,

d(pe) d(pu) d (p.
dt dt +di\T

Here for the time derivative of the internal energy density, we use

-Q) =

The term puv is the internal energy conveyed by the convective motion of the fluid. Q
is heat flow. The first term on the right hand side is the viscosity heating. The kinetic



energy of the convective motion is transformed into the internal energy by the viscosity.
This viscosity heating term is always positive since

j dvA 2
)

2 ' 2

) \dy dz J \dz dx

Thus we have the energy balance equation

- ^ + div(pev + Pv + Q - II : v) = 0.

Thus the entropy balance equation is written as

where Js is the entropy flux
Q

> 0

Q
Js = — + psv

and a[S] is the entropy production rate

which can be rewritten as

E 1\ . ^ , „ , d

Note that —— f — ) is the thermodynamic force for the irreversible energy transport, which

is heat, and —— ( — — ) is the thermodynamic force for the irreversible momentum trans-
oXj \ T J

port, which is viscosity stress. As shown in the next section, these two transports are
mutually interfering.



6 Linear response

We have seen that the thermodynamic force for an irreversible transport of a conserved
variable a* is the gradient of the corresponding intensive parameter F{. Suppose irreversible
flows and thermodynamic forces are linearly related. Then we can write

d ( VI\^T d (l\ LiJMdvi r 9 (l
dx V TJ dx \TJ T dx J" dx \T Jdxk V TJ dxk \TJ T dxk

 J" dxk \T J J' dxk \T

Note that the viscosity stress should be Galilei invariant. Namely, for the change of velocity
v —» v + u where u is the constant velocity, the stress tensor should be invariant. If not,
a bucket of water would experience different stress when the bucket is carried by constant
velocity. Therefore v should appear in the form of X7v. Thus we should have

Then we have
_ LijM dvi

13 ~ T dxk

For the irreversible energy flow we may put

T _ r d f 1 \ , r d ( Vl\_T 0 (1\ r 0 / 1 \ LiMdVl1\
— I + Lei ^dxk \Tj ' hMdxk V TJ ~Mdxk \TJ ^ hdxk \T) T

Thus for the Galilei invariance, we should have

Then we have _
d ( 1 \ LiM

TJ T dxk

As we will see soon we have the symmetry relation

Therefore we have

Lij,k(v) = L

Furthermore, we will have another symmetry relation

Therefore we can put
Lk,ij(v) =

T h U S T * T *

UM dvi _ LijM dvi
V

T dxk T
Hence we may write



7 Mathematical structure of hydrodynamics

Suppose we can write the differential of entropy density ps in terms of densities of
extensive variables a;

d(ps) =

Then we may call Fi intensive parameters. I will show that all hydrodynamic equations
can be cast into the following form

daj{r,t)
dt

= J tfr'
with the antisymmetric relation

This antisymmetry can be derived from a microscopic theory. We consider the system

consists of N particles, whose coordinates and momenta are denoted as q1, • • •, qN and

Pi) ' •' 5PN- The equation of motion is

f dgt _ dH
dt dpi

dpi__dH
dt dqi

which can be written in terms of Poisson's bracket

dt

where C is a linear operator defined by the Poisson's bracket

Cf = {/,

If we introduce an abbreviated notation

, < ? j v , P i , - - * , P N )

we may write the equation of motion as

dt

and its solution is

n=0 n!'

10



with the initial condition

r(o) = r
Since C is a first-order differential operator, we have

eCtf(T) = f(eCtT)

Thus the time evolution of a physical quantity A(V), which is defined in terms of micro-
scopic variables F, we have

A(r(t)) = A(eCtT) = ectA(T)

Now in the F-space, we may consider the probability of the initial states/0(F). Then the
average of the physical variable is

(A(T(t))) =JdTfQ(r) (e?A{rj) = fdY (e~afQ{T)) A(T)

Here we have used the property of the Liouville operator £,

JdTA(CB) = - j dT(CA)B

which is obtained by partial integration. Then we may introduce the time-dependent
distribution function defined by

Then the average is written as

(A(T(t))) = J dTf(T,t)A(r)

The time evolution of the distribution function is then,

Now we introduce "local equilibrium distribution function" defined by the set of macro-

scopic variables Ai(T) (i = 1, • • •, n).

3 = 1

Here Zi(t) is the normalization constant,

The time-dependent parameters Xj(t) are defined as functions of the average values

11



through the condition

ai(t) = |dr^(r)/,(r,t) = ^f)JdrAi(r)exP f - i>(*)^(r) j = (Ah

Somehow, we will consider the situation in which the local equilibrium distribution is a
good reference state as the first approximation. We define entropy of the system by

S = -kBJdTfl(T,t)\nfl(T,t)

= kB In Zt(t) + k

Then we have
dS , d]nZt(t) . f
^— = kB—^—^ + kB}2
Odi oai ~[

Now note that

a in Zjjt) i dZtjt)
da-i Zi(t) ddi

1 " d\j dZijt)

Thus we obtain

If we compare this result with the thermodynamic relation

ds =
. 7 = 1

we may identify the parameter Xj(t) in the local equilibrium distribution function with the
intensive parameter Fj

12



Now let us identify

and putting /(F, t) = fi(T, t) + f'(T, t). Then we put

and

Then we have
/ 2rr

3=1

1 r

Thus it is clear that if we put

we have the antisymmetric relation

1
MlJ = VB

Microscopic reversibility in equilibrium
In an equilibrium state, we have detailed balance of two reversed trajectories. If there

exists an orbit starting from (#,£>, t) to q\p\ Z7), we have the reversed trajectory (q1\ —pf, t)

to (g, — p) t1). Namely for the joint probability P(q,Pi t\ q'\p'\ t1) we should have

P(q, p, t; q\ p\ t1) = P(qf, -pf\ t; q, -p, t1)

Then for two macroscopic varibles,A(g,p) and Aj(q,p), we have

/ f f f f i
^ 7 ' ( 0 ) = dq dp dq dp A i ( q , p ) A j ( q , p ) P ( q , p , t ] q , p , t )

J J J J

= Jdqjdpjdq' I dp'Ai(q,p)Aj{q',p')P(q>, -p\ t; q, -p, t')

= Jdqjdpfdq' Jdp'Aiq, -p)Aj(^, -p')P(q',p', t; q,p, t')

13



If Ai and Aj have time-reversal symmetry, we have

A(q, -p) = Ai(q,p), M^

Then we have

{A^A^t')) = J dq J dp j dq' j dp'AM^M^
Onsager's hypothesis

Now I explain Onsager's hypothesis of linear regression. Suppose the evolution of macro-
scopic variables is given by

a i 3 3

This describes the approach of a macroscopic state towards the equilibrium state. So it
describes the macroscopic nonequilibrium state. After arriving at the equilibrium state, the
macroscopic state is stationary, but there exists fluctuation. If we collect the fluctuation
data, which start from a given initial value ao, and take the average, we will get the
average evolution with a given initial data. Onsager assumed that the average evolution
of fluctuation obeys the same law as the macroscpoic law. For a short time, we have

£•
3

ds dS
t + O(t2

We consider that the average of fluctuation with a given initial condition also follows the
macroscopic law,

U{t )

Then the correlation function in equilibrium is

= ((^(i))a°Ofc)eq

3 \ vx"l I eg j

Due to Boltzmann-Einstein principle, we have

Peq{a)=exp[S(a)/kB]

Thus
I 8S , n. n\

eq_

t + O(t2)

KOCLj

da0r r da0

= -kBjda\---j da°n-^ exp [S(a)/kB

14



Thus we have

3 \ ~ ~ * I eq

If di and dj are time-reversal symmetric, we have

Thus as far as the irreversible part is concerned, we have L^ — L^. Similarly, if a{ is
time-reversal symmetric and dj is anti-symmetric, we have Lij — —Lji.

For detail. see S. R. do Groot and P. Mazur4 .
Now how about the reversible part. We may make the following approximation

I eq 3 \ J I eq

eq

Thus if A{ and Aj have the same time-reversal symmetry, we have (7i{Ai^Ak})eq — 0.
If not ,(7i{^, Ak})eq 7̂  0 but antisymmetric.

Canonical equations for an ideal fluid
The reversible part of hydrodynamic equationcan be formulated in a more analogous

way to Hamilton dynamics. Let us consider irrotational flow

and define the Hamiltonian by

Then

5H = Jd2r (^\v\2 + p(V4>)V(54>) + f'(p)Sp) = Jd3r

Thus we obtain

5p 0^- + f'(p)\ -

and
_ _ = _v(pv*) = -V(p.)

S. R. de Groot and P. Mazur, Nonequilibrium Thermodynamics(DoveY, paperback).

15



We may write the continuity equation as

dp 8H
dt 5<f>(r)

and the Euler equation as

SH \v\
- f(p)dt Sp(r) 2

Indeed, if we take the gradient of both sides, we obtain for x-component,

dt

where we should have

Av# . s ^ i
dx dx p dx

df = -dP
P

There are more involved formulations; see Morrison5 .

8 Multicomponent fluid

We consider mixture. Let Mk is the mass of the k-th component. Entropy is a function
of internal energy [/, volume V and masses M&.

= S(U,V,Mu---,Mn)

The Gibbs relation is
TdS = dU + pdV-

The extensivity of entropy requires

SdT = VdP - J2 Mkdfik

Let M- be the total mass. Then we introduce quantities per unit mass;

S_
M'

U VI
M ' V M p

Mk
M

5 D. D. Holm, J. E. Marsden, T. Ratiu and A. Weinstein, Phys. i?ep.l23(1985) 1; J. E. Marsden, R.
Montgomery, P. J. Morrison and W. B. Thompson, Ann. Phys. 169 (1986) 29.

16



Then we have

u + Pv - ] P fikCk = Ts

psdT = dP —
k=i

Now we have mass flow of each component, whose velocity is v. Then

v — 2_

is the barycentric velocity. Then kinetic energy per unit mass is
n I 19 9

where we introduce the diffusional velocity

Then the total energy per unit mass is

W = Vk — V

v\2 2 ^

2 ,. -, 2

Then we have

2

From this, we may derive the extended Gibbs relation,

1 v 7

d(ps) = -d(pe) - -d(pv) - ^

here we put J\ — PkWk and we should note

Thus all Jk are not independent. Thus we should write

M \ 1 M \ v J( v^ Wk ~ Wn J Td(ps) = -d(pe) - -d(pv - ^ dJk
1 1 fc=i 1

n
v—%

k=i

\v\2 _ \wk\'
2 2 dpk

17



Since the diffusion flows are not conserved, the irreversible process of diffusion flows of a
two-component system can be written as

W\ — W2

for the solute species. Since the solvent fluid is abundant, we may put w^ ~ 0. Thus, we
have

dJi wi _ Ln
dt ~ LnT ~ TPl

Jl

Thus we may say that
7l =

is the friction coefficient.
Now let us construct the hydrodynamic equations. The mass conservation is

+ V • (pvk) = chemical reaction rate
dt

The Navier-Stokes equation for multicomponent fluid is obtained by considering the motion
of a mass element of the fc-th component. Let Rk(t) is the position of a mass element of
the A:-th component at time t. Then its velocity is the velocity of the fc-th component at
the position

dRk(t)
dt

Therefore its accerelation is

= vk(Rk(t),t)

(dRk{t) \ dvk{Rk{t),t)(
dt2 \ dt J at

Thus we may write

-Qj- + (vk-\7)vk) = pkFk

The problem is to find the proper force Fk per unit mass.By using the continuity equation
without chemical reactions, we have

d(pkvk) dpk dvk

at at at

= - V • (pkvk)vk + pkFk - pk{yk - V)vk

= - V • (pkvkvk) + pkFk

Summing both sides with respect to k leads to an equation for the barycentric velocity

v • (pw + J2 pkwkwk + PI - n\ = o

18



n is the irreversible part of stress. It is not at all clear whether we can assume a sim-
ple Newtonian expression for the stress tensor.In general, the stress should be a linear
combination of thermodynamic forces, such as V( l /T) , V(—v/T), —(wk — wn)/T and
V(—(î k — M2/2— \wk\2/2)) as far as the linear law requires. Since we have (

we derive an equation for the diffusional flow

^± + (\/.v)Jk + (Jk

= (?I±\ + (dJk)
\ / rev \ / irr

The reversible forces described in terms of thermodynamic functions should reduce to the
gredient of partial pressure — VP& in the limit of dilution of the k-th component. Indeed,
it turns out that

fdJk\

Indeed, h% reduces to partial enthalpy hk = ^ = in the dilute limit and the partial
UMk 2777,/c

pressure is defined by
7/TH

+ Pk{hk - )

The irreversible part should be

\ dt Jirr W k^l ^ T

Suppose temperature is uniform VT = 0 and there is no convective flow, v — 0. We
assume further that the mixture consists of two components; a solute and a solvent. The
solvent is much more abundant; c\ <C c^ and w^ — 0. We also assume that the volocity of
the solute W\ is so small that we may neglect the second-order terms in w\ and u^- Then
we have

-iJi

l n Pi + ••-, 7 =

at
where we have introduced

kBT
p\T

c\ -r

When the diffusion flow becomes stationary, namely —^— ~ 0, we have Fick's law,

where the diffusion constant is given by

This is called ! HEinstein's relation ! I

19



9 Zubarev's method

Up to now, we have discussed irreversible processes on the phenomenological ground.
There is a formulation to derive nonequilibrium thermodynamics at least formally6 . This
is different from Mori's theory, which derives the linear Brownian motion of fluctuation in
equilibrium.

Let /(F,t) is the distribution function in the F-space. Aj(T) is a macroscopic variable
defined in the F-space. The local equilibrium distribution //(F,t) is defined by

The parameters \j(i) are determined as functions of the ensemble average dj(t) = (Aj(T))
through the relations

r e
I y7T~̂  A f ~\~^\ -F (1~^ 4-\ I sJT~^ A (~Y^\ 4- f P -f-\
I *̂'-*- -*"*- ? V ) J V ") ) — / *̂* J- -*̂ - 7 v -̂ - ) JI \ 1 )

J J
We have already seen that the reversible part of the evolution equations of thermodynamic
variables are given in terms of the local equilibrium distribution function. Now we will
estimate the other part of the distribution function / ;(F, t).

Zubarev introduced the following Liouville equation, which includes the coupling with
external thermal bath. The external bath drives the system into the state, which is repre-
sented by then local equilibrium distribution function.

%—Cf-eV-f.)

We assume that at the infinite past the system was exactly in a state, which is represented
by the local equilibrium distribution.

Jim>(/-/i) = 0

Namely,

If we substitute f = fi + f into the Liouville equation, we obtain,

lim f' = 0

Now we introduce so-called! HKawasaki-Gunton ! Iprojection operator. First note that the
local equilibrium distribution function depends on time through the parameters (A(t)} =

6 D. Zubarev, V. Morozov and G. Ropke, Statistical Mechanics of Nonequilibrium Processes, vol.1
(Akademie Verlag, 1996)
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(Ai(i), • • •), which are again functions of {a(t)} = (ai(t), • • •)• The projection operator V(t)
is defined by

V(t)G(T) =fl(T,{a(t)})Jdr'G(T')

£ CLL G ( l j I
J

for an arbitrary function G(T). The projection operator V(t) is time-dependent and it has
the following properties.

V{t)V{t') = V(t)

J dF(V(t)G)(T) = JdFG{T)

Then we can derive

where we have introduced another projection operator

Q(t) = 1 - P(t)

Note also

We introduce an operator U(i) defined by

with the initial condition U(0) = 1. Then the irreversible part of the distribution function
IS

Therefore, the irreversible part of the evolution is

(it) =/rfr(^)/'(r,i) = £ / dt'i

where
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Namely, the irreversible part is written as the linear combination of intensive parameters
(A(t/)} in the past.

Suppose we are in a stationary situation in which the intensive parameters are constant,
we have

fir). =£/lw^
\ / irr J

Thus
n= f° dt' f'

J —oo J

is the Onsager's coefficients for non-equilibrium systems. It is not yet clear for me how it

is related to the traditional Green-Kubo formula.

Mori Theory
Mori considered the fluctuation of macroscopic variables in equilibrium. Let Ai(T) is a

macroscopic variable. Suppose the system is in equilibrium. A projection operator V is
defined in terms of macroscopic variables.

j

where (AA)~l is the inverse matrix of the matrix {AiAj) defined by

(AiAj) = ^J dYe-mA%A3, Z = J m

The equation of motion of the macroscopic variable Ai

dt

is transformed into the form of a Brownian motion

dt y Jo

where Ri(t) is interpreted as a random noise with the property

which is the expression of fluctuation-dissipation theorem7 . Note the random noise does
not follow Hamilton dynamics

Ri(t) = eQCtCAi

where Q — 1 — V. No one has yet succeed to create computer algorithm to simulate the
projected dynamics represented by the operator QC. If we are interested in the dynamics

7 R. Kubo, M. Toda and N. Hashitsume, Statistical Physics II (Springer)
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of physical quantity in the small wave number, the corresponding wave number dependent
operator Qj^C becomes C itself. However, it is not clear whether we can take this limit
first before the final expression for the transport coefficient is reached8 .

Nose-Hoover dynamics
In order to compute dynamics of particles in contact with a heat bath, Nose invented

the following equations,

dpi __
s dt

where a depends on the dynamical state of all particles

This choice assures that the kinetic energy of particles is conserved

p2
{ = constant

This Nose-Hoover dynamics assures the convergence of transport coefficients in the rep-
resentation of correlation functions. However, there is a serious problem; Nose-Hoover
dynamics does not assure local conservation of momentum.

10 Master equation and stochastic processes
When we discuss fluctuations, the probabilistic description is appropriate9 . Suppose

X(t) is a fluctuating variable, called IHrandom variable ! I The probability of having
x\ < X(ti) < X\ + dx\ is denoted by P\{x\,t\)dx\. Similarly the probability of having
x\ < X(ti) < xi + dx\ and x2 < X(t2) < x2 + dx2 is denoted by ^2(^2,^2;^:
We can define Pn(xn, tn\ • • •; Xi, £1) similarly. We define ! Hconditional probability ! I

P (r t - • • • • T^ tA

Namely, it is the probability of having xn < X{tn) < xn + dxn under the condition that
we had X(t\) — x\, - • •

MarkofRan process

8 D. J. Evans and G. P. Morris,"Statistical Mechanics of Nonequilibrium Liquids" (Academic Press,
1990).

9 Wax, Selected Papers on Noise and Stochastic Processes (Dover, paperback)
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The Markoffian process is defined by

In this case, we have Chapman-Kolmogorov equation

y dx2T(x3,t3\x2,h)T{x2,t2\xi,ti)

The conditional probability for a short time interval At is estimated to be

T(x2, £1 + At\xu h) = AS(x2 - xx) + AtW(x1 -^ x2) + O(At)2

Normalization condition requires

1 = I dx2T(x2,ti + At|xi,ti) = A + At I dx2W(x1 -> x2) H

Thus we may write

T(x2, ti + At\xuti) = (l- At f dx'W(x1 -^ xf)) 5(x2 - xx)

+AtW(x1 ^x2) + -"

W(x\ —* x2) is called IHtransition probability ! 5 but I prefer to call it !Htransition rate ! I
since it is not probability in the sense of normalization. This gives the transition rate per
unit time. If we substitute this expression into Chapman-Kolmogorov equation, we obtain
! Hmaster equation ! 1

^ = - J dxfW(x -> x')P{x, t) + J dx'W(xf -> x)P(x\ t)

This can be rewritten in the form of! HKramers-Moyal expansion ! I

where
Cn(x) = f drW(x -> x + r)rn == lim - I drT(x + r,t\x,O)

J t—>o ^ y

The last equality comes from the definition of the transition rate in terms of the short time
expansion of the conditional probability. Therefore, we may write

Here (• • -)x(o)=x is the average with a fixed initial value (0) = x. This interpretation is used
when we derive a master equation from a mechanical equation of fluctuation. For example,
we consider the Langevin eqaution
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Then we have

x(t) - x = f dtiF(x{ti)) + I dtxR(t\)
Jo Jo

= / dtxF (x + Il dt2F(x(t2)) + [ * dt2R(t2)) + [
Jo \ Jo Jo J Jo

Therefore

(x(t) - x)

= F{x)t + F'(x) [ dh f1 dt2(F(x(t2))) + F'{x) I dtt j * dt2(R{t2))Jo Jo Jo Jo

Thus we have
d(x) = F{x)

and from the second moment, we obtain

C2(x) = 2D

where we put

(R(t1)R(t2))=2D5(t1-t2)

Brownian motion
Let u be the velocity of a solute particle in a solvent.

du _/iNm— = —jmu + R(t)
(JJL

with (R(ti)R(t2)) = 2DuS(ti —t2). The master equation becomes! HFokker-Planck ! lequa-

tion,

dt du \ m2 du)

The steady state solution with the boundary condition lim P(u, t) = 0 should be Maxwellian

\u\—>CXD

Peq(u) oc exp

Therefore we have to put

Du =
This is called! HFluctuation-dissipation theorem ! I The diffusion constant is also estimated
from this model by noting

2t
and

rt
x{t) — x(0) — / dru(r)

Jo
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The result is

7717

which is called ! HEinstein's relation ! I
The idea of the Fokker-Planck equation can be extended to thermodynamical variables,

whose non-equilibrium evolution is described by

3 3

Then the fluctuation in nonequilibrium is assumed to obey the Langevin equation

^ jV)) = 2DiJ8(t - t')
m 3 3

Then the Fokker-Planck equation reads

f = - E E £ (M,,FIP+E w ) + E E A , S
Suppose fcj^ is a small parameter to give the smallness of fluctuations and note that the
equilibrium probability distribution is given in terms of entropy

Peq = exp (S/kB)

Then for small £;#, we have

Due to the property of the reversible part M -̂ = —M^, we have

1

Thus we may put

This is called! HFluctuation-dissipation theorem ! I Actually, we need not the condition of
small ks- In the case of hydrodynamics, we can check that

i 3

by using functional derivative method; see my book (Kodansha) or Saarloos, Bedeaux and
Mazur10 .

The fluctuation-dissipation theorem implies that the transport coefficients which de-
scribe non-equilibrium ralaxation process towards equilibrium can be obtained in terms of
fluctuations in equilibrium.

1 r°°
Ieq

10 W. van Saarloos, D. Bedeaux and P.Mazur, Physica 107A (1981), 109, 147; K. Kitahara and Y.
Toshikaw^Hiheikoukei no kagaku /(Kodansha Scientific, 1994).

26



11 Nonequilibrium fluctuations of macroscopic vari-

ables

We consider a macroscopic system, described by a variable X, which is extensive in that
it is proportional to the size of the system fi. When the variable changes, X —> X + r, r
is microscopic. X may be the population of a town, r is the number of new-born babies.
The town consisits of many subregions, each of which can give birth to some babies. Thus
the size of the town increases, the probability of finite increment r per unit time increases
in proportionality to the size of the system fi and may be dependent on the density of
population X/fl. Thus the transition rate should have the form

V V I u\. ' ^ y. | II u u uu i ^ ^ ,

\ it

Then we have for the scaled probability distribution function P(x,t

-j— = —\l 2_^ yl- — e J x[x] r)r[x, t)
ot r

which may be rewritten in a familiar form

where the ! HHamiltonian ! Iis defined by

In analogy with quantum mechanics, we use ! HWKB approximation !

Then we have ! HHamilton-Jacobi equation ! I

If we make further a Gaussian approximation

we obtain a closed set of equations,

^ = 2C[{y)a + C2(y)
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Ehrenfest ! § model of random walk
Let us consider a one-dimensional lattice consisting of 27V + 1 sites. Suppose a particle

is at site M. The transition rate for M —> M ± 1 is given by

W(M -> M + 1) = -(JV - M)
r

M - 1) = -(TV + M)

Suppose we have a large lattice, iV —> oo, and put £ = M/N. Then we may write

M + 1) = —(1 -x) = Nw(x, +1)

N
M - 1) = — (1 + x) = Nw(x, - 1 )

2r

Then we have

The equations for y(t) and a(t) are easily obtained,

dy_ = _y_
dt ~ T

da

Namely, the model converges to a Gaussian distribution. We may apply a general method
of Hamilton - Jacobi equation; solve the caconical equations

r dx OH

dt

dp
dt

V

on
X

.with the Hamiltonian

H(x,p) = ± [(l - e"') (1 - x)

The phase flows look like the figure below.
Models of chemical reactions

Suppose there is a reaction of the scheme,

A -> X, X
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Let X be the number of X molecules. Then the transition rates are

W(X ^X + l) = kA

W{X -> X - 1) = k'X

Let Vt be the size of the reactor and xX/Q and a = A/Q, are the concentrations. Then we
may put

' W(X ̂ X + l) = Qka = Qw(x] +1)

W(X -> X - 1) = Qk'x = ttw(x; -1)

If the system is closed, one should be careful since A also changes with A + X =
iV(total number of molecules). Then we have a different transition rate

Multivariate master equation
If the master equation as the following transition rate

W({X}

with Xi = Xi, we have

The evolution equations are

( dyk

dt

with

r}) = ; {r})

{r}

{r}

dClk

12 Boltzmann equation

We denote by f(c,r,t)d3cd3r the number of particles with velocity and position within
a small region d3cdzr in the //-space. By this definition, we have

I I f(c,r,t)d3cd3r =
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where N is the total number of particles.

n{r,t)~ J f(c,

in the number density. If there is no collision, we have

/(c,r,0) = / (c , r + cM)

Thus if we take time-derivative, we obtain,

dt dr

If we take the collision effect into account, we should get

The collision term

\dtJcoll J J J

= -Jd3dId3
Cl IdV^c'c^ |cCl)/(c, r, t)/(ci, r, t)

The scattering rate has the following symmetry due to the time-reversal symmetry of
collision process

a(dd1\cci) = a(—c — d d— C — Ci

Furthermore due to the space-reversal symmetry we have

a(—c — Ci\ — d — c[) = a(cci\cfc[)

Therefore we have

a(dd1\cci) = c

We introduce the following abbreviated notations

/ = / (c , r , t ) , A = /(ci ,r , t ) , / = /(c',r,£), /{ = / ( C l , r , t )

Then the collision term becomes

I ~̂ ~ I = / d3c' / d3Ci / d3c/
1cr(cci|<

Now we introduce "H function" defined by

H(r,t)= [d3cfIn /

30



Then we have

dH
~dt~

= -V • / d*c(cf In /) + / d3c (^-) (In / + 1)
V / coll

We may call
JH= I d3c(cf\nf)

" H flow". Then we have We may call

Note

Therefore

^ \ In/ = i | d3c
coll

d3c' I d3c'1cr(c'c[\cc1)

The last inequality comes from the fact that for Va, V6 > 0, we have

( a -6 ) ln ( - J <0

The equality holds only if / ; /{ = / / i .
Especially when / is independent of r , namely the system is homogeneous, we can prove

the system will be in an equilibrium state. Let the equilibrium distribution function be

feq = m
exp -

2kBT)

Then we can show that the H function, defined by

has the following properties
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1. H > 0 and the equality holds only when f = feq.

2. -— < 0 and the equality holds only when / = feq.
(JLL

Thus feq is the asymptotic limit of / for t —> oo.
Let us go back to the inhomogeneous situation. The H function takes a stationary value

when we have fff[ = f f\. Since the consition of a(cfc[\cci) requires

2. c + ci = c' + c[

the function / which satisfies f'f[ — ff\ should be of the following form,

/(°>(c, r , t) = exp (A|c|2 + B • c + C)

If we choose the parameters A, B and C, we may write

/ m Y/2 ( rn\c-v(r,t)\2

{ J ) ) exp \-

This is called local equilibrium distribution function.
To see f f[ = f f\ implies the local equilibrium, we assume first that /(°) is of the form,

= F(\c\2)G(c)

Then we have

= F(\cf
Thus we may assume

G(c)G(ci) = G{c')G(c[)

F(\c\2)F(\Clf) = F(\cf)F(\c[\2)

Then the task is to determine the function /(#), which satisfies f(x)f(y) = f(z)f(x+y — z).
If we differentiate both sides with respect to x, we have f'{x)f{y) — f(z)f'(x + y — z). Then
we put x = z = 0. We obtain / /(0)/(y) = f(0)f'(y). This implies /(#) is an exponential
function.

The parameters n(r,i), T(r,t) and v(r,t) are defined by the distribution functions

3cf = n

fd3cfc = nv

r 3 m 2 3n£;£T
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and we have the following relations

= n

= nv

. i**\Tnt

Collision invariants
A function ip(c) is called "collision invariant" if it satisfies

MIL-
In fact, we can prove the following relation by using the symmetry of a,

coll

J d*c' J d'c'Mf'K -

Thus the collision invariant implies

ip(c)-

Therefore there are five collision invariants

tp(c) =

The collision invariants are closely related to hydrodynamics11 We may write

Then we have
-

Namely the collision term does not appear explicitly and the resulting equation takes the
form of a conservation law.

11 P. Resibois and M. DeLeener, Classical Kinetic Theory of Fluids (John-Wiley, 1977).
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For example, if we choose (^l,we have

OTI
— + V • (nv) = 0
ot

If we put p = run we oftain the mass conservation

If we choose (p — c we obtain

d , , d

If we put

and p = mn, we obtain

9 , x d ,

( n ( c , C i » = 0

If we compare it with the hydrodynamic equation, we can conclude

PSi:j - Uji = p((cj - Vj)(ci - Vi)}

Suppose the distribution function / , which is the solution of the Boltzmann equation, can
be written as

we can write

The local equilibrium is a Gaussian distribution around the average velocity, we can easily
calculate the local equilibrium average

m

Thus

3 3 lJ m %J

This is hydrostatic pressure. Therefore we can identify the viscosity tensor

If we choose Lp = |c|2, we have
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We put again

we have

Thus if we identify

we have

Next we note

c — v + (c — v)

f

Then we will get

d(pe)
dt

(\c\2c) = \v\ v + (\c — v\ )v

+2t? • ((c - v)(c - v)) + (\c - v\2(c - v))

+ V • (pev + pv • ((c - v)(c - v)) + £(\c - v\2(c - v))j = 0

Therefore if we identify this with the energy balance equation, we can put

P= !-(\c-v\2(c-v))

This is heat current.
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