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Suppose that you have to go to the airport.

Which actions do you have to perform 1n order to
achieve your goal starting from here?

To answer this question, a computer has to know
the “initial state”, the available “actions”, and
the “goal”.
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Given 2 disjoint sets of va
I.

2.
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riables:
Fluents, for describing the states of the world, and
Actions, for characterizing transitions between states,

A planning problem is a triple <I,D,G> where:
I describes the initial state of affairs

D i is the domain and characterizes how each set of
actions affects the world

G 1s the goal, 1.¢., the condition to achieve.

The problem 1s: does there ex1st a combination of actions

that, if executed from I, achieves the goal G?
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Here we restrict to approaches 1n which:
* A state 1s a Boolean interpretation ot the fluent

4 Sep 2002

signature,

Actions corresponds to transitions between

states,
I and G are sul

osets of the set of states,

A plan 1s a sequence of actions

The goal 1s ac

hieved if each transition starting

from I and which follows the plan ends up in a

state 1n G.
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Thus, a domain D corresponds to a transition
system:

* the states S are the interpretations of the fluent
signature,

» Each actions 1s a mapping from .S — Pow(S).

We say that an action 4 1s
» Executable in a state s, 1T |A(s)| = 1,

» Deterministic, 1 for each state s, |A(s)|< 1.
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 C(lassical Planning:

—  Representing Actions (the transitions):
« STRIPS
« ADL (Action Description Language)

—  Planning systems:
* Via SAT encodings (Medic, Blackbox)
*  Via Heuristic search (HSP, FF)

 Beyond Classical Planning:
—  Representing Actions (the transitions):
 ( Language
—  Planning systems:
 Ccalc, C-plan
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* C(lassical planning:
— Situation Calculus representations and procedures
— Planning 1in the space of plans (POP)
— Planning with planning graphs
— Advanced topics

* Beyond Classical planning:
— First order extensions (e¢.g., for resources)
— Extended Goals
— Planning with control information
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* Domains are specified using a first-order language.

* More specifically, a planning domain 1s defined by
a set of operators which are a parameterized
representation of the transitions available in the
domain.
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Completely specified 1nitial state.

Deterministic, completely specified actions,
which do not modify the set of objects in the
world.

The set of objects 1s finite and given.
The goal 1s a property of an individual state.

S&C on Statistical Physics
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S1Tmple 1tion The 1nit1 al state 1s maximally
con31stent set of ground literals.

- The 1nitial state 1s a set of

ngllIld ato

Notice that:

— Domain closure 1s implicit.

. Th_e set of constants mentioned in the set are all the
objects 1n the world.

— The unique names assumption 1s implicit.
* Distinct constants are not equal.

(Like a database)
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Independently from the representation:

* 1t 1s possible to efficiently determine in the
initial state the truth of any first-order sentence.

* More generally, given any first-order formula
(with free variables) it 1s possible to determine
the set of instantiations of these variables (with
constants) that satisty the formula 1n the initial
state.
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However, 1n practice, representation matters:

* the relational representation can be much more
compact than the propositional representation.

* E.g., 1n the standard blocks world with 500
blocks 1n the 1nitial state, there are about
250,000 possible on(x,y) relations.

— 25K byte bit vector (40,000 states = 1GB)

— A block can only be on one other block so only 500
possible on(x,y) relations in a database (40,000 states
= 20MB).
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» Representation of the goal
— A set of ground literals

— A state satisfies the goal 1f 1t satisfies all literals 1n
the goal

— Other possibilities

* A more complex condition on a state, specified with a
first-order formula.

* A condition on the sequence of states visited by the plan
(a “Temporally Extended Goal”)

* The difficulty here lies in creating methods for effectively
searching for plans satisfying these more complex goals.
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* Operators specity the p0551ble state transitions

necessary to use the 1n1t1a1 state as well as the
operator specification to determine the
corresponding transition system.

* To be problem independent operators use
parameters.

4 Sep 2002 S&C on Statistical Physics
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* Since operators are domain specific, problem
independent

— Possible to develop methods that compute
properties of transitions that apply to all possible
problems in the domain.

— The representation 1s more compact, independent of
the size of the particular planning problem.
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» STRIPS 1s the simplest and the second oldest
representation of operators in Al.

* When that the 1nitial state 1s represented by a
database of positive facts, STRIPS can be
viewed as being simply a way of specifying an
update to this database.

4 Sep 2002 S&C on Statistical Physics
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(def-strips-operator (pickup ?Xx)
(pre (handempty) (clear ?x) (ontable ?x))
(add (holding ?x))
(del (handempty) (clear ?x) (ontable 7x)}))

4 Sep 2002 S&C on Statistical Physics
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(def-strips-operator (pickup ?x)

(pre (handempty) (clear ?x) (ontable ?x))
(add (holding ?x))
(del (handempty) (clear ?x) (ontable ?x)))
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(add (holding ?x))
(del (handempty) (clear ?x) (ontable 7x)}))

S&C on Statistical Physics
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(def-strips-operator (pickup ?Xx)
(pre (handempty) (clear ?x) (ontable ?x))

add (holding 7x))
I

(del (handempty) (clear ?x) (ontable ?x)))

4 Sep 2002 S&C on Statistical Physics



(def-strips-operator (pickup ?Xx)
(pre (handempty) (clear ?x) (ontable ?x))
(add (holding ?x))

ontable ?x)))

del (handempty) (clear ?x) (

Dr
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 (Gi1ven the 1nitial state

— All instantiations of the parameter ?x that satisfy the
precondition

and (handempty) (clear 7x) (ontable 7x))
produce a different action (transition) that can be
applied to the 1mitial state.

— Actions whose preconditions are not satisfied are
not legal transitions.

4 Sep 2002 S&C on Statistical Physics
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e Actions are deterministic:

— (G1ven a particular instantiation of the parameters,
the action specifies a finite collection of ground

atomic formulas that must be made true nd anther

collection that must be made false in the successor
state.

: red! (Frame assumption).
ThlS has many algorithmic consequences.
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clear(A)
clear(B)

clear(C)

handempty
ontable(A)

ontable(B)

ontable(C)
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y

pickup(B)

pickup(C)

S&C on Statistical Physics

clear(B)
ontable(B)
clear(C)
ontable(C)

clear(A)
ontable(A)

ontable(C)
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* The properties of the 1nitial state and the operators

4 Sep 2002

imply that from a finite collection of operators it 1s
possible to determine

— the finite collection of actions that can be applied to the
initial state.

— In each successor state generated by these actions, we can
once again evaluate all logical formulas, and thus once again
determine the set of all applicable actions.

Hence, we can incrementally generate the set of all
states reachable from the initial state by sequences of
actions.

This 1s the forward space, and we can search for plans
in this space. (To be examined later).

S&C on Statistical Physics
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» Action description language due to Pednault.
» Generalizes STRIPS to allow for

— Arbitrary first-order preconditions
— Conditional effects

— Universal eftects

— Functions

4 Sep 2002 S&C on Statistical Physics
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(def-adl-operator (move ?x ?old ?new)
pre (and (on ?x ?old) (not (?old = 7new))

(not (exists (?7z) (on 7z ?x)))

(not (exists (?z) (on 7z ?new)))))
del (on ?x 7old))
(forall (?z)
(implies (above ?x ?z) (de
(forall (?z)

(implies (above ?new ?z) (add

(abcve 72X ?2))))

—

above ?x ?z)))))

4 Sep 2002 S&C on Statistical Physics
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(def-adl-operator (move ?x ?old ?new)

(pre (and (on ?x ?old) (not (?0ld = ?new))
(not (exists (?7z) (on 7z ?x)))

(not (exists (7z) (on 7z 7new)))))
nditions.

add (on ?x 7new))
del (on ?x ?old))
(forall (?z)
(implies (above ?x ?z) (de
(forall (?z)

(implies (above ?new ?z) (ada

(above 7x ?z))))

——

above 7x 7z)))))

4 Sep 2002 S&C on Statistical Physics
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(def-adl-operator (move ?x ?old ?new)
pre (and (on ?x ?old) (not (?old = 7new))

(not (exists (?7z) (on 7z ?x)))

(not (exists (7z) (on 7z 7new)))))

s ( on ?x 90|d))

on 7xX 7new))

(forall (?z)
(implies (above ?x ?z) (de
forall (?z)
(implies (above ?new ?z)

"2 7% ?2))))

—

' (above ?x 7z)))))
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* Asin STRIPS

— Every action specifies a finite collection of ground
atomic formulas that must be made true and another
collection that must be made false 1n the successor
state

— Nothing else changes.
* (G1ven the completeness properties of the 1nitial
state

— 1t 1s still possible to compute all applicable actions,
and the effects of these actions.

— All successors states have the same completeness
properties.

4 Sep 2002 S&C on Statistical Physics
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* So, 1t 1s remains possible to generate and search the
forward space with ADL actions.

* ADL actions do pose some additional complexities

for alternate search spaces.
— One approach 1s to compile all ADL actions into a set

of STRIPS actions.
« Can yield an exponential number of STRIPS actions [Nebel,

2000]
— An alternative 1s to develop techniques for dealing

directly with ADL actions (perhaps with some
restrictions) 1n these alternate search spaces

« UCPOP, ADL for searching the space of partially ordered
plans. [Penberthy & Weld, 1992]

32

4 Sep 2002 S&C on Statistical Physics



» Actions cause modular updates, they affect only a
(generally) small set of predicates and a small set
objects.

e The frame assumption (that most things are
unchanged) 1s built into these representations.

» Specified in a parameterized manner.

* (Relatively) easy to compute the set of executable
actions, and the corresponding resulting states.

* These features all play a role 1n the search
techniques developed 1n planning.

4 Sep 2002 S&C on Statistical Physics
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* We have seen that 1t 1s possible to search for plans
in the space of states.

* There are other types of spaces over which plans
can be searched for.

* Much of the work 1n planning has been devoted to
developing methods for searching such alternate
spaces.

* Now we will describe some of the spaces that can
be searched for plans.

4 Sep 2002 S&C on Statistical Physics
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* Under domain closure all possible states and all
possible actions can be represented by a collection
of propositions: each possible instantiation of the
predicates and each possible instantiation of the
operators.

* In order to represent the search space with
propositions, we simply need to impose a fixed
bound on plan length.

* Since the length of the plan 1s unknown, we can
incrementally increase the bound on length, at each
state doing search 1n the resulting propositional
space.

4 Sep 2002 S&C on Statistical Physics
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on(A,B,0)
on(B,A,0)
onTable(A,0)
onTable(B,0)
clear(A,0)
clear(B,0)
handempty(0)
holding(A,0)
holding(B,0)

State at 10

pickup(A,0)
pickup(B,0)
putdown(A,0)
putdown(B,0)
stack(A,B,0)
stack(B,A,0)

“

Action at [

on(A,B,1)

on(B,A,1)

on(A,Table,1)
on(B,Table,1)

clear(A,1)

clear(B,1) XX
handempty(1)
holding(A,1)
holding(B,1)

State at T cos

Simplest 1dea—a set of propositions to specity each of
the k-states and k-actions taken 1n the k-step plan.

Now specity the conditions required to make this a k-

step plan.

4 Sep 2002
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pickup(A,0) on(A,B,1)
pickup(B,0) on(B,A,1)
putdown(A,0) on(A,Table,1)
putdown(B,0) on(B,Table,1)
StaCK(B,A,O) clear(B,'I) see
handempty(1)
holding(A,1)
holding(B,1)
State at TO
Initial state forces some propositions to be true and the
others [:ii:c. The goal forces some propositions at step k

to be trt
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S

on(A,B,0)
on(B,A,0)

on(A,B,1)
on(B A 1)

pickup(B,0)
putdown(A,0)
putdown(B,0)
stack(A,B,0)
stack(B,A,0)

LY
\\\\\
aaaaa

wiE W
t
5
i,
2,
Y
Y
Y
£
£
£
w,
£
£
E %,
£} %,
S %,
3 E
%, i
£ Py
5, #Ek
%,
£y
5,

onTabIe(B,O

Iea(B,O) %“"“mclear(B 1)

b s
%, Swwn
B,

holding(A,0)
holding(B,0) holding(B,1)

If an action 1s true, its preconditions must be true and its
add effects must be true 1ts delete effects must be (]
(Easy for STRIPS, harder for ADL)
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pickup(A,0)

on(B,A,0) pickup(B,0) on(B,A,1)

onTable(A,0) putdown(A,0) on(A,Table,1)
onTable(B,0) putdown(B,0) on(B,Table,1)

clear(A,0) ,B,0) clear(A,1)

clear(B,0) stack(B,A,0) clear(B,1) oo
handempty(0) handempty(1)
holding(A,0) holding(A,1)
holding(B,0) holding(B,1)

State at TO Action at TO State at T1 coe

Frame assumption: a proposition cannot change its value
unless it 1s changed by an action.
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n(B’A,O)

pickup(B,0) on(B,A,1)
onTable(A,0) putdown(A,0) on(A,Table,1)
onTable(B,0) putdown(B,0) on(B,Table,1)
clear(A,0) stack(A,B,0) clear(A,1)
clear(B,0) stack(B,A,0) clear(B,1) oo
handempty(0) handempty(1)
holding(A,0) holding(A,1)
holding(B,0) holding(B,1)
State at TO Action at TO State at T1 coe

Frame assumption: a proposition cannot change its value
unless it 1s changed by an action.
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Several encodings of the transition relation are possible

1.

4 Sep 2002

in propositional logic, each characterized by

The kmd of frame axioms used (classical,

The spe(nﬁc action representation (regul
bitwise)

The mutual exclusion axioms enforced between

lel)

actions (sequential, paral
(Ernst, Millstein, Weld 1997)

ar, split,

Let TR(i,i+ 1) be an encoding of the transition
relation between time i and i+ /

S&C on Statistical Physics
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 There is a one-to-one correspondence between plans of
length 7 and assignment satisfying

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
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(Kautz, Selman, 1992). Notice similarity with “Bounded
Model Checking” (Biere, et al. 1998) in FV.

. Thcj:n we s‘olve 1t with stapdard SAT solvers: ﬁhe state of the
action variables at each time step in the solution specifies the
plan.

— Fast for smaller problems, but the size of the SAT problem grows
as a high order polynomuial.

— A = O(|Ops||Dom|A1(Ops)) --- number of actions
— need O(nA?) clauses [Kautz, McAllester, Selman, 1996]
— E.g. binary actions like stack(x,y), O(|]Dom|*)

— A 19 block problem in the blocks world generates over 17,000,000
clauses and 40,000 variables.
4 Sep 2002 S&C on Statistical Physics



* The conceptually stmplest search space 1s simply to
directly apply actions to the initial state, searching
for a state that satisfies the goal.

» The difficult has been guiding the search towards
goal states.

* A classical technique 1in Al 1s to compute a heuristic estimate
of the distance to the goal.

* One guides search by first exploring those states that appear
to be closer to the goal.
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* A standard method for generating heuristics 1s to consider a
relaxed version of the problem, measuring the distance to the
goal 1n this relaxed version.

* A common relaxation in planning is to consider a problem in
which the delete effects of all actions are removed.

* (ive a set of actions without deletes, 1t becomes possible to
find a plan in polynomial time (if one exists).

— It remains hard (NP-complete) to find a plan with the minimal
number of actions.

— [Hoffman & Nebel 2001]

4 Sep 2002 S&C on Statistical Physics
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» FF uses this relaxation and distance heuristics are
computed from Graphplan like reachability analysis.

» The estimate 1s not ensured to be a lower bound of
the actual distance, and so the returned plan 1s not
guaranteed to be optimal.

* In the IPC2, this 1dea was the fastest and most
scalable methods for finding plans.

» Other heuristics including admissible heuristics, have
been tried (see, e.g., [Geftner & Haslum 2000]).

4 Sep 2002 S&C on Statistical Physics
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Classical planning makes some “simplifying”
assumptions, such as:

» The 1nitial state 1s completely specified
* The domain 1s deterministic
» The Goal 1s a property of states

Which are not always ensured to hold in many
cases.

4 Sep 2002 S&C on Statistical Physics
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Representation languages for classical planning
have built-in some other “simplifying”
assumptions, such as:

» The state of the world changes only because of
actions

* No concurrency

Further, 1t allows only for expressing actions’
effects.
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To overcome these problems, several more
expressive representation languages have been
proposed.

Here we briefly see action language C
(Giunchiglia, Lifschitz, 1998):

* Very expressive (concurrency, constraints,
nondeterminism, enviromental changes, ...)

* Supported by ccalc and C-plan

4 Sep 2002 S&C on Statistical Physics
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* Red boxes are obstacles, whose location 1s only
partially known. Black boxes are fixed obstacles.

* Robots have to reach the exit without hitting obstacles.

4 Sep 2002 S&C on Statistical Physics
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» Plan as a sequence of actions (conformant
planning)

* Plan as a sequence of conditional statements
(contingent planning)

* Plan as a sequence of conditional statements
with loops

4 Sep 2002 S&C on Statistical Physics
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- constants

4 Sep 2002

rl, 12 :: Tobot;

1..5 :: location;
at(robot,location,location) :: inertialFluent;
occ(location,location) .. inertial Fluent;
north(robot) :: action;

cast(robot) :: action;
west(robot) :; action;

south(robot) :: action.

S&C on Statistical Physics
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.- plan
facts ::

0: at(rl,1,1),

0: N)X: (V)Y: occ(X,Y),

0: (MNL: (M)J: (VK

(J<K ->> (-occ(J,L) ++ -occ(K,L))),

0: (ocec(1,4) && oce(2,2) && occ(4,3) );
goals ::

1: (V)Y: at(rl,3,Y).

4 Sep 2002 S&C on Statistical Physics
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% no robot may be where an object is
never at(R,X,Y) && occ(X,Y).

% cvery robot has to be somewhere
always (V)X: (V)Y: at(R,X,Y).

% a robot can't be at two places at the same time
caused -at(R,X,Y) if at(R,X1,Y1) && -( (X 1s X1) && (Y is Y1)).

4 Sep 2002 S&C on Statistical Physics
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% no robot may move outside the grid boundaries
nonexecutable north(R) 1f at(R,X,5).
nonexecutable east(R) if at(R,3,Y).
nonexecutable west(R) 1f at(R,1,Y).
nonexecutable south(R) 1f at(R,X,1).

% no robot may go in two directions at the same time
nonexecutable north(R) && east(R).

nonexecutable north(R) && south(R).

nonexecutable north(R) && west(R).

nonexecutable east(R) & & south(R).

nonexecutable east(R) & & west(R).

nonexecutable south(R) && west(R).

4 Sep 2002 S&C on Statistical Physics
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% what happens if a robot moves?

north(R) causes at(R,X,Y 1) if at(R,X,Y) && Y1 1s Y+I.

east(R) causes at(R,X1,Y) if at(R,X,Y) && X1 1s X+1.

south(R) causes at(R,X,Y1) if at(R,X,Y) && Y1 1s Y-1.
west(R) causes at(R,X1,Y) if at(R,X,Y) && X1 1s X-1.

4 Sep 2002 S&C on Statistical Physics
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* It 1s possible to compute a propositional formula
whose satisfying assignments are one-to-one
with the transitions of the domains.

 [f the domain 1s deterministic, plans of length »
correspond to assignments satisfying

»
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* Ifthe domain 1s not deterministic, 1t 1s still
possible to use a SAT-based approach
(Giunchiglia, 2000) in two steps:

1. Find possible plans, 1.e., plans that reach the goal
for some possible configuration of the obstacles.

2. Check (under suitable conditions) if a “possible”
plan A1;A2;...;An 1s valid, 1.e., 1f 1t guaranteed to
reach the goal for a/l the possible configurations
of the obstacles.

4 Sep 2002 S&C on Statistical Physics



A possible plan of length n corresponds to an
assignment satisfying

(Under suitable conditions), a “possible” plan
Al;A2;...;An 18 valid 1f

4 Sep 2002 S&C on Statistical Physics
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These two tests can be implemented using two

nested SAT-procedures, or can be encoded as
a QBF formula.

In the first approach, several optimizations are
possible to reduce the number of possible
plans generated and then tested.

4 Sep 2002 S&C on Statistical Physics
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function C-sat() return C-sat gendp(cnf(P), {}).

function C-sat gendp(qp, U)
if @ ={} then return C-sat test(u);
if {} € ¢ then return False;
Unit-propagation(g, u);
L :={ a literal occurring in ¢ };
return C-sat gendp(assign(L, ¢),u U {L}) or
C-sat gendp(assign(-L, ¢ ),z U {-L}).

4 Sep 2002 S&C on Statistical Physics
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* Al planning uses
— Relational representations.

— Several representation languages with different
expressive capabilites.

— Several planning procedures, especially for STRIPS
and ADL.

— Planning graphs and forward search are very effective
for STRIPS and ADL.

— Planning as satisfiability can be used with any
representation language.

— There are several extensions to the notions here
introduced.
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