MICROPROCESSOR LABORATORY SEVENTH COURSE
ON
BASIC VLSI DESIGN TECHNIQUES
29 October - 23 November 2001

IC DESIGN STYLES TEST AND DESIGN FOR TESTABILITY

available also on:

http://micdigital.web.cern.ch/micdigital/VLSI_Trieste/VLSI_Trieste.htm

Jorgen CHRISTIANSEN
CERN
EP Division
CH-1211 Geneva 23
SWITZERLAND

These are preliminary lecture notes intended only for distribution to participants.
IC design styles

J. Christiansen,
CERN - EP/MIC
Jorgen.Christiansen@cern.ch

Design styles

- Full custom
- Standard cell
- Gate-array
- Macro-cell
- "FPGA"
- Combinations
Full custom

- Hand drawn geometry
- All layers customized
- Digital and analog
- Simulation at transistor level (analog)
- High density
- High performance
- Long design time
Standard cells

- Standard cells organized in rows (and, or, flip-flops, etc.)
- Cells made as full custom by vendor (not user)
- All layers customized
- Digital with possibility of special analog cells
- Simulation at gate level (digital)
- Medium density
- Medium-high performance
- Reasonable design time

Trieste November 98 J. Christiansen/CERN
Gate-array

- Predefined transistors connected via metal
- Two types: Channel based
 Channel less (sea of gates)
- Only metallization layers customized
- Fixed array sizes (normally 5-10 different)
- Digital cells in library (and, or, flip-flops, etc.)
- Simulation at gate level (digital)
- Medium density
- Medium performance
- Reasonable design time

Trieste November 98
J. Christiansen/CERN
Macro cell

- Predefined macro blocks (Processors, RAM, etc)
- Macro blocks made as full custom by vendor
- All layers customized
- Digital and some analog (ADC)
- Simulation at behavioral or gate level (digital)
- High density
- High performance
- Short design time
- Use standard on-chip busses
- "System on a chip"
FPGA = Field Programmable Gate Array

- Programmable logic blocks
- Programmable connections between logic blocks
- No layers customized (standard devices)
- Digital only
- Low - medium performance (<50 - 100MHz)
- Low - medium density (up to ~100k gates)
- Programmable by: SRAM, EEROM, Anti_fuse, etc
- Cheap design tools on PC's
- Low development cost
- High device cost

Trieste November 98 J.Christiansen/CERN

FPGA

System Resources

Trieste November 98 J.Christiansen/CERN
Comparison

<table>
<thead>
<tr>
<th>Density</th>
<th>FPGA</th>
<th>Gate array</th>
<th>Standard cell</th>
<th>Full custom</th>
<th>Macro cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Low</td>
<td>Medium</td>
<td>Medium</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Low (high)</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>No</td>
<td>Medium</td>
<td>High</td>
<td>Very high</td>
<td>Very high</td>
<td>Very high</td>
</tr>
<tr>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>High</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Medium</td>
<td>Complex</td>
<td>Complex</td>
<td>Very complex</td>
<td>Complex</td>
<td>Complex</td>
</tr>
<tr>
<td>Tools</td>
<td>Simple</td>
<td>Medium</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Volume</td>
<td>Low</td>
<td>Medium</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
</tbody>
</table>

High performance devices

- Mixture of full custom, standard cells and macro's
- Full custom for special blocks: Adder (data path), etc.
- Macro's for standard blocks: RAM, ROM, etc.
- Standard cells for non critical digital blocks
ASIC with mixture of full custom, RAM and standard cells

- Single port RAM
- Full custom
- Standard cell
- FIFO

Trieste November 98
J. Christiansen/CERN

Pentium

Trieste November 98
J. Christiansen/CERN
New combinations

- FPGA's with RAM, PCI interface, Processor, ADC, etc.
- Gate arrays with RAM, Processor, ADC, etc
Design Methodology

- Specification
- Trade-off's
- Design domains - abstraction level
- Top-down - Bottom up
- Schematic based
- Synthesis based
- Getting it right - Simulation
- Lower power
Specification

- A specification of what to construct is the first major step.
- A detailed specification must be agreed upon with the system people. Major changes during design will result in significant delays.
- Requirements must be considered at many levels
 System
 Board
 Hybrid
 IC
- Specifications can be verified by system simulations.
- Specification is 1/4 - 1/3 of total IC project.

Trade offs

- Technology
- Partitioning
- Speed
- Chip size
- Power
- Reliability
- Production costs
- Development costs
- Man power
- Acceptability
- Schedule
- Reliability
- Flexibility
- Testing
- Packaging
- Costs

Trieste November 98 J. Christianson/CERN
Design domains

Design domains and synthesis
Top - down design

- Choice of algorithm (optimization)
- Choice of architecture (optimization)
- Definition of functional modules
- Definition of design hierarchy
- Split up in small boxes
- Define required units (adders, state machine, etc.)
- Floor-planning
- Map into chosen technology (synthesis, schematic, layout)
 (change algorithms or architecture if speed or chip size problems)
- Behavioral simulation tools

Bottom - up

- Build gates in given technology
- Build basic units using gates
- Build generic modules of use
- Put modules together
- Hope that you arrived at some reasonable architecture
- Gate level simulation tools

Comment by one of the main designers of the Pentium processor
The design was made in a typical top - down, bottom - up, inside - out design methodology
Schematic based

- Symbol of module defines interface
- Schematic of module defines function
- Top - down: Make first symbol and then schematic
- Bottom - up: Make first Schematic and then symbol

Synthesis based

- Define modules and their behavior in a proper language (also used for simulation)
- Use synthesis tools to generate schematics and symbols (netlists)
Getting it right - Simulation

- Simulate the design at all levels (transistor, gate, system)
- Analog simulator (SPICE) for full custom design
- Digital gate level simulator for gate based design
- Mixed mode simulation of mixed analog-digital design
- Behavioral simulation at module level (Verilog, VHDL)
- All functions must be simulated and verified.
- Worst case data must be used to verify timing
- Worst - Typical - Best case conditions must be verified
- Use programming approach to verify large set of functions
 (not looking at waveform displays)

Low power design

- Low power design gets increasingly important:
 Gate count increasing > increasing power
 Clock frequency increasing > increasing power
 Packaging proD. for high power devices
 Portable equipment working on battery
- Where does power go:
 1: Charging and dis-charging of capacitance: Switching nodes
 2: Short circuit current: Both N and P MOS conducting during transition
 3: Leakage current: MOS transistor (switch) does not turn completely off

\[
P = \text{\(N_{\text{max}}\) \(I_{\text{off}}\) \(V_{\text{dd}}\)} + \text{\(N_{\text{min}}\) \(I_{\text{cont}}\) \(E_{\text{cont}}\) + \text{\(N_{\text{max}}\) \(V_{\text{sat}}\)}
\]
Decrease power

- Lower Vdd:
 5v > 2.5v gives a factor 4!
 New technologies use lower Vdd because of risk of gate-oxide break-down and hot electron effect.

- Lower Vdd and duplicate hardware

 ![Diagram](image)

 Lower number of switching nodes:
 The clock signal often consumes 50% of total power:
 - Gate clocks for modules not working
 - Not use clocks
 - Lower signal activity

 Clock gating

 ![Diagram](image)

 Lower signal activity

 ![Diagram](image)

 Warning: Clock gating may introduce glitches

Trieste November 98 J.Christiansen/CERN
IC design Tools

J. Christiansen,
CERN - EP/MIC
Jorgen.Christiansen@cern.ch

Cell development

- Schematic entry (transistor symbols)
- Analog simulation (SPICE models)
- Layout (layer definitions)
- Design Rule Checking, DRC (design rules)
- Extraction (extraction rules and parameters)
- Electrical Rule Checking, ERC (ERC rules)
- Layout Versus Schematic, LVS (LVS rules)
- Analog simulation
- Characterization: delay, setup, hold, loading sensitivity, etc.
- Generation of digital simulation model with back annotation.
- Generation of synthesis model
- Generation of symbol and black-box for place & route
Digital design

- Behavioral simulation
- Synthesis (synthesis models)
- Gate level simulation (gate models)
- Floor planning
- Loading estimation (loading estimation model)
- Simulation with estimated back-annotation
- Place and route (place and route rules)
- Design Rule Check, DRC (DRC rules)
- Loading extraction (rules and parameters)
- Simulation with real back-annotation
- Design export
- Testing: Test generation, Fault simulation, Vector translation

Design entry

- Layout
 - Drawing geometrical shapes: Defines layout hierarchy
 - Defines layer masks
 - Requires detailed knowledge about CMOS technology
 - Requires detailed knowledge about design rules
 - Requires detailed knowledge about circuit design
 - Slow and tedious
 - Optimum performance can be obtained
 - No yield guarantee from manufacturer when making full custom cells

Trieste November 98 J.Christiansen/CERN
• Schematic
 - Drawing electrical circuit: Defines electrical hierarchy
 Defines electrical connections
 Defines circuit: transistors, resistors...
 Requires good circuit design knowledge for analog design
 Requires good logic design knowledge for digital design (boolean logic, state machines)
 Gives good overview of design hierarchy
 Significant amount of time used for manual optimization

Trieste November 98
J. Christiansen/CERN

• Behavioral
 - Writing behavior (text): Defines behavioral hierarchy
 Defines algorithm
 Defines architecture
 - Synthesis tool required to map into gates
 - Often integrated with graphical block diagram tool

Trieste November 98
J. Christiansen/CERN
Verification

- Design Rule Check:
 Checks geometrical shapes: width, length, spacing, overlap, etc.

- Electrical rule check:
 Checks electrical circuit: unconnected inputs, shorted outputs, correct power and ground connection

- Extraction:
 Extracts electrical circuit: transistors, connections, capacitance, resistance

- Layout versus schematic:
 Compares electrical circuits: transistors: parallel or serial (schematic and extracted layout)

Simulation

- Simulates behavior of designed circuit
 - Input: Models (transistor, gates, macro), Textual netlist (schematic, extracted layout, behavioral), user defined stimulus
 - Output: Circuit response (waveforms, patterns), Warnings

- Transistor level simulation using analog simulator (SPICE)
 - Time domain
 - Frequency domain
 - Noise
Gate level simulation using digital simulator
- Logic functionality
- Timing: Operating frequency, delay, setup & hold violations

Behavioral simulation
- System and IC definition (algorithm, architecture)
- Partitioning
- Complexity estimation

Gate level models
- Border between transistor domain (analog) and digital domain
- Digital gate level models introduced to speed up simulation.
- Gate level model contains:
 - Logic behavior
 - Delays depending on: operating conditions, loading, signal slew rates
 - Setup and hold timing violation checks
- Gate level model parameters extracted from transistor level simulations and characterization of real gates.
Gate data sheet

De-rating factors

Trieste November '98 J. Christiansen/CERN
Place and Route

- Generates final chip from gate level netlist
 - Goals: Minimum chip size, Maximum chip speed.
- Placement:
 - Placing all gates to minimize distance between connected gates
 - Floor planning tool using design hierarchy
 - Specialized algorithms (min cut, simulated annealing, etc.)
 - Timing driven
 - Manual intervention
 - Very compute intensive
- Hierarchy based floor planning
- Simulated annealing
 - High temperature: move progressively
 - Low temperature: move gates locally
- Manual intervention

Routing:
- Channel based: Routing only in channels between gates
 - Few metal layers: 2
- Channel cross: Routing over gates
 - Many metal layers: 3 - 5
- Often split in two steps:
 - Global route: Find a coarse route depending on local routing density
 - Detailed route: Generate routing layout

Trieste November 98
J.Christiansen/CERN
Performance of sub-micron CMOS IC’s are to a large extent determined by place & route.
- Loading delays bigger than intrinsic gate delays
- Wire R-C delays starts to become important in sub-micron
- Clock distribution over complete chip gets critical at operating frequencies above 100Mhz.

Design tool framework
- Design tools from one vendor normally integrated into a framework which enables tools to exchange data.
 - Common data base
 - Automatic translation from one type to another
 - Allows third part tools to be integrated into framework)
- Few standards to allow transport of designs between tools from different vendors.
 - VHDL and Verilog behavioral models and netlists
 - EDIF netlist, SPICE netlist for analog simulation
 - GDSII layout
 - Standard Delay Format (SDF) for gate delays.
 - Small vendors must be compatible with large vendors.

Transporting designs between tools from different vendors often cause problems
Required tools for different designs

- FPGA
 A: PC based schematic entry with time estimator and simple Place & route
 B: Behavioral modeling with synthesis, simulation and place & route.
- Gate array
 A: Schematic entry and simulation
 B: Behavioral modeling with synthesis and simulation.
 - Place and route performed by vendor
- Full custom
 - Layout, DRC, extraction and transistor level simulation
- Standard cell, macro and full custom
 - All tools described required

Source of CAE tools

- Cadence
 - Complete set of tools integrated into framework
- Mentor
 - Complete set of tools integrated into framework
- Synopsis
 - Power full synthesis tools
 - VHDL simulator
- Avant
 - Power full place and route tools
 - Hspice simulator with automatic characterization tools
- Div commercial:
 - View-logic, Summit, Tanner, etc.
• Free shareware:
 - Spice, Magic, Berkley IC design tools, Alliance
 - Diverse from the web.
• Complete set of commercial high performance CAE tools cost
 ~1 M$ per seat ! (official list price).
• University programs: Complete set of tools ~10K$
 - Europe: Eurochip
 - US: Mosis
 - Japan: ?
Hardware describing languages
and
Synthesis

J. Christiansen,
CERN - EP/MIC
Jorgen.Christiansen@cern.ch

Hardware describing languages (HDL)

- Describe behavior not implementation
- Make model independent of technology
- Model complete systems
- Specification of sub-module functions
- Speed up simulation of large systems
- Standardized text format
- CAE tool independent
• VHDL
 - Very High speed integrated circuit Description Language
 - Initiated by American department of defense as a specification language.
 - Standardized by IEEE

• Verilog
 - First real commercial HDL language from gateway automation (now Cadence)
 - Default standard among chip designers for many years
 - Until a few years ago, proprietary language of Cadence.
 - Now also a IEEE standard because of severe competition from VHDL. Result: multiple vendors

• Compiled/Interpreted
 - Compiled:
 - Description compiled into C and then into binary or directly into binary
 - Fast execution
 - Slow compilation
 - Interpreted:
 - Description interpreted at run time
 - Slow execution
 - Fast “compilation”
 - Many interactive features
 - VHDL normally compiled
 - Verilog exists in both interpreted and compiled versions
Design entry

- Text:
 - Tool independent
 - Good for describing algorithms
 - Bad for getting an overview of a large design

Add-on tools
- Block diagrams to get overview of hierarchy
- Graphical description of final state machines (FSM)
 - Generates similar to the "MCU"
- Flowcharts
- Language sensitive editors
- Waveform display tools
Logic synthesis

- **HDL compilation** (from VHDL or Verilog)
 - Registers: Where storage is required
 - Logic: Boolean equations, if-then-else, case, etc.

- **Logic optimization**
 - Logic minimization (similar to Karnaugh maps)
 - Finds logic sharing between equations
 - Maps into gates available in given technology
 - Uses local optimization rules

Trieste November 98 J.Christiansen/CERN
• Timing optimization
 - Estimate loading of wires
 - Defined timing constraints (clock frequency, delay, etc.)
 - Perform transformations until all constraints fulfilled

- Combined timing - size optimization
 - Smallest circuit complying to all timing constraints
 - Best solution found as a combination of special optimization algorithms and evaluation of many alternative solutions
 (Similar to simulated annealing)
• Problems in synthesis
 - Dealing with “single late signal”
 - Mapping into complex library elements
 - Regular data path structures:
 • Adders: ripple carry, carry look ahead, carry select, etc.
 • Multipliers, etc.
 Use special guidance to select special adders, multipliers, etc.
Performance of sub-micron technologies are dominated by wiring delays (wire capacitance)
• Synthesis in many cases does a better job than a manually optimized logic design.
 (in much shorter time)

Trieste November 98
J.Christiansen/CERN

• Wire loading
Timing optimization is based on a wire loading model.
 Loading of gate = input capacitance of following gates + wire capacitance
Gate loading known by synthesizer
Wire loading must be estimated

Trieste November 98
J.Christiansen/CERN
• Estimate wire capacitance from number of gates connected to wire.

![Graph showing wire capacitance vs. number of gates per wire for large and small chips.]

Advantage: Simple model
Disadvantage: Bad estimate of long wires (which limits circuit performance)

Trieste November 98
J. Christiansen/CERN

• Estimate using floor plan

![Floor plan with regions labeled and wires connecting them.]

Advantage: Realistic estimate
Disadvantage: Synthesizer most work with complete design

Trieste November 98
J. Christiansen/CERN
• Iteration
 - Synthesis with crude estimation
 - P&R with extraction of real loading
 - Re-synthesize starting from real loads
 - Repeat X times
• Timing driven P&R
 - Synthesize with crude estimation
 - Use timing calculations from synthesis to control P&R
• Integration of synthesis and P&R
 - Floor planning - timing driven - iteration

• Synthesis in the future
 - Integration of synthesis and P&R
 - Synthesis of standard modules (processor, PCI interface, Digital filters, etc.)
 - Automatic insertion of scan path for production testing.
 - Synthesis for low power
 - Synthesis of self-timed circuits (asynchronous)
 - Behavioral synthesis
 - Formal verification

Trieste November 98 J.Christiansen CERN
Requirements to package

- Protect circuit from external environment
- Protect circuit during production of PCB
- Mechanical interface to PCB
- Interface for production testing
- Good signal transfer between chip and PCB
- Good power supply to IC
- Cooling
- Small
- Cheap
Materials

- Ceramic
 - Good heat conductivity
 - Hermetic
 - Expensive (often more expensive than chip itself!)
- Metal (has been used internally in IBM)
 - Good heat conductivity
 - Hermetic
 - Electrical conductive (must be mixed with other material)
- Plastic
 - Cheap
 - Poor heat conductivity
 Can be improved by incorporating metallic heat plate.

Cooling

- Package must transport heat from IC to environment
- Heat removed from package by:
 - Air: Natural air flow, Forced air flow improved by mounting heat sink
 - PCB: Transported to PCB by package pins
 - Liquid: Used in large mainframe computers
• Package types:
 - Below 1 watt: Plastic
 - Below 5 watt: Standard ceramic
 - Up to 30 watt: Special

Chip mounting

• Pin through hole
 - Pins traversing PCB
 - Easy manual mounting
 - Problem passing signals between pins on PCB (All layers)
 - Limited density

• Surface Mount Devices (SMD)
 - Small footprint on surface of PCB
 - Special machines required for mounting
 - No blocking of wires on lower PCB layers
 - High density
Traditional packages

• DIL (Dual In Line)
 - Low pin count
 - Large

• PGA (Pin Grid Array)
 - High pin count (up to 400)
 - Previously used for most CPUs

• PLCC (Plastic leaded chip carrier)
 - Limited pin count (max 84)
 - Large
 - Cheap
 - SMD

• QFP (Quarter Flat pack)
 - High pin count (up to 300)
 - Small
 - Cheap
 - SMD

New package types

• BGA (Ball Grid Array)
 - Small solder balls to connect to board
 - Small
 - High pin count
 - Cheap
 - Low inductance

• CSP (Chip scale packaging)
 - Similar to BGA
 - Very small packages
• MCP (Multi Chip Package)
 - Mixing of several technologies in same component
 - Yield improvement by making two chips instead of one

Chip to package connection

• Bonding
 - Only periphery of chip available for IO connections
 - Mechanically bonding one pin at a time (sequential)
 - Cooling from back of chip
 - High inductance (~1nH)

• Flip-chip
 - Whole chip area available for IO connections
 - Automatic alignment
 - One step process (parallel)
 - Cooling via balls (front) and back if required
 - Thermal matching between chip and substrate required
 - Low inductance (~0.1nH)
Multiple Chip Module (MCM)

- Increase integration level of system (smaller size)
- Decrease loading of external signals > higher performance
- No packaging of individual chips
- Problems with known good die:
 - Single chip fault coverage: 95%
 - MCM yield with 10 chips: \((0.95)^{10} = 60\%\)
- Problems with cooling
- Still expensive

Trieste November 98 J.Christiansen/CERN
Signal Interface

- Transfer of IC signals to PCB
 - Package inductance.
 - PCB wire capacitance.
 - L - C resonator circuit generating oscillations.
 - Transmission line effects may generate reflections
 - Cross-talk via mutual inductance

IO signals

- Direct voltage mode
 - Simple driver (Large CMOS inverter)
 - TTL, CMOS, LV-TTL, etc. Problems when Vdd of IC's change.
 - Large current peaks during transitions resulting in large oscillations

- Slew rated controlled
 - Limiting output current during transitions
 - Reduced oscillations
 - (Reduced speed)
• Current mode
 - Switch current instead of voltage
 - Reduced current surge in power supply of driver
 - Reduced oscillations
 - External resistor to translate into voltage or
 Low impedance measuring current directly
 - Very good to drive transmission lines (similar to ECL)

• Differential
 - Switch two opposite signals: signal and signal inverted
 - Good for twisted pairs
 - Common mode of signal can be rejected
 - Two pins per signal required
 - High speed
LVDS (Low Voltage swing Differential signaling)
- High speed (up to 250 MHz or higher)
- Low voltage (independent of Vdd of different technologies)
- Differential
- Current mode
- Constant current in driver power supply (low noise)

Power supply
- Power supply current to synchronous circuits strongly correlated to clock
- Large current surges when normal CMCS output drivers change state
- Inductance in power supply lines in package.
- 10% - 25% of IC pins dedicated to power to insure on-chip power with low voltage drop and acceptable noise.
Good design practices
(What not to do)

J. Christiansen,
CERN - EP/MIC
Jorgen.Christiansen@cern.ch

Purpose of good design practices

- Improve chance of chip working first time
- Reduce (tota!) design time
- Reduce development cost
- Improved reliability
- Improved production yield.
- Follow vendor rules to get standard guarantees.
- Some performance reduction may have to be accepted
- (Be smart but not to smart)
Specification

- Specification must be complete before starting to do detailed design.
- Specification must be agreed upon and "signed" by involved partners.
- Specification must be exact and leave no space for different interpretations.
- Specification should be simulated at system level.
- HDL specification is preferable.
- Realistic guesses of design time, design costs and production costs must be made (factor 2).

Choice of technology

- Performance (speed, complexity)
- Design tools: Synthesizers, P&R, etc.
 Libraries (gates, adders, RAM, ROM, PLL's, etc.)
- Development costs
 - Full engineering run: NRE
 - Multi Project Wafer (MPW)
- Life time of technology
 - Modern CMOS only have a life time of ~5 years
- Production
 - Price as function of volume
 - Production testing
Well planned design hierarchy

- The hierarchy of a design is the base for the whole design process.
 - Define logical functional blocks
 - Minimize connections between branches of hierarchy
 - Keep in mind that Hierarchy is going to be used for synthesis, simulation, Place & route, testing, etc.
- Define architecture in a top-down approach
- Evaluate implementation and performance of critical blocks to see if architecture must be changed.

Synchronous design

- All flip-flops clocked with same clock.
- Only use clocked flip-flops
 - no RS latches, cross coupled gates, J-K flip-flops, etc.
- No asynchronous state machines
- No self-timed circuits
Clock gating

- Clock gating has the potential of significant power savings disabling clocks to functions not active.
- Clock gating introduces a significant risk of malfunctions caused by glitches when enabling/disabling clock.

![Clock gating diagram]

- It may be required to use clock gating on timing control signals to on-chip RAM:
 - Write enable is often used to latch address on rising edge and data on falling edge
 - Simulate very carefully circuit generating write-enable pulse.
Clock distribution

- Even in synchronous designs, race conditions can occur if clock not properly distributed
 - Flip-flops have set-up and hold time restrictions
 - Clocks may not arrive at same time to different flip-flops.
 - Especially critical for shift registers where no logic delays exists between neighbor flip-flops.
 - Clock distribution must be very carefully designed and dummy logic may be needed between flip-flops.

- Use of both rising and falling edge of clock
 - Doubling effective speed of circuits
 - Strict requirements to clock duty cycle from external source
 - Duty cycle distortion in clock distribution
 - **Use PLL to generate clock multiplication**
Delay based circuits

- Pulse generator
- Clock doubler

Resets

- Asynchronous resets must still be synchronized to clock to insure correct start when reset released
- Synchronous reset made by simple gating of input
Interface to asynchronous world

- It is in some applications necessary to interface to circuits not running with the same clock.
 - Natural signals are asynchronous
 - Signals between different systems
 - Many chips today uses special internal clocks (eg. X 2)
- Asynchronous signals must be synchronized
 - Synchronizers are sensitive to meta-stability
 - Use double or triple synchronizers

On-chip data busses

- Data busses are often required to exchange data between many functional units.
 - Insure that only one driver actively driving bus
 - Also before chip have been properly initialized
 - Bus drivers are often power full and a bus contention may be destructive.
 - Insure that bus is never left in a tri-state state.
 - A floating bus may result in significant short circuit currents in receivers
 - Always have one source driving the bus
 - Use special bus retention generators.
Mixed signal

- Extreme care must be taken in mixed analog - digital integrated circuits to limit coupling to the sensitive analog part.
 - Separate power supplies for analog and digital
 - Guard ring connected to ground around analog blocks
 - Separate test of analog and digital (scan path)
 - Use differential analog circuits to reject common mode noise
 - Be careful with digital outputs which may inject noise into analog part (use if possible differential outputs)

Simulation

- Simulation is the most important tool to insure correct behavior of IC.
 - Circuit must be simulated in all possible operating modes
 - Digital simulator output should not only be checked by looking at waveforms
 - Circuit must be simulated under all process and operating conditions
 - Best case: -20 deg., good process, Vdd + 10% x -0.5
 - Typical: 20 deg., typical process, Vdd x 1.0
 - Worst case: 100 deg., bad process, Vdd - 10% x 2.0
 - Worst N - best P: NMOS bad process, PMOS good process (analog)
 - Best N - worst P: NMOS good process, PMOS bad process (analog)
Testing

- One can "never" put too much test facilities in chips.
- Put scan path wherever possible.
- Have special test outputs which can be used for monitoring of critical circuits.
- Put internal test pads on special tricky analog circuits.
- If in doubt about critical parameters of design make it programmable if possible.
- Do not forget about production testing.
- Do not make a redesign before problems with current version well understood.
- Most designs need some kind of redesign.
Test and Design for testability

Jørgen Christiansen CERN / EP, 1211 Geneve 23, Switzerland
(TEL: +41 22 767 5824, Email: Jorgen.Christiansen@cern.ch)
Overview

Basic testing theory:

- Why testing: cost of testing and yield.
- Reliability of VLSI circuits.
- What to test: Combinatorial, Sequential, Memory.
- Basic testing terms, fault models.
- Fault coverage.
- Generation of test patterns.
- Memory testing.
- Steady state power supply current testing.
- VLSI testers.
- E-beam testing.
- Test of analog IC’s.

Testing:

- Design verification
- Production
Overview

Scan path testing:

- Improving controllability and observability using scan paths.
- JTAG (Joint test action group), IEEE standard 1149.1.
- JTAG protocol.
- Boundary test.
- Typical JTAG scan path cells.
- JTAG ASIC libraries.
- JTAG test equipment.
- Alternative use of JTAG.
Overview

Built in self test (BIST):
 • Different schemes of BIST.
 • Pseudo random generators.
 • Signature analyzing.
 • Built in logic block observer (BILBO).
 • Running self test via JTAG.

Design for testability guidelines.

Testing seen by an ASIC designer.
Basic testing theory
Basic testing theory

Price of finding and repairing a failing design/chip

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>FAILURE MECHANISM</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specification</td>
<td>Functionality, Performance Testability, reliability Interoperability</td>
<td>$1</td>
</tr>
<tr>
<td>Design</td>
<td></td>
<td>$1000</td>
</tr>
<tr>
<td>Prototype</td>
<td>Verification, Qualification, Production margins</td>
<td>$100,000</td>
</tr>
<tr>
<td>Wafer</td>
<td>Yield, speed, noise, gain</td>
<td>$1</td>
</tr>
<tr>
<td>Chip</td>
<td>Cutting, bonding</td>
<td>$10</td>
</tr>
<tr>
<td>(MCM) Module</td>
<td>Soldering, ESD</td>
<td>$100</td>
</tr>
<tr>
<td>(Sub) System</td>
<td>Cables, connectors</td>
<td>$1000</td>
</tr>
<tr>
<td>At customer</td>
<td>Reliability of components, vibrations, corrosion, radiation, high voltage</td>
<td>$10,000</td>
</tr>
</tbody>
</table>

Design verification testing

100K$ - ? $ (if not sufficient design verification performed)

Production testing

(price per chip)
Basic testing theory

Yield

Yield is calculated from defects per mm\(^2\) \(= \exp(-A \cdot D)\)

Typical defect density is of the order of 0.005 - 0.02 defects/mm\(^2\)

(memories have redundancy)

Very high production volume technology

Low production volume technology

Price of 100 mm\(^2\) chip compared to 50 mm\(^2\) chip:

\[
100 \text{ mm}^2 / 50 \text{ mm}^2 \times 0.61/0.37 = 3.4 \quad (D=0.01)
\]

\[
100 \text{ mm}^2 / 50 \text{ mm}^2 \times 0.36/0.14 = 5.3 \quad (D=0.02)
\]
Basic testing theory

Reliability of VLSI circuits

Failure rate

- Infant mortality
- Badly designed component (electron migration, hot electron, corrosion, etc.)
- Wear out

Time

1000 hours 10 years

Failing parts within first 1000 hours: 1 - 5%

Burn-in testing: Heating up chips to 125 deg. accelerates 1000 hours period to approx. 24 hours.

Static: power supply connected.
Dynamic: Power + stimulation patterns.
Functional test: Power + stimulation patterns + test.

Temperature cycling: Continuous temperature cycling of chips to provoke temperature gradient induced faults.
(Non matching thermal expansion coefficients).
Basic testing theory

What to test

Combinatorial
N inputs
Exhaustive test vectors: 2^N

Sequential
N inputs
M storage elements
Exhaustive test vectors: $2^{(N+M)}$

Mixed analog/digital
N inputs
M storage elements
Exhaustive test vectors: $2^{(N+M)}$ plus analog parameters

100 Mhz tester:
N=32; test time = 40 seconds.
N=64; test time = 6,000 years

Knowledge about topology of circuit must be used to reduce number of test vectors so they can be generated by tester (tester memory: 10K - 10M).

Analog and digital stimuli must be generated from a tightly synchronised system.
Basic testing theory

Basic testing terms

- **CONTROLABILITY**: The ease of controlling the state of a node in the circuit.

- **OBSERVABILITY**: The ease of observing the state of a node in the circuit.

Example: 4 bit counter with clear

Control of q3:

Set low: perform clear = 1 vector

Set high: perform clear + count to 1000B = 9 vectors
Basic testing theory

Testing a node in a circuit

• A: Apply sequence of test vectors to circuit which sets node to demanded state.

• B: Apply sequence of test vectors to circuit which enables state of node to be observed.

• C: The observing test vector sequence must not change state of node.
Basic testing theory

Fault models

- Fault types: Functional.
 Timing.

- Abstraction level: Transistor. (layout)
 Gate. (netlist)
 Macro (functional blocks).

![Diagrams of open, short, and parameter faults with corresponding graphs for R, gm, Delay, C, and Vt.]
Basic testing theory

Transistor level

Full functional inverter

\[V_i \rightarrow V_o \]

PMOS stuck on

\[V_i \rightarrow V_o \]

Transfer characteristic

\[V_o \rightarrow V_i \]

CMOS logic may become NMOS logic if PMOS transistor stuck on.
Basic testing theory

Full functional NAND

One PMOS stuck open

Combinatorial logic may become sequential if stuck open faults
Basic testing theory

Dynamic storage elements may lose information if circuit run at low frequency.
The gate level stuck at 0/1 is the dominantly used fault model for VLSI circuits, because of its simplicity.

Fault coverage calculated by fault simulation are always calculated using the stuck at 0/1 model. Other more complicated fault models are too compute intensive for VLSI designs.

\[
\text{Fault coverage} = \frac{\text{Number of faults detected by test pattern}}{\text{Total number of possible stuck at faults in circuit}}
\]
Basic testing theory

Testability

 Fault coverage

100 %

Number of test vectors

A: Design made with testability in mind.

B: Design made without testability in mind but good fault coverage obtained by large effort in making test vectors.

C: Design very difficult to test even using large effort in test vector generation.
Basic testing theory

Generation of test patterns

- Test vectors made by test engineer based on functional description and schematics. Proprietary test vector languages used to drive tester. (over the wall)
- Test vectors made by design engineer on CAE system.
- Subset of test patterns may be taken from design verification simulations.
- Generated by Automatic Test Pattern Generators (ATPG).
- Pseudo random generated test patterns.
- Fault simulation calculates fault coverage.
Basic testing theory

Fault simulation

Fault coverage found by fault simulations

Test patterns → Good simulation model → Reference response

Single fault simulation model → Compare response

Repeat for all possible stuck at zero/one faults

Requires long simulation times !.

Toggle test (counts how many times each node has changed) can be used to get a first impression of fault coverage.
Basic testing theory

Test development cost when complexity increases:

Cost (time)

100 %

Design

0 %

Test development

Complexity (time)

Testability is decreasing drastically with increased integration level

pins/gate

SSI MSI LSI VLSI
Basic testing theory

Memory testing

Exhaustive test of a 1 M memory would take longer than estimated age of our universe.

Algorithmic test patterns used.

Large memory chips have built in redundant memory array columns enabling repair of failing memory cells.

Checker board

<table>
<thead>
<tr>
<th>Address</th>
<th>Walking patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 1</td>
<td>1 0 0 0</td>
</tr>
<tr>
<td>1 0 1 0</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>0 1 0 1</td>
<td>0 0 0 1</td>
</tr>
<tr>
<td>1 0 1 0</td>
<td>0 0 1 0</td>
</tr>
</tbody>
</table>

Test vectors = 4N

Test vectors = 2N

Test vectors = 2N^2

10 Mhz tester:

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>64 k</td>
<td>13 min</td>
</tr>
<tr>
<td>256k</td>
<td>3.6 h</td>
</tr>
<tr>
<td>1 M</td>
<td>55 h</td>
</tr>
</tbody>
</table>
Basic testing theory

VLSI testers

High speed high pin count VLSI testers are very expensive and complicated machines. (100 k$ - 10 M$).

Vector speed: 100 - 500MHz,
Vector depth: 32k - 100M
Time resolution: 100ps - 10ps
Pin count: 100 - 512

Shared resources:

Algorithmic pattern generator

vector memory

timing generators

Pin elec.

Tester per pin:

System sync.

vec mem
vec mem
vec mem

tim. gen
tim. gen
tim. gen

pin elec
pin elec
pin elec

+ Measurements of DC characteristics

Testers must be faster than current IC technology !.
Basic testing theory

Timing formatting of test vectors:

- Vector period
- Vector value
- NRZ (non return zero)
- RZ (return zero)
- SBC (surround by complement)
- Strobed compare
- Window compare

Timing

\[t_1 \quad t_2 \quad t_1 \quad t_2 \quad t_1 \quad t_2 \]
Basic testing theory

Quiescent current testing (Iddq)

- A CMOS device consumes very low current in steady state.
- If a transistor is stuck on, the steady state current will rise orders of magnitude when the right test pattern is applied.

- Slow vector rate to get current to settle
- Many nodes tested in parallel
- Used as an additional test to improve fault coverage
Basic testing theory

E-beam testing

The reflection of an E-beam from a surface is influenced by voltage potential of the surface.

Single point probing with very good timing resolution (~100ps) using statistical averaging

Complete scan of chip to get voltage contrast picture at a specific time in pattern sequence.
Basic testing theory

Test of analog circuits

- Each analog circuit is always special.
- Difficult to access internal nodes (drive external load).
- Mixed analog/digital testers are often a digital tester with analog add ons (GPIB, VXI, VME).
Basic testing theory

Design verification testing
(10-50% of total development costs)

- Does model comply with specification?
- Does design have same behaviour as model?
- Does chip work as specified? (50%)
- Does specification comply with application? (50%)

Design:
- Full custom
- Standard cell
- Gate array

Low quantity

- Does design work?
- Does chip work in application? (50% * 50% = 25%)

Application

- Sufficient margins for production variations?
- Is it testable in production?
- Reliability?
- Will it work in final system?

How do we find out what's wrong?
Basic testing theory

Production testing

(production test pattern development 5 - 25% of development costs)
(Production test 20 - 50% of final chip cost)

Packaged

Burn-in?

Functional test: fault coverage, stuck at 0/1

Internal speed test: clocking speed

Margins? (noise, measurement accuracy, etc.)

Temperature?

Supply voltage?

External loads?

Analog parameters: gain, noise, time constants, precision, etc.

I/O level test: output levels, input thresholds

External speed test: setup time, hold time, delay

Wafer

Bare die

MCM
Scan path testing
Scan path testing

- Improving controllability/observability by enabling all storage nodes to be controlled/observed via serial scan path.

Test principle:
1: Enable scan mode and scan in control data.
2: Disable scan mode and clock chip one cycle.
3: Enable scan mode and scan out observing data.

Generation of test vectors: With the high controllability/observability the test vectors can be generated automatically with an ATPG program.
Scan path testing

Scan path cells:

Storage node:

Non storage node:
Scan path testing

- **Scan path advantages:**
 Test vectors can be generated by ATPG programs.
 Observability/Controllability problems do not have to be considered during the design phase.
 Testers do not need to have complex test vector generation capabilities for all pins of the chip (only scan in and scan out necessary).

- **Scan path disadvantages:**
 Hardware overhead: additional multiplexers must be included in the circuit.
 example: 20,000 gates with 500 flip-flops
 1 flip-flop = 10 gates > 500 ff = 5000 gates
 1 scan flip-flop = 12 gates > 500 ff = 6000 gates.
 overhead = 1000 gates = 5%
 Speed degrading: additional multiplexers added in signal path.
 example: 2 input inverting multiplexer in 1 μm CMOS dly= 0.44 ns (typ.).
 special scan flip-flop in 1μm CMOS dly = 0.3 ns (typ.).
The JTAG standard

- IEEE 1149 standard.
- Boundary scan to test interconnect between chips.
- Internal scan to test chip.
- Control and status of built in self test.
- Chip ID
- Many commercial chips with JTAG standard implemented: Processors, FPGA, etc.
The JTAG standard

Boundary scan makes it possible to test interconnections between chips on a module.

Test of chips and board connections can be performed in-situ.
JTAG Protocol

Only 4 (5) pins used for JTAG interface

Test clock: Clock for loading control and test patterns + clock for shifting out response
Test mode select: Selects mode of testing
Test data in: Serial input of test patterns
Test data out: Serial output of response to test pattern.

\[
\begin{array}{c|c|c|c|c|c}
\hline
Tclk & & & & & \\
\hline
\hline
Tms & Initialize & Load Ins. & shift in test data & update scan registers & Load response & Shift out response \\
\hline
Tdi & Instruction & Test data in & & & Next test data \\
\hline
Tdo & & & & & Test data out \\
\hline
\end{array}
\]
The JTAG standard

JTAG block diagram

- **Tdi**
- **Tclk**
- **Tms**
- **Trst**

- **Boundary scan register**
- **ID code register**
- **User definable registers**
- **Instruction register**

- **Test Access Port control (TAP)**

- **Instruction decoder**

- **MUX**
 - **Tdo**

- **Extest Intest Sample Run self test etc.**
The JTAG standard

JTAG Test Access Port (TAP) controller

TAP state transition only depends on Tms
If Tms kept at logic one TAP controller will get to Test-logic-reset state
The JTAG standard

Connection of IC’s with JTAG

Serial connection

Hybrid serial/parallel connection
The JTAG standard

Using JTAG testing of mixed analog/digital IC's

Consider analog part as being external and insert boundary scan registers between analog and digital.

New IEEE 1149.4 standard for test of analog parts in the process of being defined.
The JTAG standard

JTAG scan cells

Observing scan cell

Controlling scan cell

Observing and controlling scan cell

JTAG cells required for Input/Output pin
Each memory test vector must be shifted in/out serially

Testing becomes very, very, very SLOW

Use special built in self test
The JTAG standard

JTAG libraries from ASIC vendors

In FPGA's a standard JTAG controller is often available and IO cells are prepared for boundary scan.

Libraries of JTAG components are normally available when designing with standard cells or gate arrays.
The JTAG standard

JTAG test equipment

Most chip testers today have options of special JTAG test facilities.

PC based JTAG test equipment available at attractive prices.

Software:
- Test vector interface
- Netlist interface (EDIF)
- Scan path description interface (Boundary scan description language)
- JTAG test functions
- Fault diagnostics
- (Automatic test pattern generation for inter chip connections)
- Etc.
The JTAG standard

Alternative use of JTAG

- Load programming data into programmable devices before use.
- Monitor function of device while running.
- Read out of internal registers in micro processors and digital signal processors to ease debugging of programs.
Built in test
Built in test

Different schemes of built in (self) test

Include test pattern generator and response check on chip

Make self checking during operation by duplicating all functions

Generate local check sums and check with transformation of previous check sum

Hardware overhead !!
Simple pattern generation and pattern checking

Built in test

Linear Feedback shift register (LFSR)

Pattern generation: Pseudo random patterns based on generating polynomial and seed.

Pattern checking: Multiple input signature register (MISR) generating “check sum” of input data.

Scan path cells can be implemented so they can be used as pseudo random pattern generator or multiple input signature analysing register.
Built in test

BILBO (Built In Logic Block Observer)

B1, B2 = 11, Normal register mode

B1, B2 = 00, Scan path mode

B1, B2 = 10, LFSR mode

B1, B2 = 01, Reset of BILBO
Design for testability guidelines.

- Use static logic.
- Make design completely synchronous.
 use D flip-flops and not latches.
 no clock gating.
- No internal clock generation.
- Prevent large counter like structures.
- If possible use scan path (JTAG).
- If possible use built in test of memories.

DO NOT FORGET ABOUT TESTING WHEN CHIP IS SPECIFIED AND DESIGNED
Testing seen from an ASIC designer.

- Design verification simulations performed at full speed.
- Functional testing performed at low speed (1 Mhz).
- Few timing path delays performed to monitor process.
- Single quiescent current measurement.
- Test structures on wafers used to monitor process.
- Test vectors taken from design verification simulations.
- Test vectors must conform to tester restrictions. (checked by special programs)
- Most ASIC manufactures offer scan path cells and ATPG programs.
- Most ASIC manufactures offer JTAG boundary scan I/O cells and TAP controller.
Testing seen from an ASIC designer.

Alternatives to buy expensive tester

- **Build custom test setup for each chip.**

 New hardware must be built each time.
 Custom software, no link to CAE system.
 No accurate control of parameters (timing, signal levels, loading, etc.).
 User unfriendly (looking at waveforms, debugging).
 Characterization not possible.
 Difficult “what if” testing/verification.
 May be required for specialized tests (noise measurements).

- **Subcontract testing.**

 Lots of documentation required (may be an advantage).
 Test houses may not have equipment to test special mixed analog/digital IC’s.
 Difficult to specify specialized test (mixed analog/digital, noise, time res.)
 Very difficult (impossible) for non designer to perform design verification (what’s wrong)
 Difficult “what if” testing/verification.
 Good for large production series where test procedure well specified.

- **Rent test time at external location.**

 Difficult to integrate specialized equipment into foreign tester.
 Lacking support from test specialist understanding special IC’s.
 Geographical displacement of design team for extended period.

- **Test in final application**

 Think of poor system designer having to test chips and system at the same time.
 No accurate control of parameters, characterization not possible.
 Does not prove that chip works as specified.
 Only proves that this chip works in specific application (low rate, loading, process parameters).
 May be required as final test for very specialized IC’s.