
5. Ocean GCM as a tool for studying ENSO.

5.1. Ocean data reanalyses by means of GCM.

Since the data on the ocean subsurface field are either unavailable or sparse, scientists

use realistic (to the extent that we understand ocean today) General Circulation Models

(GCM) forced by observed wind stress and observed or estimated heat fluxes at the sur-

face. This gives us a detailed knowledge about subsurface ocean, including current

velocities, density field, temperature, and various tracer distribution. Figures 17-19 show

such calculations for the temperature field for the period of 1982-1989 when two strong

El Niño events (1982/1983 and 1987) occurred.

Figure 17. Observed SST anomalies in the eastern Pacific (averaged over the Nino3

region). The circles indicate snapshot times for the next figure.

More elaborate versions of this type of ocean reanalysis incorporate subsurface observa-

tions from the TAO array and measurements from satellites into the calculation proce-

dure.
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Figure 18. Temperature anomalies at the surface and at depth from GCM calculations

for times indicated in the previous figure. The seasonal cycle and high-frequency fluctu-

ations are removed from the data.
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Figure 19. Wind, SST and heat content anomalies from GCM calculations for the period

of 1982-1989. The seasonal cycle and high-frequency fluctuations are removed from the

data.
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5.2. The energetics of the Southern Oscillation.

The energetics of the transformations in the ocean associated with the Southern Oscilla-

tion amount to an approximate balance between the terms

dE/dt = W + Dissipation                                                                                                       (5.1)

where t is time, E is the available potential energy (APE) of the ocean, and W is the wind

power (work done on the ocean by the winds per unit time) averaged over the tropical

Pacific Ocean (for a reference see Goddard and Philander 2000). In a continual oscilla-

tion, La Niña corresponds to a state of maximum, El Niño to a state of minimum APE.

Thus, APE is a measure of the thermocline slope.

One can derive equation (5.1) from the linear shallow-water equations on the equatorial

β-plane in the long-wave approximation. Again, for simplicity, symmetry with respect to

the equator, and no annual forcing are assumed:

, (5.2)

, (5.3)

. (5.4)

Adding (5.2) multiplied by , and (5.3) multiplied by , and using (5.4) with the

boundary conditions (Section 2.), one arrives at

,                                                                                                             (5.5)

where

,                                                                                                   (5.6)
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and the integrals are calculated over tropical Pacific ocean (say 130oE-85oW, 15oS-15oN).

Since the perturbation kinetic energy of the motion under consideration is very small (of

the order of several percent of the total), Eqs. (5.5) and (5.6) can be rewritten with a good

accuracy as

                                                                                                                         (5.7)

,                                                                                                                   (5.8)

,                                                                                                                       (5.9)

The omitted terms in the brackets describe the higher-order nonlinear terms (negligible

for small perturbations), explicit energy dissipation, the energy loss at the western,

northern and southern boundaries, and any numerical dissipation after finite-

differencing. Equations (5.7) - (5.9) represent the fact that the only way one can change the

total available potential energy of the system is through the work of the wind or through

dissipation.

If one uses the data from GCM calculations, the energy should be defined as

where is the density, and is the reference density corresponding to

the hydrostatically balanced reference state with no zonal and meridional dependences.

A convenient method for studying ENSO is the analysis of phase diagrams that have

wind power (W) and oceanic available potential energy (E) as axes. Figure 20 displays an

example of such phase diagrams from the calculations described in Section 5.1.

Et W …( )+=

E
ρ
2
--- g'h

2
xd yd∫∫=

W uτ xd yd∫∫=

E
g
2
--- ρ ρ–( )2

ρ̂z
------------------- xd y zdd∫∫–=

ρ ρ x y z t, , ,( )= ρ̂ z( )



Figure 20. The E-W phase diagrams for the period 1979-1998. Each panel describes 5

years. The perturbation values of E and W are plotted. Alternate years are shown in solid

and dashed lines, respectively. The trajectory being at the bottom of the panels corre-

sponds to El Niño. Four major El Niño events are clearly seen (in 1982, 1987, 1992 and

1997). The phase trajectories are counter-clockwise.
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Problem set 1.

I.

When deriving the shallow-water equations, scientists often use the so-called “rigid-lid”

approximation; however, it is known that El Niño causes important changes (although

small) of the sea level. How will the shallow-water equations change if the effects of the

free surface are taken into account? What is the relation between changes in the ther-

mocline depth and in the sea level height?

II.

The heat content of the upper ocean (i.e. the temperature averaged over upper 300m) is

often used as a good proxy for the thermocline depth. Show that the two are indeed

related. You can use a simple model for the thermostructure

T(x,y,z,t)=20+10*tanh((z-h)/d),

where h=h(x,y,t) - the thermocline depth, z - the vertical coordinate, d - a parameter that

characterizes the sharpness of the thermocline.

III.

Using the shallow-water equations with the no-net-flow boundary condition at the west-

ern boundary show that the total energy of such a system is not conserving even if the

explicit damping is set to zero.



Problem set 2.

This problem set introduces several useful web-sites where one can find many helpful

information about El Niño etc.

I.

http://www.pmel.noaa.gov/tao/jsdisplay/

Using data from TOGA-TAO array, identify Kelvin waves propagating along the ther-

mocline and calculate their phase speed. Further, estimate the phase speed of the ther-

mocline depth anomaly (also eastward-propagating) associated with El Niño of 1997-

1998. Compare the two.

II.

http://iridl.ldeo.columbia.edu/maproom/.ENSO/

Analyzing various data sets of SST, wind, thermocline, etc., describe the state of the trop-

ical Pacific at present. Try to give possible scenarios of climate development that we

might expect within the next year.

III.

http://iridl.ldeo.columbia.edu/SOURCES/.LEVITUS94/figviewer.html?plottype=col-

ors

Using Levitus climatology study the properties of the seasonal cycle in the tropical

Pacific. When is the cold tongue most intense? When does the warmest month in the

eastern Pacific occur? Estimate the “phase speed” of the seasonal cycle (say, by looking at

the motion of the 27 degrees isotherm from April to September).

IV.

http://www.people.virginia.edu/~mem6u/mbh99b.html

Explore Mann et al reconstruction of the NINO3 SST for the last 400 years. If time allows,

calculate the spectrum of the time series.



The following Appendix reproduces three pages from Eli Tziperman lectures for Woods

Hole GFD (2001) with the detailed derivations of the structure and other characteristics

of Kelvin and Rossby waves.


