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Social Phase Transitions

Abstract

What do the market crash of 1987, the collapse of the Berlin wall, the outbreak of

social cooperation and the instantaneous emergence of traffic jams have in common

with boiling water at 100ºC ? In all of the above systems a small event (or parameter

change) has triggered a dramatic transition in the system. We show that social systems

in which individuals have an inclination to conform with each other may undergo

“phase transitions” very similarly to physical systems such as water starting to boil or

spins aligning in a magnet. We develop a general criterion which determines whether

a given social system is susceptible to undergo a phase transition, and we show that

phase transitions may occur in a wide range of social systems. The heterogeneity of

the agents comprising the system is shown to play a crucial role in determining both

the possibility of a transition and its magnitude. Transitions may occur only if the

system is not “too heterogeneous”. The more homogeneous the system, the more

dramatic the transition will typically be. We further show that at the transition point

the system is unstable and thus transitions may reverse (as in the unsuccessful 1989

uprising in China, or the Nasdaq crashing 13.5% and then climbing back 11.8% on

the same day in April 2000). Knowledge about the distribution of individuals

comprising a social system may allow prediction and even induction or prevention of

a social phase transition.
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I. Introduction

Most social systems are usually continuous: a small change in one of the

system’s parameters leads to a small change in the system’s properties. For example,

a small increase in marketing effort usually leads to a small increase in sales; a small

increase of the fine for speeding on the freeway usually leads to a small reduction of

speed limit violations; when an oppressive government slightly worsens the living

conditions of its citizens this usually leads to a slight increase of the opposition to the

government, etc. While this is usually true, many social systems sometimes behave

very differently – in reaction to a small parameter change they may undergo a

dramatic “discontinuous” transition. In many cases the triggering parameter change

may be so small that it is even unobservable. Such dramatic discontinuous transitions

which are due to a small or even an unnoticeable change in the conditions are

observed in a wide variety of social systems ranging from stock markets to political

systems, norms of drug abuse, and even traffic flow.

The stock market crash of 1987 was a very dramatic event which shook the

world, with markets around the globe dropping by tens of percents in just a few days.

The puzzling part about the 1987 crash is that it was not triggered by any significant

new economic information. Why did the market crash on October 1987 and not a

month earlier or a year later? For that matter, why did it crash at all? To this day, we

lack a satisfactory answer to these questions (see Roll [1991]).

The thundering collapse of the East European block took the world by

complete surprise. This discontinuous political earthquake was totally unanticipated.

Even with hindsight it is difficult to explain the timing of this collapse, or to justify it

as a consequence of a significant triggering event. This is true not only of the East

European revolution of 1989, but also of many other political revolutions such as the
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French revolution of 1789, the Russian revolution of 1917, and the Iranian revolution

of 1978-9 (see Kuran [1989], [1991]). Spontaneous discontinuous transitions, which

occur without any significant external trigger are also observed in the flow of traffic

on the freeway (Kerner and Rehborn [1997]), the emergence of social cooperation

(Glance and Huberman [1993], [1994]), the outbreak of drug abuse among teenagers

(Kraw [2000]), racial segregation (Schelling [1978]), and many other social systems.

Dramatic transitions in social systems are typically analyzed in the context of

the specific system considered. Kuran [1989, 1991] develops a model of political

revolution which is based on the concept of preference falsification, which is the

difference between an individual’s private preference and his public preference (a

person may secretly hate the government but publicly support it for fear of

persecution).  Welch [1992] and Bikhchandani, Hirshleifer and Welch [1992] show

that the fragility of mass behavior and fads can be explained in terms of informational

cascades, which occur when it is optimal for an individual to follow the behavior of

the preceding individual without regard to his own information. Glance and

Huberman [1993, 1994] model social cooperation and show that the degree of

cooperation in a society can abruptly and drastically change without warning. Kerner

and Rehborn [1997] analyze and model traffic flow on freeways. They show that

dramatic transitions between free traffic flow and traffic jams often occur

spontaneously, without any noticeable change in traffic volume to trigger them. Topol

[1991], Gennotte and Leland [1990], and Levy, Levy and Solomon [1994] suggest

models which can explain spontaneous stock market crashes. Kirman [1993] shows

that a simple tandem-recruitment model can explain “herding” behavior and sharp

changes in the aggregate choice between two identical sources.
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Physical systems with many interacting elements are also known to undergo

discontinuous transitions. Perhaps the most well-known example is that of a system of

many interacting H2O molecules – water. When water is heated from, say 87.1ºC to

87.2ºC nothing dramatic happens. The small temperature increase leads to small

changes in the properties of the water (volume, pressure). The same is true for small

temperature changes up to a temperature of 99.9ºC. However, when the water is

heated from 99.9ºC to 100ºC a very dramatic transition occurs as a result of the small

temperature increase - the water begins to boil, and the properties of the system

change discontinuously. In the context of statistical mechanics this discontinuous

transition is known as a “phase transition”. Indeed, several researchers have applied

statistical mechanics models for the investigation of social and economic systems (for

some of the first examples, see Föllmer [1974], and Haken [1977]). In a recent series

of innovative papers, Brock [1993], Brock and Durlauf [1995], and Durlauf [1999]

employ the statistical mechanics Ising model1 to investigate various economic

systems. Some researches caution of such analogies between statistical mechanics and

economics, and point to their limitations (see Hors and Lordon [1997]). One major

difficulty with these analogies is that one has to “tailor” the economic model so that it

is mathematically identical to the statistical mechanics model. Obviously, this could

be problematic.

In this paper we suggest that dramatic transitions in a wide variety of social

systems can be explained by a single basic mechanism which is similar to the

mechanism responsible for phase transitions in physical systems. Although the social

phase transition mechanism suggested here is analogous to the statistical mechanics

phase transition mechanism, the analogy does not depend on any specific assumptions

                                                          
 1The Ising model is one of the fundamental models in statistical physics for describing systems with
many interacting elements. For a description of this model, see, for example, Stanley [1971].
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regarding the underlying model, and it is therefore very general, as will become

evident. In this analogy the degree of heterogeneity in the social system plays the role

of temperature in physical systems, and just as temperature plays a key role in

physical phase transitions we show that heterogeneity plays a key role in social phase

transitions2. Specifically, the degree of heterogeneity determines whether a phase

transition may occur, and it is closely related to the magnitude of the transition. We

show that any social system in which individuals have some inclination to conform

with their peers, and in which the population is not very heterogeneous, may undergo

a phase transition.

The structure of this paper is as follows. In section II we provide the

framework of the analysis and show how phase transitions may occur. In section III

we provide a criterion which determines whether a given social system is susceptible

to undergo a phase transition. In section IV we develop tools to estimate the

magnitude of possible transitions for general systems, and we show that this

magnitude is related to the heterogeneity of the system. Section V analyzes the

stability of the system at the transition point and discusses the possibility of reverse

transitions. Section VI suggests practical applications and points to several possible

directions for further investigation.

II. Framework for Analysis of Phase Transitions

Consider a system of individuals who are faced with a binary decision, such as

the decision whether to join a revolution or not, whether to use drugs or not, or

                                                          
 2In the previously mentioned example of water beginning to boil, temperature plays both the role of
“heterogeneity” and that of the parameter which is slightly changed to trigger the transition. In the
analysis of social systems we take the degree of heterogeneity as given, while a small change in a
different parameter triggers the transition. This is analogous to the phase transition which occurs when
the water is kept at a constant temperature and a different parameter (for example pressure) is slightly
changed.
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whether to invest in the stock market or not3. The decision of an individual is a

function of some personal characteristics and  some global parameters. Formally, the

utility function of individual i can be written as4:

 ii UU = (hi, g, x, si), (1)

where hi is a vector of personal characteristics, g is a vector of global parameters, si is

the choice of the individual (in our case of a binary choice si can be either 0 or 1), and

x is a global parameter which we wish to distinguish from the other global parameters

in g – it is the percentage of individuals in the population who choose si = 1 (i.e.

N

s
x

N

1i
i∑

== , where N is the total number of individuals). Thus, by definition x is in the

range [0,1]. For a concrete example consider the choice of a teenager deciding

whether to use drugs (si = 1) or not (si = 0). Her decision will be influenced by some

personal characteristics hi (such as her psychological state of mind, the effect drugs

have on her, the availability of money to buy drugs, etc.), some global parameters

(such as the sanctions if caught using drugs, the health hazards of drugs, etc.), and by

peer pressure, x, which is the percentage of drug users in the population. Given the

values of the parameters hi, g,  and x, the individual makes a choice between si=0 and

si=1 by comparing his utility in the following two alternatives states

Ui(hi, g, x, 0)  with  Ui(hi, g, x, 1),

and  choosing si such as to maximize her utility.

We wish to focus here on systems in which individuals have some inclination

to conform with their peers. For example, a teenager observing many peers using

                                                          
 3In this framework we consider only binary choices. However, the model can be extended to the case
where there are  more than two alternative choices. This point is discussed in Section VI.

 4The utility function U can be generally thought of as a multidimensional utility function (as in
Kihlstrom and Mirman [1974], and Levy and Paroush [1974], for example), and not necessarily as the
classical von Neuman–Morgenstern utility function defined only on wealth.
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drugs may be more inclined to use drugs herself. An oppressed citizen contemplating

demonstrating against the government will be encouraged to do so if she sees many

other people demonstrating, etc. The motivation to conform can arise from

technological reasons (Arthur [1989]), informational reasons (Welch [1992]),

reputational reasons (Kuran [1998]), or a combination of several of the above (Kuran

[1999]).   Thus, we discuss systems in which the higher x, (i.e. the higher the

proportion of people choosing s=1), the higher Ui(hi, g, x, 1) becomes (and perhaps

the lower Ui(hi, g, x, 0) becomes), and the more inclined the individual becomes to

choose si=1.5 Let us denote the level of x which makes individual i indifferent

between choosing  si=0 and si=1 by T
ix .6  This is individual i’s threshold x: if x is

below it she will choose si=0; if x is above it she will choose si=1. Of course, T
ix will

generally vary across individuals depending on their utility functions and their

personal characteristics: one person may decide to use drugs if she observes 20% or

more of her peers using drugs, while another may cave in only if she observes at least

70% of her peers using drugs. Thus, there will be some distribution of the threshold

Tx in the population. The heterogeneity of the population with respect to Tx  turns out

to play a crucial role in social phase transitions. For simplicity, when no

misunderstanding can arise we simply denote Tx  by x, omitting the superscript T. We

denote the probability density of the threshold x in the population by f(x), and the

cumulative distribution of x by F(x). Figure 1 depicts a typical distribution F(x) 7.

According to Figure 1, 20% of the individuals would choose s=1 even if they

                                                          

 5Formally, the inclination to conform means that 
[ ]

0
x

)0,x,g,h(U)1,x,g,h(U iiii >
∂
−∂

.

 6The effect of individual i’s decision on x is neglected in his decision-making, as the population is
assumed to be large. Also, it is possible that some individuals prefer si=0 even if x=1. Others may
prefer si=1 even if x=0.
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observed   everybody   else   choosing    s=0    (see point A in Figure 1).    40%  of the

individuals would choose s=1 if they observed x=0.2 (see point B in Figure 1). 90%

of the individuals would choose s=1 if they observed x=1.0 (which means that 10%

would choose s=0 even if they observed everybody else choosing s=1, see point C;

Thus, F(1) does not necessarily equal to 1 in the general case, since a proportion

1-F(1) of the individuals do not choose s=1 even if they observe x=1)8.

(Insert Figure 1 About Here)

The unique equilibrium point in Figure 1 is point E. At this point F(x) crosses

the 45º line and F(x*)=x*, where x* is the equilibrium percentage of the population

choosing s=1. This is an equilibrium because if x* is observed, a proportion F(x*) of

the population chooses s=1, and since F(x*)=x*  point E is indeed a self-consistent

steady-state equilibrium. Note that the equilibrium E is globally stable. To see this,

suppose that the system is initially out of equilibrium, say at x=0.2. The proportion of

individuals choosing s=1 given that x=0.2 is F(0.2)=0.4. This leads to x=0.4 . The

proportion of individuals choosing s=1 given that x=0.4 is F(0.4)=0.6 which leads to

x=0.6, and so forth. Eventually the system converges to the equilibrium E along the

dotted line in Figure 1 (of course, the same is true if the system starts at an out of

equilibrium state with x> x*).

Phase Transitions

A small change in one of the global parameters, g, leads to a small change in F(x). For

example, a small increase in policing efforts can lead to a small increase in the

perceived probability of being caught using drugs, therefore inducing a downward

shift of F(x)- at each level of given x less people will choose to use drugs. Figure 2

                                                                                                                                                                      
 7This is similar to the framework suggested by Schelling [1978].
 8Of course, F(1) shown in Figure 1 plus 1-F(1)  which is not shown in the Figure add up to 1, hence
F(x) constitutes a probability distribution.
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depicts such a shift in F(x).9 This usually leads to a small shift in the equilibrium point

(from E1 to E2 in Figure 2). Thus, small parameter changes usually lead to small

changes of the equilibrium point.

(Insert Figure 2 About Here)

The above is true most of the time. However, if F(x) is shifted further

downwards (see the lowest curve in Figure 2), at some stage a small parameter change

may lead to a new crossing point (or points) of F(x) and the diagonal, and therefore to

a new possible equilibrium point(s) which may be located far away from E2 (see, for

example,  point E5 in Figure 2).10  When this occurs a phase transition may take place:

a small parameter change may cause the system to jump discontinuously  from E2 to

E5,  with dramatic changes in the properties of the system11. The transition can

generally be from an equilibrium with large x to an equilibrium with small x, as in

Figure 2 (E2 to E5), or from small x to large x, as in Figure 3 (E1 to E2). The phase

transition mechanism described here is analogous to phase transitions in statistical

mechanics systems, with heterogeneity playing the role of temperature (see, for

example,    Stanley   [1971]).     However,    while   the    statistical   mechanics phase

                                                          
 9F(x) can be either simply shifted downwards, or it can also be slightly deformed as a consequence of
the small parameter change. In the present analysis for the sake of simplicity we ignore the effect of
possible deformations.

 10Notice that in Figure 2 two new equilibria are created, E4 and E5.  However E4 is a non-stable
equilibrium, because small deviations from E4 lead to convergence either to E3 (if the starting point is
E4 + ε ) or to E5 (if the starting point is E4 - ε  ) . E5 , on the other hand, is stable. In general, an
equilibrium point x* is locally stable if |F'(x*)|<1, and unstable if |F'(x*)|>1. For a general analysis of the
stability of equilibria, see, for example, Azariadis [1993].

 11 When the system is as described by the lower curve in Figure 2 a transition may occur but it does
not necessarily have to occur since E3 is also a valid equilibrium. Generally we would expect the
transition to occur if most individuals are better of at E5.  In the present analysis we do not model the
dynamics of the transition itself. For example, it may be the case that most individuals are better off at
E5 and when this equilibrium becomes possible individuals rationally switch their choices and the
system “jumps” to E5. Alternatively, the transition may involve coordination problems and information
frictions and may be more complex than a single jump to the new equilibrium (see Cooper and John
[1988]). Nevertheless, in both cases if a transition occurs it is expected to be sharp and dramatic. For
dynamic modeling of transition dynamics see, for example, Arthur [1989] or Chamley [1999].
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transition theory holds for very specific systems (see Hors and Lordon [1997]), in

what follows we show that this mechanism is quite general, and may explain phase

transitions in a wide variety of different social systems.

(Insert Figure 3 About Here)

III. Conditions for Phase Transitions

This section  develops a criterion for determining whether a given system is

susceptible to undergo a phase transition or not. We show below that most social

systems in which agents have some inclination for conformity and in which agents are

not “too heterogeneous” (as specified below) may undergo phase transitions.

A phase transition may occur when there is more than one equilibrium, i.e.

when F(x) crosses the 45° line twice or more. In order for this to happen the slope of

F(x) at some point must be larger than (or equal to) the slope of the 45º line (otherwise

F(x) can cross the diagonal at most once). Thus, for a system to be susceptible to a

phase transition we require:

  1
dx

)x(dF ≥     for some x0. (2)

This condition does not necessarily mean that the system has two equilibria (see for

example the solid line in Figure 2, for which the slope of F(x) is greater than 1 in

some region, but there is only a single point where F(x) crosses the diagonal. For a

transition to occur it is also necessary to have more than one equilibrium point.) If

condition (2) holds then at some stage a small parameter change may cause a new

equilibrium to emerge and a phase transition may occur (dotted line in Figure 2).

Since 
dx

)x(dF  is simply the density f(x), eq(2) can also be rewritten as:

f(x)≥ 1 for some x0. (3)
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Intuitively, condition (3) means that the system has a range of self-reinforcing

positive feedback. To see this, suppose that initially the proportion of individuals

choosing s=1 is x0. Now suppose that this proportion is slightly increased to x0+ x∆

(due to a random fluctuation, or to individuals leaving or entering the system).

Following this slight increase in the observed x, some individuals will change their

choice (from s=0 to s=1, if x∆ is positive).  Since x∆  is small, the number of

individuals switching from s=0 to s=1 can be approximated by

x)x(fx
dx

)x(dF
0

x0

∆⋅=∆⋅ . If f(x0)>1 this means that following the observation of

x0+ x∆ , the new proportion of individuals choosing s=1 will be greater than x0+ x∆ ,

and x will thus further increase. This increase in x will make even more individuals

switch to s=1, and so on.  This amplification effect goes on as long as f(x)>1. Thus,

when f(x)>1 small perturbations are amplified by a positive-feedback effect. This

positive feedback “snowball” effect is essential in order for phase transitions to

occur12.

Another way to view condition (3) is as a limit on the heterogeneity of the

population. A phase transition may occur as long as the system is not “too

heterogeneous”. While condition (3) is not a conventional measure of the

heterogeneity of individuals in the system (such as the standard deviation), it does

impose a limit on this heterogeneity. Roughly speaking, condition (3) means that the

distribution of the threshold in the population is concentrated around some threshold

value x0, and that it is not spread “too much”. If all individuals have some threshold

                                                          
 12f(x)=1 is a rather special case for which the slope of F(x) is equal to the slope of the diagonal. In this
case the two lines may overlap over some range, and many equilibria may therefore be possible.



 13

value in the range [0,1]13, then .1dx)x(f1
0∫ =  In this case, condition (3) always holds.

Even in the extremely heterogeneous case, where every threshold has the same

frequency in the population, f(x)=1 everywhere, and condition (3) holds (see solid

line in Figure 4). In this case F(x) coincides with the diagonal, and every x is a

possible equilibrium. Obviously, in this situation large jumps may occur. For any

other distribution with a smaller degree of heterogeneity f(x) will be greater than 1 for

some values, and condition (3) will again hold (see dotted line in Figure 4). In the

case where some of the individuals do not have any threshold values (i.e. they stick to

their choice no matter what everybody else does), ∫ <1
0 1dx)x(f and it is generally

possible to have f(x)<1 for all x. If f(x)<1 for all x, then a phase transition will never

occur. However, for f(x)<1 to hold in the whole range, the population must be quite

heterogeneous. To illustrate this point consider the case where the threshold x is

normally distributed in the population (where x<0 and x>1 correspond to individuals

with no thresholds). In this case condition (3) is translated to an upper bound on the

standard deviation of the distribution. Namely, condition (3) is violated only if the

standard deviation of x is larger than 
π2

1 or larger than about 0.4.14 This is quite a

large degree of heterogeneity. For lower values of the standard deviation, condition

(3) holds, and the system is susceptible to phase transitions.

(Insert Figure 4 About Here)

                                                          
 13This may not always be the case, because some individuals may choose s=1 even if they observe x=0
(which means that F(0)>0), while others may choose s=0 even if they observe x=1 (F(1)<1).

 14The density of f(x) is given by: )
2

)x(
exp(

2
1)x(f

2

2

σ

µ−
−

σπ
=  and it is maximal at x= µ  where

σπ
=

2
1)x(f . Thus,  f(x)<1 implies that 4.0

2
1 ≈
π

>σ .
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IV. Transition Magnitude

While condition (3) determines whether a given system is susceptible to a

phase transition or not, it does not indicate the magnitude of the possible transition.

Obviously, this magnitude is of great interest, as one would like to know how

dramatic of a transition the system might undergo. In this section we develop a

general relation between the properties of F(x) and the magnitude of possible

transitions15. We show that the heterogeneity of agents in the system (with respect to

their thresholds) is key in determining the transition magnitude.

Consider a system for which f(x)>1 in some range bxa ≤≤ . Then, it can be

inferred that the minimal phase transition will be of magnitude b-a. This is because

regardless of the specific shape of F(x), if f(x)>1 in the range [a,b], then the slope of

F(x) is greater than the slope of the 45º line in this range, and at the transition (when

F(x) is lowered until it is tangent to the diagonal) the equilibrium points will be one to

the left of a and the other to the right of b, as in Figure 5.16

If more information is available about F(x), the lower limit on the magnitude

of the transition can be increased. For instance, if F(a) and F(b) are known (where

again [a,b] is a range in which f(x)>1), it can be shown that the minimal magnitude of

the transition is F(b)-F(a).17 To see this, note that F(x) is non-decreasing, so that a

segment of at least the size of segment m in Figure 5 must be added to the lower

bound  estimate  of  the  transition   magnitude.   Thus,  the   transition  is  at  least  of

                                                                                                                                                                      

 15Of course, if full information about F(x) is available, one can calculate the magnitude of the
transition precisely. Here we would like to develop a general rule which does not depend on the
specific functional form of F(x).
 
 16This analysis assumes that F(x) is not deformed as it is translated downwards. If such deformations
occur their secondary effects must be taken into account.

 17Which is greater than b-a since f(x)>1 in the range [a,b] and F(b)-F(a)= ∫∫ −=⋅> b
a

b
a abdx1dx)x(f .
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 magnitude (b-a)+m. However, segment m is equal to segment n, and segment (b-a) is

equal to segment k (both triangles in Figure 5 are isosceles). Thus, the minimal

transition magnitude is given by k+n which is exactly F(b)-F(a). This result holds

regardless of the specific functional form of F(x).

(Insert Figure 5 About Here)

Figure 6 graphically depicts the magnitude F(b)-F(a). Recall that a and b are

the endpoints of the range in which f(x)>1. F(b)-F(a) is simply the area below f(x)

between a and b, which is the percentage of individuals in the population with

thresholds in the range [a,b] (see Figure 6). The intuition for why F(b)-F(a) is the

minimal transition magnitude is fairly straightforward. As mentioned previously, the

range in which f(x)>1 is a positive-feedback range in which small changes in x are

amplified. Thus, if some individuals with thresholds between a and b switch from s=0

to s=1 (or vice versa) this effect will be magnified until all the rest of the individuals

with thresholds in the range [a,b] follow. Therefore, if a transition occurs, it will

involve at least a proportion F(b)-F(a) of the population18.

(Insert Figure 6 About Here)

The minimal transition magnitude, F(b)-F(a), is closely related to the degree of

heterogeneity in the system. For example, if the system is very homogeneous then

F(b)-F(a) will be close to 1 (see Figure 6A, in which the area below f(x) between a

and b is close to 1). In this case, if a transition occurs it will involve a dramatic switch

of almost the entire population. This result is very intuitive: if the population is very

homogeneous,  almost  everybody  will  make  the  same choice.  Thus,  if a transition

                                                          
 18Notice that this is just a lower bound on the transition magnitude. In most cases the transition will be
even larger, as more people from outside the positive-feedback range (with thresholds outside the range
[a,b]) may also switch. (However, the effect of their switching is attenuated rather than being further
magnified).
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 occurs, it will involve almost everybody in the system. In contrast, in a very

heterogeneous population, even if a transition does occur, it will typically be rather

small (see Figure 6B). While various assumptions regarding the specific functional

form  of  F(x) may  lead  to various dependencies of  the  transition  magnitude  on the

heterogeneity of the system, in general, the more homogeneous the system the larger

one would expect the transition to be19. A specific case of great interest is that of a

normal threshold distribution. Consider a normal threshold distribution with mean µ

and standard deviation σ . In this case, the points a and b are given as the solutions to:

1
2

)x(exp
2
1)x(f 2

2
=





σ
µ−−

σπ
= ,

which yields:








πσ
σ−µ= 22

1lna   and 






πσ
σ+µ= 22

1lnb .

Figure 7 shows b-a and F(b)-F(a) as a function of σ , the standard deviation of the

threshold distribution20. Notice that even though b-a is not monotonic (as σ  increases

the distribution becomes “wider”, which tends to increase b-a, but it also becomes

“lower”, which tends to decrease b-a), the minimal transition magnitude, F(b)-F(a), is

shown to be monotonically decreasing with σ . Thus, the more heterogeneous the

population, the smaller the lower bound on the magnitude of the transition. As σ

reaches 4.0
2

1
≈

π
 transitions are no longer possible, as shown in section III. This

                                                          
 19Yin [1998] investigates multiple equilibria and implications for strategy in a model of political
revolution with various assumptions regarding the threshold distribution.

 20This analysis assumes that a>0 and b<1, in which case the magnitude of the transition does not
depend on µ . As b-a is always smaller than 0.25 (see Figure 7), and a and b are symmetrical around µ ,
the above assumption holds as long as 875.0125.0 ≤µ≤ .  For µ  outside this range a (or b) reaches 0
(or 1) and the analysis should be slightly modified, however, the same general result holds.
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relationship between heterogeneity and the transition magnitude conforms with

empirically observed phenomena, as discussed in section VI.

(Insert Figure 7 About Here)

V. Stability and Reverse Phase Transitions

A phase transition may occur either immediately when a new equilibrium is

feasible (see solid line in Figure 8) or afterwards when F(x) is slightly further

translated (dashed line in Figure 8). Notice that while E3 in Figure 8 is a stable

equilibrium, E2 is not. Namely, if the situation is as depicted by the solid line in

Figure 8 a slight increase from E2 to E2+ ε  will lead to a dramatic reversal back to the

original equilibrium E1.

(Insert Figure 8 About Here)

Thus, if the transition occurs immediately when the alternative equilibrium

emerges, this transition may still be reversible and a reverse transition may occur.

Indeed, such reversals have been empirically observed. For example, some

revolutions such as the Prague Spring of 1968 and the 1989 uprising in China have

been overturned with return to the old equilibrium. The recent 13.5% crash of the

NASDAQ index and its amazing revival by 11.8% on the same day of April 4, 2000

may be thought of as another example of a transition followed by a quick reversal.

VI. Concluding Remarks

Many social systems undergo dramatic and often surprising transitions which

do not seem to be triggered by any significant cause. In this paper we suggest a

“social phase transition” mechanism, analogous to the statistical mechanics phase

transition mechanism, which may explain many of these dramatic events such as the
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1987 stock market crash (and the more recent April 2000 Nasdaq crash), the 1989

East European revolution (and many other political revolutions), the outbreak of

social cooperation, the instantaneous emergence of traffic jams, and the dramatic

outbreak of teenage drug abuse. The social phase transition mechanism is very

general, and may take place in a wide variety of social systems in which individuals

have some inclination to conform with each other. The role of agents’ heterogeneity

(with  respect to their thresholds) in social phase transitions is analogous to the key

role of temperature in statistical mechanics phase transitions. The heterogeneity in a

social system determines whether the system is susceptible to a phase transition. In

systems in which transitions are possible, the heterogeneity of the system is closely

related to the transition magnitude.

Social phase transitions may occur as long as the population is not “too

heterogeneous”. Furthermore, the more homogeneous the system, the more dramatic

the transition will typically be. Thus, homogeneous systems are more susceptible to

dramatic phase transitions.  Indeed, one of the reasons suggested to explain the 1987

stock market crash is the homogeneity of investors which came about because many

investors employed similar program-trading rules21. Levy and Levy [1996] also find

that in their stock market model crashes are more frequent and more dramatic when

investors are more homogeneous. Glance and Huberman [1993,1994] find that

transitions in social cooperation systems are also more dramatic when the system is

more homogeneous.

Thus, heterogeneity makes the system more immune to dramatic phase

transitions. This has implications for regulators and strategists. For example, in stock

markets, where dramatic transitions are generally undesirable, regulations can limit

                                                          
 21See “The Report of the Presidential Task Force on Market Mechanisms”, Fed. Sec. L. Rep. (CCH),
special report no. 1267, January 12, 1988 (the Brady Commission Report).



 19

homogeneity by putting various restrictions on program trading and by encouraging

competition between many diverse players, rather than letting a few homogeneous

players dominate the market. In contrast, when aiming to induce a transition it would

seem wise target initial efforts at a homogeneous sub-population. Indeed, many

political revolutions have started with an initial transition among a homogeneous

sub-population, usually students (see Kuran [1989, 1991]).

In this paper we consider systems where individual’s choices are effected by

the average behavior of all other individuals, as captured by the variable x. This is

analogous to the “mean-field” approximation in statistical physics (see Stanley

[1971]). The phase transition approach could be extended to consider systems in

which various investors have a different effect on the decision making of a certain

person (for example, in some systems a person may be affected by the behavior of

individuals in his neighborhood more than he is affected by the behavior of

individuals on the other side of town). In such systems geometry plays an important

role and may significantly complicate the analysis. Another possible extension would

be to consider systems in which there are more than two alternatives to choose from.

It seems reasonable to expect phase transitions in such systems as well, because in

statistical mechanics systems with more than two alternative states for each element

(such as the plane rotator or the Potts model) phase transitions have indeed been

found (see, for example, Yeomans [1993]).

There is no doubt that the mutual influence of individuals on one another plays

an important role in many social systems. The social phase transition framework

allows one to analyze the effects of this mutual influence, and to predict when it might

lead to dramatic discontinuous events. This theory could prove an invaluable tool for

policy making, as public polls could tell the policymaker whether a system may
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undergo a phase transition, and if so, how close the system is to the transition (is the

system like the solid line or the dashed line in Figure 2?). This is very important

information, which can help predict the transition, and perhaps act to avoid it or

induce it, depending on its social desirability.  Analysis of models with local

interactions (as mentioned above) could also provide answers to questions regarding

the optimal way to exert forces in order to bring about social change. For example, in

fighting drug abuse, is it optimal to spread policing efforts uniformly across

problematic neighborhoods, or is it better to focus efforts on one neighborhood at a

time? We believe that this research avenue holds great promise both for advancing the

theoretical understanding of the dynamics of social systems, and as a powerful

practical policy-making tool.



 21

References

Arthur, B., “Competeing Technologies, Increasing Returns, and Lock-In by Historical
Events”, The Economic Journal, 1989, 99, 116-131.

Azariadis, C., Intertemporal Macroeconomics, Blackwell, Cambridge, Mass. 1993.

Bikhchandani, S.,  Hirshleifer, D., and I. Welch, “A Theory of Fads, Fashion, Custom,
and Cultural Change as Informational Cascades”, Journal of Political Economy, 1992,
100(5), 992-1026.

Brock, W., “Pathways to Randomness in the Economy: Emergent Nonlinearity and
Chaos in Economics and Finance”, Estudios Economicos, 1993, 8(1), 3-55.

Brock, W. and S. Durlauf, “Discrete Choice With Social Interaction I: Theory”,
Mimeo, University of Wisconsin, 1995.

Chamley, C., “Coordinating Regime Switches”, Quarterly Journal of Economics,
1999, 869-905.

Cooper, R. and A. John, “Coordinating Coordination Failures in Keynesian Models”,
Quarterly Journal of Economics, 1988, 441-463.

Durlauf, S. N., “How Can Statistical Mechanics Contribute to social Science?”,
Proceedings of the National Academy of Science, 1999, 96, 10582-10584.

Föllmer, H., “Random Economies With Many Interacting Agents”, Journal of
Mathematical Economics, 1974, 1, 51-62.

Gennotte, G., and H. Leland, “Market Liquidity, Hedging, and Crashes”, American
Economic Review, 1990, 999-1021.

Glance, N. S. and Bernardo A. Huberman, “The Outbreak of Cooperation”, Journal of
Mathematical Sociology, 1993, 17(4), 281-302.

Glance, N. S. and Bernardo A. Huberman, “The Dynamics of Social Dilemmas”,
Scientific American, March 1994, 76-81.

Haken, H., Synergetics: An Introduction. Springer, New York. 1977.

Hors, I., and F. Lordon, “About Some Formalisms of Interaction: Phase Transition
Models in Economics?”, Evolutionary Economics, 1997, 7, 355-373.

Kerner, B.S, and H. Rehborn, “Experimental Properties of Phase Transitions in
Traffic Flow”, Physical Review Letters, 1997, 79, 4030.

Kihlstrom, R., and L. Mirman, “Risk Aversion with Many Commodities”, Journal of
Economic Theory, 1974, 8(3), 361-88.



 22

Kirman, A., “Ants, Rationality, and Recruitment”, The Quarterly Journal of
Economics, 1993, 108, 137-156.

Kraw, N., “A 700% Increase in Juvenile Drug Abuse Cases”, Ha’aretz, May 18,
2000.

Kuran, T., “Sparks and Prairie Fires: A Theory of Unanticipated Political
Revolution”, Public Choice, 1989, 61, 41-74.

Kuran, T., “The East European Revolution of 1989: Is It Surprising That We Were
Surprised?”, American Economic Review, 1991, 81(2), 121-125.

Kuran, T., “Ethnic Norms and Their Transformation Through Reputational
Cascades”, 1998, 27, 623-660.

Kuran, T., and Cass R. Sunstein, “Availability Cascades and Risk Regulation”,
Stanford Law Review, 1999, 51, 683-768.

Levy, H., and J. Paroush, “Toward Multivariate Efficiency Criteria”, Journal of
Economic Theory, 1974, 7, 129-42.

Levy, M., Levy H. and S. Solomon, "A Microscopic Model of the Stock Market :
Cycles, Booms, and Crashes,"  Economics Letters, 1994, 45.

Levy, M. and  H. Levy, “The Danger of Assuming Homogeneous Expectations”,
Financial Analyst Journal, 1996, 52, 3.

Roll, R., “The International Crash of October 1987”, in  Kolb, ed. The International
Finance Reader. Miami: Kolb, 1991.

Schelling, T. C., Micromotives and Macrobehavior, W.W. Norton & Company, New
York, 1978.

Stanley, E. H., Introduction to Phase Transitions and Critical Phenomena, Clarendon
Press, Oxford, 1971.

Topol, R., “Bubbles and Volatility of Stock Prices: Effect of Mimetic Contagion”,
1990, Financial Market Group discussion Series No. 101, London School of
Economics.

Welch, I., “Sequential Sales, Learning and Cascades”, Journal of Finance, 1992, 47.

Yeomans, J.M., Statistical Mechanics of Phase Transitions, Clarendon Press, Oxford,
1993.

Yin, C.C., “Equilibria of Collective Action in Different Distributions of Protest
Thresholds”, Public Choice, 1998, 97, 535-567.



 23



 24



 25



 26



 27


