Radioastronomical Remote Sensing of Turbulence in the Interstellar Medium

S.R. Spangler
University of Iowa, Dept. of Physics
U.S.A.

These are preliminary lecture notes, intended only for distribution to participants.
Radioastronomical Remote Sensing of Turbulence in the Interstellar Medium

Steven R. Spangler
Department of Physics and Astronomy
University of Iowa, USA
The Interstellar Medium: Diffuse Plasma Between the Stars
Phases of the Interstellar Medium

<table>
<thead>
<tr>
<th>Phase</th>
<th>Astro. Name</th>
<th>Density (cm$^{-3}$)</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Molecular Cloud</td>
<td>$\geq 10^4$</td>
<td>≤ 70</td>
</tr>
<tr>
<td>Medium - Neutral</td>
<td>CNM</td>
<td>10 - 100</td>
<td>~ 100</td>
</tr>
<tr>
<td>Medium - Ionized</td>
<td>HII envelopes</td>
<td>5 - 10</td>
<td>8000</td>
</tr>
<tr>
<td>Low</td>
<td>DIG and WNM</td>
<td>0.1 - 0.5</td>
<td>8000</td>
</tr>
<tr>
<td>Tenuous</td>
<td>Coronal</td>
<td>10^{-3}</td>
<td>10^6</td>
</tr>
</tbody>
</table>
How ISS Observations Can Map Out Turbulence in the Disk and Halo

EXTRAGALACTIC SOURCE

Distant Halo

1 kpc

EARTH

pulsar

HALO

DISK

pulsar

measurement of $\int c_n^2 ds$
INTERSTELLAR SCINTILLATION PHENOMENA

ANGULAR BROADENING

INTENSITY SCINTILLATIONS

PULSE BROADENING

SPECTRAL CORRUGATION

--- WITHOUT TURBULENT MEDIUM
--- VIEWED THROUGH MEDIUM

- PULSAR TIME-OF-ARRIVAL FLUCTUATIONS
- ROTATION MEASURE FLUCTUATIONS
- IMAGE DISTORTION AND WANDERING
$s^2 = x^2 + n^2 y^2$

$\eta = 1.83 \pm 0.10$

Figure 2(b)
Scattered Angular Size, θ_1 GHz

Galactic Longitude (deg)

Galactic Latitude (deg)
SCATTERING NEAR CYGNUS OB1 ASSOCIATION

GALACTIC LONGITUDE (DEGREES)

GALACTIC LATITUDE (DEGREES)

1.00 m$^{-2013}$ - kpc

Figure 6
"The Big Power Law in the Sky"

No spectral "features" from $k \sim 10^{-6} \text{ m}^{-1} - 10^{-3} \text{ m}^{-1}$, perhaps 10^{-1} m^{-1}
TABLE 6

Observed Turbulent Properties of the Interstellar Medium toward l = 145°, b = −20°

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n_0) (cm(^{-3}))</td>
<td>0.029</td>
</tr>
<tr>
<td>(B_y) ((\mu)G)</td>
<td>−0.8</td>
</tr>
<tr>
<td>(L) (pc)</td>
<td>2900</td>
</tr>
<tr>
<td>(l_0) (pc)</td>
<td>3.6 ± 0.2</td>
</tr>
<tr>
<td>(l_0^{2D}) (pc)</td>
<td>(\leq 70 \leq 3.6)</td>
</tr>
<tr>
<td>(C_2) (m(^{-20/3}))</td>
<td>(10^{-3.0})</td>
</tr>
<tr>
<td>(C_3) ((\mu)G(^2) m(^{-2/3}))</td>
<td>(2.2 \pm 0.4 \times 10^{-13})</td>
</tr>
</tbody>
</table>

TABLE 1

Properties of Turbulence in DIG

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\langle n_e \rangle) (cm(^{-3}))</td>
<td>0.025</td>
</tr>
<tr>
<td>Filling factor</td>
<td>0.25</td>
</tr>
<tr>
<td>(n_e) (cm(^{-3}))</td>
<td>0.08</td>
</tr>
<tr>
<td>(B_y) ((\mu)G)</td>
<td>3</td>
</tr>
<tr>
<td>(C_2) (m(^{-20/3}))</td>
<td>(10^{-3})</td>
</tr>
<tr>
<td>(C_3) ((\mu)G(^2) m(^{-2/3}))</td>
<td>(2.2 \times 10^{-13})</td>
</tr>
<tr>
<td>(l_0) (pc)</td>
<td>3.6</td>
</tr>
<tr>
<td>(l_0) (km)</td>
<td>(∼800)</td>
</tr>
<tr>
<td>(v_s) (10(^6) cm s(^{-1}))</td>
<td>0.93</td>
</tr>
<tr>
<td>(V_{A}) (10(^6) cm s(^{-1}))</td>
<td>2.33</td>
</tr>
<tr>
<td>(v_0 (s^{-1})^2)</td>
<td>8.3 \times 10^{-10}</td>
</tr>
</tbody>
</table>

* The ion-neutral collision frequency depends on the ionization state of the medium. The quantity listed is for 70% ionization of the hydrogen.
Turbulence Generation Mechanisms

(1) Solar Wind:

- "Fossil Turbulence" from chromosphere, convected out
- Nonlinear interactions, decaying turbulence
- Generation and conversion at stream interactions
- Kinetic plasma instabilities at shocks

(2) Interstellar Medium:

- Kinetic Instabilities at SNRs
- Galactic Balbus-Hawley instability (probably not)
- Structuring by massive stars + mode conversion
- "Star Murmuring"

Further discussions in this Symposium
Mechanisms for Generation of Turbulence in Shells

- Rayleigh-Taylor Instability
- Secondary Shocks
- Global Shell Instability
- Heat Flux Instability
- Acoustic Wave Instability
- Upstream Waves
- Shock Amplification of Turbulence
- Plasma Wave Generation by Pickup Ions
Figure 3

$B_T = 0.3 \mu G$

- Linear Landau damping
- Ion-neutral collisional damping
- Nonlinear Landau damping
- Wave packet steepening
- Decay instability

Log heating rate (ergs/sec/cm3) vs. log outer scale (cm)
Faraday Rotation and the Interstellar Medium

- How can we learn about the B field in the ISM?
- Large scale B field
- Turbulent B field
- Use of optical emission lines to get electron density
Results and Conclusions

- Faraday rotation allows us to do remote magnetometry of astrophysical plasmas
- The same instrument (VLA) can study the ionosphere, the solar wind, and the ISM
- B field in ISM is 3-4 μG, strong enough to be dynamically important
- We can measure the amplitude and outer scale of ISM magnetic turbulence
- We have a good model for the coronal magnetic field and coronal turbulence
Main Results of Radio Wave ISM Studies

- Turbulence responsible for radio wave scintillations resides in low density ionized phase (DIG) and medium density-ionized (HII region envelopes).

- "The Big Power Law in the Sky"; density irregularities exist with scale sizes from \(\geq 10^{18} \text{ cm} \rightarrow 10^7 \text{ cm} \). Spectral index \(\alpha \) close to, or equal to the Kolmogorov index \(\alpha = 5/3 \). Suggests turbulent cascade in wavenumber through an inertial subrange to the dissipation range.

- Extreme variability in \(C_N^2 \) in the interstellar medium. Regions of very high \(C_N^2 \) "fluctiferous regions" or fluctifers seem associated with HII regions, star formation regions. Turbulent intermittency or ISM geography?

- Irregularities are anisotropic, in sense of being drawn out along a symmetry axis (probably interstellar magnetic field). Axial ratios \(\simeq 1.5 - 2.0 \).

- \(\delta B \) fluctuations detectable, with \(\delta B/B_0 \leq \delta n/n_0 \) (Minter & Spangler, ApJ 485, 182); suggests turbulence highly compressible.
Desiderata and Enigmata

- We must obtain information on \(\vec{V} \) and \(\vec{B} \) to progress to a satisfactory theoretical understanding of interstellar turbulence. \(\vec{B} \) information can be obtained from Faraday rotation (A. Minter, this meeting) \(\vec{V} \) information can be obtained from the timescale of scintillations, extraction of \(V_{\text{eff}} \) (Bondi et al., A & A 287, 290, 1994; Cordes and Rickett, ApJ 507, 846, 1998, Rickett, Coles, and Markkanen, 1999)

- Are the spectra perpendicular and parallel \(\vec{B}_0 \) the same? **Theory:** no, **Observations:** yes

- Where is the evidence for mesoscale \((\sim 10^{15} - 10^{16} \text{cm}) \) dissipation processes (ion-neutral collisional damping)?

- "Purification of the ISM" of highly dissipative Fast Mode Magnetosonic waves. Even small fraction of interstellar turbulence in Fast Mode waves would overwhelm cooling capacity of the DIG