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DIFFERENTIAL ABSORPTION LIDAR (DIAL)
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3.1l INTRODUCTION

Advanced techniques are needed to monitor our threatened environment, i.e.,
to evaluate pollution levels and developmental trends, While measurements
obviously do not improve the environmental conditions per se, they can
provide the impetus for implementing appropriate environmental protection
programs. Measurement can then confirm positive changes induced by these
actions. In this way advanced measurement techniques can play a very
constructive role in the process of improving the environment.

Measurements are required on a local, a regional, and also a global scale.
Tropospheric pollution has obvious manifestations in terms of health prob-
lems, water and soil acidification, and forest damage. Human-induced strato-
spheric changes in the ozone layer, as evidenced by the occurrence of “ozone
holes™ at the polar caps, may have much more far-reaching consequences
{Farman et al,, 1985; Stolarski, 1988). The “greenhouse” effect, due to a global
increase in infrared (IR)-absorbing gases such as CO,, CH,, and N,0, is
another process of paramount importance (Bach et al,, 1979; Revelle, 1982;
Mason, 1989). Gaseous pollutants injected into the atmosphere enter very
complex atmospheric chemistry chains (Wayne, 1985; Seinfeld, 1986; Trush,
1988).

Optical spectroscopy based on the specific absorption properties of differ-
ent gases provides sensitive and selective measurements of atmospheric con-
stituents. Its nonintrusive nature and real-time data capability makes it
particularly useful. It is well adapted to various remote-sensing approaches
yielding data from large atmospheric volumes. Optical spectroscopic remote
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B& DIFFERENTIAL ABSORPTION LIDAR

sensing can be performed in a passive mode, employing natural radiation
sources such as the sun or the blye sky, orin an active mode, using an artificial
sourcesuch asa lamp or a laser. These approaches are illustrated in Fig. 3.1. In
reflective passive monitoring, frequently performed from satellites, the modifi-
cationin the infalling spectral distribution due 10 target absorption is studied.
Passive atmospheric absorption—or, in the IR region, emission—can be
utilized, Active monitoring in transmission frequently utilizes a CW {continu-

backscattered from motecules and particles, is coliected by an optical telescope
and is detected and range-resolved in a radar-like mode. If the wavelength of
the laser js varied from an absorption line of a pollutant gas to 2 close-by
position, the detected changes in the backseattered light intensity can be used
to cvaluate range-resolved concentration profiles. This is the differential
ubsorption version of the lidar method, and this is the main subject of the
present chapter,

In all optical monitoring of the atmespheric constituents it is important to
avoid the spectral regions where mujor atmospheric species basically block
out the transmission, The same limitations pertain to normal, earthbound
astronomical observations. Below 200 nm the Schumann-Runge bands of
molecular oxygen (Thompson et al., 1963) put a definitive halt 1o atmospheric
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Figure L1, Schemes for optical remote sensing of the environment. From Svanberg (1940).
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spectroscopy, leaving US vacuum ultraviolet (VYUYV) spectroscopy as a reliable
laboratory discipline, Astronomical observations are cflectively halted by
stratospheric ozone absorption, which (presently) causes a cutoffl at about
300 nm. The zero solar background below 300 nm makes the region down to

mission, pollutant absorption bands, and available jaser sources is given in
Fig. 3.2 (Grant and Menzies, 1983),

The absorption lines of the major atmospheric species and most important
minor species including many pollutants are given in the extensive HITRAN
compilation (Rothman et al, 1987). Very recently this material has become
available on diskettes for casy personal-computer access (Killinger, 1992). The
line widths of the molecular absorption lines are strongly pressure dependent
and the relative strengths temperature dependent, which forms the basis [or
eatractions of meteorological infermation (Korb and Weng, 1983). It also
allows the deconvolution of line-of-sight passive observations of molecules
present in the troposphere (broadened lines) as well as the Stratosphere (sharp
lines) (Menzies and Seals, 1977).

The purpose of the present chapter is 10 deseribe differential absorption
lidar (DIAL} techniques for three-dimensional mapping of atmospheric pollu-
lants, Such techniques allow the remole menitoring of ambient air, industrial
emissions, natural emissions due 1o various geophysical phenomena (vol-
canocs or other geothermal sources), and manitoring of leaks on natural pas
pipelines as well as warning systems for chemical warfare gases. The tech-
niques can also be used for measurements of meteorological Parameters such
s temperature, humidity, and wind speed. Tropospheric as well as strato-
spheric studies can be performed. The present review is mainly focused on the
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pollutant absorpiion bands, and available laser sources, From Grant

Figure L1 Atmespheric transmission,

and Menzies (1983).
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transform infrared Spectroscopy) are included. Measures (1984) has writien
the most throughgoing treatise on Jaser remote sensing. In a follow-up multj.
author volume edited by Measures (1988}, the general field of laser remote
chemical analysis is treated. '

In a seres of international laser radar conferences the topic has been
extensively illuminated through the years, The number of conlerences in the
series presently amounts to 17, and the latest ones are cited here (McCormick,
1982a, 1992; Megie, 1984; Carswell, 1986; Stefanutti, 1988; Zuev, 1990),

Several reviews of the field of laser remote sensing of the aimosphere have
been published, e.g., by Carswell (1983), Geant and Menzies (1983), Grant
{1987), Kobayashi (1987), Fredriksson (1988), and Zanzoltera (1990). The
present uuthor has also written a few shorter reviews (Svanberg, 1973, 1980,
1985, 1991). Many aspects of practical optical spectroscopy as well as the
atomic and molecular physics background are treated in a new monograph
(Svanberg, 1992). )

We begin our discussion in Section 3.2 with some basic considerations
pertaining to optical atmospheric monitoring. The field is introduced by a
discussion of long-path absorption measurements, in particular using DOAS.
Then different varietics of lidar measurements are introduced and discussed.
The use of topographic targets has a clear connection with the long-path
absorption technique. Atmospheric backscattering (Mie, Raman, and fuo-
rescence) enables us to perform range-resolved measurements that are particu-
larly characteristic of the lidar technique. Next, Section 3.3 is devoted to a
thorough description of the differential absorption lidar (DIAL) method,
atlowing detailed monitoring of important pollutants. We then discuss in
Section 3.4, important laser types used in modern lidar systems and deseribe in
Scction 3.5 the basic elements of lidar system design. In Section 3.6, concern-
ing DIAL measurements of tropospheric pollutant gases, some examples of
practical monitoring of different important pollutants are Biven. A special
section (3.7)is reserved for a novel DIAL application—that of atomic mercury
monitoting, which apart from the pollution aspects contains clements of
geophysical studies (mining, geothermal energy, voicanoes, etg), Finally, the
outlook for the future of D{AL technology is given in Section 3.8,

31 BASIC CONSIDERATIONS

There are two major kinds of optical methods applicable in active remote
sensing of the atmosphere:

= Long-path absorption monitoring
- » Lidar (light detection and ranging), with subdivisions:
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Topographic target lidar

Mic scattering lidar

Fluorescence lidar

Raman scattering lidar

Diflerential absorption lidar {DIAL)

Since there are many clements in common between the two basic techniques,

we will first consider long-path absorption measurements as an introduction
to the various lidar schemes.

321. Long-Path Absorption Monitoring

Long-path absorption techniques arc based on the same principles as spee-
trophotometry. However, by using wellcollimated normal light beams or
lascr beams, it is possible 1o use a path length of several kilometers instead of
the lcm cuvette typically used in the chemical laboratory. The principle is
given in Fig. 3.3. A single-ended arrangemeat ¢an be achieved by utilizing a
corner cube retrorefiecior at the end of the light path and collecting the
back-reflected light with a telescope. Since all detected photons have traveled
the same path, no range resolution is obtained and only average concentra-
tions can be determined. The light source can be a high-pressurc xenon lamp,
as in the case of DOAS. It is difficuit 10 measure weak absorptien lines in
the presence of strong atmospheric turbulence because of strong scintillation.
A [ast scanning detection or parallel ced {charge-coupled devices) spectral
detection can then be used to overcome such difficulties. Tunable diode lasers
and CW line-tunable CO, lasers are useful coherent sources for long-path
absorption measurements. We shall come back to the scintillation problem
later.

Although the topic of the present chapter is DIAL measurements, the
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Figure 13, Principle of long-path sbeorplion atmospheric spectroscopy.
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pertinent principles are best illustrated by starting with 2 DOAS description.
{DOAS is exiensively treated by Plawt in Chapter 2 of this book.) A DOAS
setup is showa in Fig. 3.4 (Edner et al,, 1993b). A high-pressure Xe lamp placed
in the focus of a telescope is used to launch a well-collimated light beam overa
distance of 100 m up to several kilometers. Light is reficcted by a mirror and is
directed into a Newtonian telescope, Light is focused into the entrance slitofa
spectrometer and is detected by a photomultiplier tube (PMT). For fast
scanning a number of slits are placed radially on a fast-rotating wheel in front
ofthe PMT. The signals from a large number of scans are added in 2 compuler.
The sweep triggering is obtained from a photodiode observing the light from a
light-emitting diode through the slotied wheel. In this way a chosen spectral
region can repeatedly be swept during a time for which the atmosphere can be
considered 1o be “frozen.” An alternative way to reduce the influence of
turbulence is to detect all wavelengths in a cenain wavelength interval
simultaneously by using a diode array detector,

An atmospheric recording of ambient SO, over a path length of 2000 m is
shown in Fig. 3.5. In Fig. 3.5a the total light from the “white™ lamp as seen by
the detector is seen for the spectral region 280-320nm covering the region of
50, absorption. Actually, a small absorptive structure can be seen. This can be
enhanced by sclecting the proper region and magnifying the structure as
shown in Fig. 3.5b. A polynomial has been fitted to the general curve. This
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Figure 34, Setup for dilferentinl optical absorption tpeciroscopy (DOASL From Edner et al.
119922,1993b). .
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polynomial cannot reproduce the fast intensity variation, but rather provides
asmooth curve for normalization, In Fig. 3.5c the intensity recording has been
divided with the polynomial. Finally, in Fig..3.5d the logarithm of the curve
is formed for fitting t~ & weighted laboratory spectrum by employing the
Beer-Lambert law, In this way an average concentration value of the pollu-
tant is obtained for the measurement path. As can be seen, SO, provides a
strongly modulated structure well suited also for DIAL. In the figure the two
wavelengths normally used in DIAL are indicated. They have been chosen for
maximum differential absorption within the smallest possible wavelength
interval. Clearly, the “effective” absorption cross sections will vary with the
spectral resolution, which is normally lower than the intrinsic line width owing
to pressure (and Doppler) broadening. Thus it is important to determine the
effective cross sections with the same resolution (the same apparatus!) in the
laboratory as in the practical field measurements. It should also be noted that
the Beer—-Lambert law is not strictly valid when the instrument limits the
resolution. Here laser sources have a great advantage over classical spectro-
scopic equipment.

Pollutant gas concentrations can be expressed as number densities (mol-
ecules/m?), which can be related to volume or mass fractions (ppm—parts per
million, 10% ppb-—parts per billion, 10% ppt—parts per trillion, 1013},
Nowadays the most common way to state pollution levels is to indicate mass
per volume, ie, ug/m?. .

Further DOAS spectra—of NO; and O,—are given in Fig. 3.6. For both
molecules the differential absorption is lower, but there is a substantial general
absorption for both gases. In particular, ozone does not exhibit much struc-
ture, and DIAL measurements require a rather large wavelength separation
for achieving a large enough change in the broad and little-structured ozone
absorption bond. (Sec also Fig. 3.23 in Section 3.5.4.) Recently, a renewed
spectroscopic study of the ozone molecule suggested use of a particularly
strong differential structure close to 283 nm for DOAS measurements, as
shown in Fig. 3.6b (Axclsson ct al,, 1990).

322, The Lidar Method

In the lidar method, laser pulses are transmitted into the atmosphere and
backscattered radiation is collected by an optical telescope and detected as
illustrated in Fig. 3.7. The first lidar experiments were performed by Fiocco
and Smullin (1963).

A particularly useful characteristic of the lidar method is it capability of
remotely monitoring large arcas. The size of the covered area is of course
closely related 10 the platform arrangement for the lidar system. These aspects
arc also illustrated in Fig. 3.7, From a fixed laboratory an industrial arca or a



94 DIFFERENTIAL ABSORPTION LIDAR

te) Nitrogen dioxide

Fe ] 82 Fo ]
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Figure L& DOAS recordings for NO; and O, over an optical puth of 2000m. Measured

intensities huve been divided by fitted polynomials 10 enhance Ihe structure. The NO, recording

{a} yields a mean gus concentration of 29 ug/m? {12 ppb), whereas the O, recording (b) yields
161 ug/m?, From Edner et ul. {1992, 1993b) and Axclsson ef al. (1990), respectively.

section of a city can be covered by scanning. A mobile system, particularly if
supplied with its own electrie POWer generator, can conveniently be deployed
for various measurement campaigns in urban or indusiral arcas. Airborne
systems have also been constructed and used very successfully for regional
measurements. Finally, satellites can provide platforms for future global
coverage by lidar space systems now being planned.

J.221. T opagraphic Target Lidar
In the lidar approach, a laser pulsc is transmitted into the atmosphere and

backscattered radiation is detected as a function of time by an optical recciver
in a radar-like fashion. If the laser beam is directed against a distant,

BASIC CONSIDERATIONS 95

The Principle of Lidar

Airborne Space

JJ&‘_,\’\

Figure 3.7. The lidar principle and different platform arrangements for Lidar systems: Fixed
laboratory, mobile system, airborne aystem, ang spacecralt installation,

back-reflecting mirror {retroreflecting corner cube) at a distance R, a strong
optical echo signal is received afier a time

t=2R/c (3.1

where ¢ is the velocity of light. This is a principle of, e.g., lunar ranging against
retroreflectors placed by Apotlo astronauts {range precision: a few centimeters)

be a distinct but fainter echo signal. This is the principle of military range
finders. Ranging is illustrated in Fig 3.3, where a nitrogen-laser-pumped dye
laser opetating in the blue spectral region is fired against a mountainside at a
distance of 5.5 km (F redriksson et al., 1979). The backscattered 3i ght is received



1Y
96 DIFFERENTIAL ABSORPTION LIDAR
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Figure 38 [llustcation of NO, measurements dgans! 4 topogruphic targer. From Fredriksson
et ul. (1979)

by an optical telescope of diameter 30 ¢m and the optical echo is transformed
into an electronic signal in a fast PMT. With light traveling at 300 m/us the
echo will be detected about 37 us after the laser pulse. Fora pulse length of ¢,
the minimum width of the echo signal expressed as a range &R will be

R = 8tf2c 3.2)

Owing to the finite response time of the detection system, the width can
{requently be larger. The intensity P(4) of the echo depends on many factors
including luser pulse energy, range, telescope arca, and the diffuse reflectance
(albedo) of the target. It also depends on the wavelength-dependent absorp-
tion cross section ¢{(4) of the atmosphere. If only the absorption cross section
for the pollutant gas varies when the wavelength of the Jaser is changed from
4,. lon the absorption line) to the nearby wavelength i, (off the absorption
finc) and no other gas constituents interfere (or absorb equally for the two
wavelengths), the Beer- Lambert law yields

PUWPU Y =exp[- 21!:'\((.:1'"l =] 3.3

where [a,, — 0,4 ] is called the differential absorption cross section, and N is the
average concentration of the gas studied.
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Equation (3.3) assumes that the diffuse reflectance of the target does not
change for the small wavelength change Al m Ao = 4. This is normally the
¢ase for solid matcrials interrogated in the UV or visible region. However, in
the IR region, e.g., around 10 um, where the CO, laser operates, a differential
albedo can exist for the target material {Shumate ct al, 1982; Grant, 1982
Englisch et al., 1983). This is due to the sharpness of the molecular vibration
speetra even in solids or liquids, This phenomenon can then be used for remote
characterization of the target, e.g., in airborne geophysical applications. In
such measurements it is instead important to choose the wavelengths insuch a
way that a zero atmospheric differential absorption vatue is obtained.

Il a gaseous pollutant with a nonzero differential absorption for the small
wavclength change chosen is present in the air, the relative topographic echo
heights will change as described by Eq. (3.3). The echo serves the role of a
power meter placed at the end of the (doubled) path, with the considerable
convenience that nobody needs to place the power meter at the remote
location. For the case shown in Fig. 3.8, the laser wavelength was changed
from 448.1 to 446.5 nm. A 4% change in ccho height was observed. Based on
the relevant differential absorption cross section for the wavelength pair used,
it was concluded that the average concentration on NO, over the 5.5Skm path
from the lidar system to the mountain was about 2 ppb. In airborne lidar
measurements the surface of the earth is available as a topographic target for
mcan concentration determinations.

3.22.2.  Mie Scattering Lidar

Mic scattering from particles and Rayleigh scattering from molecules provide
strong signals observed in backscattering in lidar sounding of the [ree atmos-
phere. These scattering processes are elastic, ie., the scattered photons have
the same [requency as the incoming light tapart from possible small Doppler
shifts), This signal can clearly be seen in Fig. 3.8 for ranges up 10 1300 m and
can be considered 1o be due to a “distributed™ topographic target, present at all
distances. Rayleigh scattering has a strong 1/44 dependence on the wavelength
and can yield a dominating signal at short UV wavelengths. Mie scattering has
aslower wavelength dependence( = 1/3%) and increases in relative importance
to be dominant in particle-rich air probed at visible and near-IR wavelengths,
The Mie backscattering from particles thus allows a mapping of the relative
distribution of particles over large areas if the lidar system is scanned (see, ¢.g.,
Shimizu et al., 1985). However, since Mie scattering theory (van de Hulst, 1957;
Kerker, 1969) involves many normally inacoessible particle parameters, quan-
titative results are difficult to obtain. Mie scattering is extremely useful in
providing the “distributed mirror™ needed in DIAL, the main topic of this
chapter. As discussed below, measurements age then made at two close-lying
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wavelengths exhibiting a nonzero differential absorption cross section for the
gas of interest, and the two signals are divided 10 eliminate all unknown Mie
scattering parameters,

From Fig. 3.8 it is obvious that the atmospheric backscattering exhibits a
strong range dependence, basically reflecting the 1/R? illumination law, We
would now like to discuss the lidar signals more closely and introduce the

general lidar equation, yiclding the received laser radar intensity P(4, R)roma
range R:

R
P(i..R)=CWn,[R)o,%exp(—2J (elAINIn) + Km(r)]dr) {3.4)
o

Here Cisa system constant; W is the transmitted pulsc energy; and n,(R)is the
number density of scatlering objects with backscattering coefficient a,. The
exponential factor describes the attenuation of the laser beam and the back-
scatiered radiation due to the presence of absorbing molecules of concentra-
lion N(r)and absorption cross section o(4) and due 10 scattering particles with
wavelength-independent extinction K, ()

There exists a complicated relation beiween o, and K, for particle
scattering. Certain simplifying assumptions are frequently made to allow an
evaluation of the particle distribution n,{R). Much work has been invested into
inverting the lidar equation. One of the most commonly used technique is the
Klettinversion {Klett, 1981, 1986). If the absorption due to the particles is very
small {thin clouds), the extraction of relative values of n,(R}is very simple, with
aconstant o, value assumed. A close-range recording of industrial particulate
pollution is shown in Fig. 3.9. Superimposed on a general 1/R? signal due to a
uniform background particle distribution, localized signals of increased back-
scauiering are seen owing (o the industrial plumes. The stepwise attenuation of
the uniform backscatlering when the main plume is being passed can also
clearly be seen. )

Pure Mie scattering is extensively used for studying stratospheric dust from
volcanic eruptions (McCormick, 1982b; McCormick et al,, 1984; Osborn
et al, 1992; Siclanutti et al., 1992b). Such studies are important for assessing
perturbations in the carth’s radiation budget. The year 1816 became known as
“the year without a summer™ because of an extensive voleanic cruption. Recent
major cruptions that have been much studied by vertically sounding Mie
lidars were due 10 El Fuego, Guatemala {1974}, El Chichon, Mexico {1982),
and ML Pinatubo, the Philippines {1991). Lidar recordings of the development
of the stratospheric dust layer from Mt. Pinatubo are shown in Fig. .10
{Osborn ct al, 1992). The Mic-to-Rayleigh scatlering ratio has been plotted,
climinating {¢.g., the {/R? distance dependence.
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Figure 19. Mie scattering lidar partick moniloring at an iron-alloy plant. Frem Fredriksson
et al. {1976).

3.2.2.3. Raman Lidar

Raman scattering is a much more well-defined scattering process, that can be
used for quantitative measurements of gaseous constituents of the atmo-
sphere. For the case of Raman lidar the constants in the lidar equation (3.4)
have a new meaning, so that n{R} is the number density of the Raman
scattering molecules and o, is the Raman cross section. In contrast to the Mic
and Rayleigh processes, Raman scattering is inelastic. In vibrational Raman
scattering, a molecular vibrational quantum is picked up from the incoming
photon, leaving the scattered quantum characteristically red-shifted {Stokes-
shifted) with respect to the Rayleigh scattering by an amount corresponding 1o
the molecular vibrational energy. Raman scattering {rom the major atmo-
spheric constituents, Oy, Ny, and H,0, is seen in the insert of Fig .11,
exhibiting the characteristic Raman shifts (1556, 2331, and 3652¢cm™ Y for
these molecules (Fredriksson et al,, 1976). The main difficulty in using Raman
scattering is its inherent weakness, typically 10° times weaker than the
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Figure 110, Lidar recordings of stratospheric dust due to the Mt Pinatubo volcanic eruption,
The Mie scattered intensity divided by the expecied Rayleigh scattering intensity from a
partick-frec aimosphere has been plotted. Recordings taken st Hamplon, Yirginia, coveting the
period, Aug. 3, 1991, to Feb. 28, 1592 Frem Osbarn ¢1 al. {19821

Rayleigh scattering from the same molecule. This must be compensated by
very high concentrations and short measuring ranges cven when large lidar
systems arc used (Hirschleld et al, 1973). Thus, the Raman technique is useful
mainly for the major atmospheric constituents, First Raman lidar recordings
were actually performed for N, and O, (Leonard, 1967).

A Raman lidar recording is obtained by suppressing the strong clastically
backscattered light and instead centering the detection band (selected by a
sharp interference filter with high out-of-band rejection) on the appropriate
Raman-shifted wavelength. A nitrogen Raman lidar recording is shown in
Fig. 3.11 together with a corresponding elastic recording (Fredriksson et al,,
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Figure J.11. Elasic bmlun-ue:ing and N, Raman scattering recordings against a solid target at
an 850-m distance. The measurements were pecformed with a aitrogen laser operating at 337 am.
Inset: a spectrally resolved recording of stmospheric backscatiering is shown, [eaturing peaks due
10 oxygen, nilrogen, and water vapor, From Fredriksson et al, (1977

1977). In this case the beam froma nitrogen laser (1 = 337 nm) was terminated
against the bricks of a smoke stack, clearly seen as an echo at 850m in the
elastic signal. [n contras, the nitrogen Raman recording shows the uniformly
decreasing 1/R? falloff for the ambient nitrogen and a sudden disappearance of
the signal at the encounter of the solid target.

Nitrogen Raman signals can be used for measuring atmospheric attenu-
ation (nontrivia] deviations from 1/R* dependence), since the signal is not
strongly influenced by the particle backscattering Another major application
is vertical sounding of water vapor profiles, which are of great meteorological
importance and are useful in radiation budget assessments. Examples of water
vapor mixing ratio recordings taken with a high-energy XcCl excimer laser
(% =308 nm) are shown in Fig 3.12 (Ansmann et al, 1992). Here the water
Raman signal has been divided by the nitrogen Raman signal. Water vapor
can also be measured by DIAL (Browell et al, 1978; 1981
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Figwe X121, Water vapor Ra
From Ansmana et al, 11992y

Rotational Ramag scattering utilizes the extremely small wavelength shifts
© the absorption or emissi

on ofa quantum corresponding to a rotational

3.2.24. Fluorescence Lidar

In Auorescence lidar a Jage
specics is used and fluorescence light is detected in the subscquent decay. For

been used extensively 1o monitor layers of various alkali and alkaline earth
atoms (Li, Na, K, Ca, Ca*, apd Fe)ata height of about 100 ki (Chanin, 1983;
Fricke and von Zahp, 1985; Hansen and voq Zahn, 1990; Collins et al, 1992
Kane et al, 1992). The mesospheric atoms are formed from vaporization of
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micrometcorites. By monitoring the movements of the layers the atmospheric
dynamics can be studied, including the formation of gravitational waves,

An example of a recording of the mesospheric sodiem layer is shown in
Fig. 3.13 (Collins et al, 1992). A namrow-band laser was tuned to the sodium
resonance line. In the same recording, taken at the South Pole, the Mic
scattering return from polar stratospheric clouds (PSCs) is shown. Such clouds
are very important in the polar ozone destruction process,

+ A novel application of fluorescence lidar is the creation of “guide stars™ of
fuorescing sodium atoms in the mesosphere for rectifying images of large-
scale astronomical telescopes. The technique of adaptive imaging strongly
cnhances the performance of ground-based telescopes and is now being
implemented widely (Thompson and Gardner, 1987; Collins, 1992). Receatly,
it was realized that the sodium wavelength can conveniently be generated by
mixing the two Nd:YAG laser wavelengths 1.064 mm and 1.319 H#m(Jeyset al,
1989).

3.2.2.5. Solid Targer Fluorescence Lidar

In Fig. 3.8 the typographic larget echo was recorded by using the elestically
backscatiered light, However, fiuorescence is induced in the target by the laser
pulse, and if the signal is strong enough the wavelength contents of the echo
can be analyzed at the site of the receiver system. An optical multichanne]
analyzer with an image-intencified array detector is well suited for such
measurements. Then the full Buorescence Spectrum can be captured for every
laser shot. The image intensifier can also be gated down to S s to accept light
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Flgure 313 Recording at the South Pole of the mesospheric sodium luyer (seen in resonance
* Auorescence) and polur stratoepheric clouds (seen in Mie backscatter) From Coilins et al (1992
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arriving only at the right delay. In this way ambient light can be suppressed.

Fluorescence spectroscopy hag long been used for anatytical and diagnostic
purposes {Udenfriend, 1962, 1969; Wehry, 1976; Hercules, 1966; Lakowicz,
1983). Laser-induced fluorescence {LIF) has an interesting potential for re-
mote sensing of environmental parameters. For quite some time, hydrospheric
pollution monitoring has been performed with airbone laser-based Auorosen-
sors. Different kinds of oil can be identified by their Auorescence properties.
Other pollutants and algal bloom patches can similarly be studied {O'Neill
et al, 1980; Capelle et al, 1983; Hoge et al,, 1986; Reuter, [991). By usc of the
bluc-green transmission window of water, bathymetric measurements of sea
depths tan be performed as well (Kim, 1977 Hoge et al., 1980). The field of
laser-based hydrospheric monitoring is covered by Measures (1984). LIF has
also been used by American (Hoge ct al., 1983; Hoge, 1988; Chappelle et al.,
1985), lalian (Cecchi and Pantani, 1991) und Swedish groups (Svanberg, 1990;
Edner et al., 1992d) for studics of land vegetation.

Examples of laboratory spectra for various oil products that might appear
in the aquatic environment are shown in Fig. 3.14 (Celander et al,, 1978). Asa
rule, light petroleum fractions exhibit blue-shifted, intense fluorescence where-
as heavier [ractions also have longer wavcelength components and fluoresce
more weakly. At shot UV wavelengths the penetration of the exciting light into
the oilislimited to micrometers, For longer wavelengths the penetration depth
is Jarger. Thus, in order 1o assess the thickness of an oil film the choice of
cxcitation wavelength is important. In the assessment of marine oil spills, the
Auorescence characteristics of different oil products play an important role in
airborne measurements and in the decision regarding the correct oil-fighting
countermeasures to be implemented.

Algas fluorescence monitoring can be important for measuring the total
marine productivity, which originates in the conversion of solar energy, CO,,
and nutrients into organic matter by microscopic phytoplankton. Recently,
huge algal blooms, for instance, of Chrysochromulina polylepis, leading to
devastating consequences for most other marine life forms, have occurred
owing to eutrophication of coastal waters. Some classes of algac exhibit LIF
spectra with certain characteristic features (Celanderet al., 1978)in addition to
the dominating peak at 685 nm duc to chlorophyll a. A blue-green Aucrescence
is normally observed for water even in the absence of oil spills. This fluor-
escence is due to organic material (Gelbstoff). Measurement scenarios lor
fluorescence lidar monitoring of water and land vegetation are shown in
Fig 3.15 with examples of remotcly recorded spectra.

In aquatic monitoring a strong Raman signal due to the water molecules is
observed at a Raman shilt of about 3400 cm =" {O—H stretch vibration), as
shown in Fig. 15a. This signal is very usefu), since it js possible 1o utilize itas a
reference to normalize algal and Gelbstoff signals o the same effective water
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products. The excitation source was a nitrogen laser operating at 3?1 nm..1."‘hc recordings are not corrected
for varying speciral response of the detector. In corrected curves the intensitics for red colors increases. From
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measuring volume. A careflul analysis of the shape of the water Raman signal
provides information on the water temperature. Water molecules form aggre-
gates of different sizes with slightly different Raman shifts. The relative
occurrence of mone-, di-, and poly-water molecules is temperature dependent
(Lecnard et al, 1979; Breschi et al, 1992).

Land vegetation monitoring by fAluorescence lidar is shown in Fig. 3.15b,
illustrating different signatuses for green and lightly yellow maple leaves. The
ratio of the two chiorophyll peaks at 690 and 735 nm relates to different plant
physiologica) conditions, as discussed by Lichtenthaler and Rinderle {1988).
Land vegetation can be efficiently characterized by multispectral reflectance
measurements using spaceborne sensors in satellites such as LANDSAT,
SPOT, and ERS-1 (Chen, 1885). An active remote sensing technique such
as LIF might, in certain circumstances, complement passive reflectance
monitoring.

33. PRINCIPLES OF DIFFEREMNTIAL ABSORPTION LIDAR {DIAL)

The principles of DIAL are schematically represented in Fig .16, where a
measurement scenario in an industrial area is illustrated. Laser pulses are
transmitted into the atmosphere, which for the time being is (uarealistically)
assumed to contzin a uniform distribution of Mie scaltering particles. A
gaseous pollutant is emitted from the industry as indicated and penetrates in
between the uniformly distributed particles, which provide “topographic
targets™ located everywhere. The industrial efluent is assumed to be frec of
additional particles. Laser light is alternatingly transmitted at a wavelength
{4, where the species under investigation absorbs, and at a neighboring,
off-resonant wavelength {d,,,). In the presence of an absorbing gas cloud the
on-resonance signal is attenuated through the cloud and the off-resonant one
is not. If the particle concentration is low, the off-resonant signal will cxhibit a
pure 1/R? dependence as shown in Fig. 3.16, whereas additional intensity
losses occur when the gas is encountered, The differences between the two
curves is best visualized by dividing them for each range interval. For identical
curves a ratio value of uzity is obtained for all ranges. This is truc only if the
Mie scattering from the particles docs not change when the wavelength is
changed [rom the on to the off value. For spherical particles of uniform size
{monodisperse particles) the Mic scattering cross section exhibits a strong
oscillatory behavior as a [unction of wavelength, However, for natural atmo-
spheres the size and shape of the particles vary continuously and the oscitla-
tions are smeared out, Thus, for practical cases the on- and off-wavelength

curve division is unaffected if lhe!wavclcnglh scparation is small, The resulting
curve is called the DIAL curve,
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Fipwe 3.1& The principle of differential absorplion lidar (DA L) From Edner et al. {1987b).

When 4 gas cloud is encountered there is 2 downward slope on this ratio
curve, which alter the cloud passes resumes its horizontal direction but at
a lower level. From the DIAL curve it is clear that the gas concentration
as a function of range can be caleulated basically by employing the
Beer-Lambert law and using the differential absorption cross section for the
gas. Such a calculated concentration curve is also included in Fig. 3.16.

At this point we note that we really do nat need our initial pedagogical (and
unrealistic) assumption that there is a uniform particle distribution. Even if
there would have been a localized cloud of additional particles increasing the
backscattering strongly for this particular range, the resulting upward bump
would be equally present in the on- and off-resonance curves and would thus
not show up in the ratio (DIAL) curve. Even most other troublesome and
unknown parameters are eliminated in the division, and the gas concentration
as a function of the range along the beam can be cvaluated with knowledge of
the differential absorption cross section only.

What we have found here using hand-waving (informal, off-the-cufl) argu-
ments can of course be put on a rigorous mathematical foundation. The DIAL
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curve is obtained by forming the lidar equation (3.4) first for the on wavelength

and then for the off wavelength. Then the two equations are divided by each
other, yielding

Pli,. R) R
P(_j-:;i)_o =exp[-2e,, — 6.«)'[ Nir)dr] (3.5)

The assumplions we have made arc that gy and K_ (r) are wavelength
independent for a sufficiently small wavelength change. If we want to calculate
the average concentration value N, (R, R + AR) for a certain range interval
AR, this can easily be made using Eq. (3.5). We obtain

- ! i PunR + AR)PL,,, R)
Nu(R.R+8R} = 5 (Oea—Tued PR+ AR)Pla R

(3.6}

From the hand-waving description as well as from Eq. (3.6) it is obvious
that a sufficiently large range interval A R must be chosen to allow a significant
average concentration value N, for the corresponding interval to be evalu-
ated. The larger the concentration values are, the easier the expression
following the “in” in the equation obtains a significant value for a given value
of A R. This is easily understood by observing that this expression is the DIAL
curve value at R divided by the DIAL curve valueat R + AR. A large slope on
a noise-free DIAL curve yields high-quality data for the range-resolved
concentration curve. For high concentrations a high spatial resolution can be
used while still producing accurate data. To enable the numerica)l evaluation
1o be performed in the presence of the noise in the cxperimental data, the DIAL
curve is normally “smoothed” before the concentration calculation by lorming
a sliding average over a number of digital range channels in the electronic
detection system. :

The DIAL technique was pioneered by Shotland (1966), who studied water
vapor, First DIAL measurements on an atmospheric pollutant were reported
by Rothe et al. (1974, b) and Grant et al. {1974) for the case of NO,.

In this section we shall present two simple applications of the DIAL
technique: the case of a strong pollutant plume in an otherwise clean atmo-
sphere, and the case of a uniform gas distribution in the atmosphere. Later,
many examples of the more common situation of nonuniform distributions
will be given.

In Fig. 3.17 we demonstrate a remote measurement of the NO, contents in
an industrial plume. The laser beam was directed just above the top of the
smokestack. To the left in the figure as shown the on- and of-resonance lidar
recordings for NO,. A logarithmic representation is used to decrease the large
signal differences at close and far-off ranges. In the elastic backseatter curves a
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lidar curves are shown logether with the divided (DIAL) curve and the integrated NO, contenls s a function

of range. From Fredriksson et al, (1981)
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number of particle-containing plumes accidentally drilting into the laser beam
are cicarly seen in addition to the one that is actively aimed at (at a 1350-m
distance). The backscattered radiation is attenuated only by this plume, as can
be clearly seen in the curves. It can also be scen that the atenuation is larger in
the 448.1 nm curve because of the sirong NO, absorption at this on-resonance
wavelength. In the upper-right part of the figure the divided (DIAL) curve is
shawn. It can then clearly be seen that the effect of the particle plumes is
climinated. The only effect “surviving™ the ratio formation is the step at
1350 m. Using Eq. (3.6) and the differential cross section for the NO, absorp-
tion, we can calculate the integrated NO, concentration as shown in the lower
right corner, Knowing the gas flow rate from the stack it is possible to
conclude that the emission amounted to about 40 kg/h.

The case of a uniform gas distribution is normally not a realistic one.
However, the permanent gases such as N; and O, of course show this
behavior, and in Fig. 3.18 we show the case of atmospheric oxygen in order to
illustrate the application of the DIAL equation. This measurcment was
performed in the very weak oxygen absorption band surrounding the atomic
mercury line at 254 nm. In the top part of the figure individual lidar curves for
on- and off-resonance laser tuning are shown. At about a 1200-m distance the
laser beam hits a hill, resulting in sharp echoes in both curves. The close-range
intensity has been reduced by ramping up the amplification of the system 1o
reach its full constant valuc only at a range of 600 m. In the lower part of the
figure the DIAL curve is shown. For the case of a uniform distribution,
Eq. (3.5) takes the very simple form of a pure exponential:

AR
::{(1—:‘11—)) = exp{—2NR{o,, —0,)] 3.7

which is clearly shown in Fig. 3.18, Equations (3.7) and (3.3) are identical, as
expected.

14 LASERS FOR DIAL

Since the introduction of the laser in 1960 a large number of laser types have
been developed. Some of these arc more practical and useful than others, and a
few systems have emerged as the DIAL lasers of choice. Important require-
ments for DIAL use are tunability, high pulse energy, and sufficiently shont
pulse length. Since the lasers need to be used in operational field equipment
they must be sufficiently rugged and practical. The most usefu] DIAL lasers
are shown in Fig. 3.19. Two of the laser systems shown, the Nd: YAG laser and
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the cxcir.ncr_lasc.r. are fixed-frequency lasers normally used as pumping sources
for dye or titanium-sapphire lascrs, which are widely tunable,

Laser sources are described in a number of textbooks (see, c.g., Siegman,
1986; Svelto, 1989; Svanberg, 1992,

3.4.1. The Nd: YAG Laser

The neodymium: YAG (yttrium aluminum garnct] faser is a highly efficient
solid state lascr using Nd*~ ions in a crystalline matrix. The Nd: YAG laser is
a four-level laser with a broad absorption band that permits broad-band
flashlamps 1o be used for pumping. The upper laser transition level has a long
lifetime and permits storage of excess population. If a shutter is placed in the
cavity, lasing can be prevented although population inversicn has been
reached. By opening the shutier when most of the pumping capacity of the
lamp has been utilized, a giant pulse at 1.064 um can be generated with
megawall power and about 10-ns pulse duration (Q-switching technique). In
that way pulses with an energy of tens of millijoules can be formed. In order to
achieve higher pulse encrgies the beam is passed through flashlamp-pumped
amplifiers with laser rods of increasing diameter. In commercial Nd: YAG
lasers used lor lidar systems, one or two amplifiers are used to achieve pump
encrgies well above 1], Repetition rates are 10-30 Hz.

By using phase-matched KDP {potassium dihydrogen phosphate) crystals,
efficient [requency doubling, tripling, or quadrupling 10 532, 355, or 266 nm,
respectively, can be obtained. The doubled and tripled outputs are frequently
used for pumping rhodamine and coumarin dyes in a dye laser for DIAL
applications. The quadrupled output can be useful for ozene lidar systems,
frequently in conjunction with stimulated Raman scatlering in deuterium or
hydrogen, producing outputs at 289 or 299 nm, respectively.

During the last few years high-power Nd: YAG lasers have become much
more compact than they used to be, making them even more attractive for
lidar use, Flashlamp quality has also greatly improved, allowing typically 20
million shots before replacement. Diode laser pumping of Nd: YAG lasers is
quickly developing. Here pulsed diode lasers at 808 nm are uscd, matching a
strong absorption line of the active medium. Small, very reliable units employ-
ing this all-solid-state technology are available. As the price of diode lasers
continues to decline rapidly, high-energy lidar transmitters with strongly
reduced power and cooling requirements will undoubtediy soon be available.

3.4.2. The Excimer Laser

Excimer lasers use noble-gas halogenides as the lasing medium. Such mol-
ccules can be formed in excited states in a [ast discharge {thyratron switching)
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in a mixture of Ar, Kr, or Xe with HC! or HF. Since the ground state is
immediately dissociating, excimer molecules are ideal as laser media. In lidar
contexts the XeCl excimer lascr at 308 nm is important for pumping dye lasers
for DIAL. The KrF lascr at 249 nm is common for tropospheric ozone lidar
systems, and is then frequently used in connection with stimulated Raman
scattering in deuterium or hydrogen to produce 268-, 277-, 292-, or 313-nm
output. For stratospheric ozon¢ monitoring, less absorbed, longer wave-
lengths must be used, e.g., 308 nm from XeClor 351 nm from XeF. In direct use
of excimer lasers as lidar transmitters, 8 specially designed laser resonator
{unstable resonator) is utilized to yield a much better beam quality than is
available from excimer lasers for dye-laser pumping.

Excimer lasers yield pulse energies of hundreds of millijoules. An especially
attractive [eature is their high repetition rates (up to several hundred hertz).
On the other hand, special installations and precautions are needed in the
handling of very corrosive and toxic gases.

343. The Dye Laser

Dye lasers have long been the standard source in DIAL systems. The active
medium consists of strongly fluorescing dye moiccules, normally dissolved in
methanol or cthanol. Flashlamp pumping in the broad absorption band of the
dye can be used, but more frequently the harmonics of a Nd: YAG laser or a
XeCl excimer laser is employed. The fire hazard in using dircct flashlamp
pumping of the lammable dye liquid as well as the comparatively long pulses
are reasons for inftequent use of the direct pumping modality. In the dye laser .
oscillator normally a grating preceded by a prism beam expander is used for
narrowing down the bandwidth and for tuning. For DIAL itisimportant to be
able 1o change the wavelength between adjacent shots. It is not practical to
turn the grating by using the normal sine-drive mechanics of the laser. Instead,
a dual-wavelength option is frequently used in the laser. One possibility is 1o
usc a beamsplitter and direct half the laser mode toward one grating and the
other half toward the second grating. The two arms are then alternatingly
blocked for adjacent shots, Another, more convenient option is to have two
gratings covering half of the expanded beam each. By alternatingly blocking
the beam path in front of the gratings, every second shot can be fired at the
preselected on and off wavelengths.

In order to achieve a sufficient pulse energy for long-range monitoring, one
or two dye amplificr cells are normally used after the oscillator, as shown in
Fig. 3.19. The dye amplifiers are pumped by the same pump laser, the output of
which is split up in beams of suitable pulse energies. Rhodamine dyes arc used
1o reach SO; and O, wavelengths around 300 nm after frequency doubling.
Outpat powers of up to 200mJ can be achicved at the dye’s [undamental
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wavelengths when green Nd: YAG laser pumping is employed. Blue and green
dyes can be pumped by 355nm output from a tripled Nd:YAG laser or
convenicntly directly and efficiently by a XeCl diode laser. In this way 450 am

for NO, or 226 and 254nm alter frequency doubling for NO and Hg,
respectively, can be generated.

344, The Titanium-Sapphire Laser

Titanium-sapphire is a new tunable solid state laser material covering the
wavelength region from 670 nm 10 about | pm. Since the upper state lifetime is
only J us, flashlamp pumping, although possible, is not very efficient. Fre-
quently, requency-doubled Nd:YAG laser is preferred for pumping. In order
to get a high pulse energy, an end-pumped amplifier stage is frequently used.
Commetcial lasers of this kind have just become available and give consider-
able promise. NO, wavelengths are achieved by [requency doubting; SO4, O,
and Hg wavclengths, by frequency tripling:; and NO wavelengths, by frequency
quadrupling. Quiput pulse encrgies in oscillator/amplifier units can be similfar
to those achicvable with dye lasers.

345. The CO, Laser

The carbon dioxide laser is a gas laser, emitting on a variety of vibra-
tional-rotational lines of the CO, molecule in the 9-12 pm region. In the gas
discharge tube nitrogen is added and pumping is provided by collisional
exchange between ground-state CO, molecules and vibrational excited N,
molecules. At the normal gas pressure of few torr the Doppler-broadened
lines allow a very limited tuning of only 50 MHz and one has to rely on the
accidental coinciding of pollution molecular absorption lines and the grating-
selected laser lines. Many pollutants are aceessible because of the richness
of lines in the IR region. Frequently a CW sceder laser is employed when
heterodyne detection is used in IR lidar systems.

The HF (hydrogen-fluoride) and DF (deuterium-fuoride) lasers are other
pulsed gas lasers operating in the IR region. These lasers cover the 2.7-3.0 um
and 3.7-4.0 yum regions, respectively.

34.6. The Diode Laser

The diode laser is a highly efficient tunable solid state laser with very small
dimensions. It consists of a highly doped p-n junction that is operated biased
in the forward direction. The Yasing occurs over the bandgap, the size of which
varics [or different materials. Normally, a resonator is provided by polishing
the semiconductor chip surfaces. Better laser control is achieved by using an
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cxternal resonator and coating the diode itself with an antireflection layer. We
have discussed catlier the use of powerful 808-nm diode lasers for solid state
laser pumping. Pulsed diode lasers are used in certain cloud height meters and
range finders. CW units arc used for seeding pulsed IR lasers and as local
oscillators in heterodyne detection systems.

A8 LIDAR SYSTEM DESIGN

A good DIAL system should be designed to be able to detect low gas
concentrations at large ranges. Thus, signal intensity and signal noisc are
major concerns. Obviously, the detected backscattered intensity will increase
with laser pulse energy, tefescope arcs, and detector efficicncy as indicated by
the lidar equation. However, a lidar system can additionally strongly improve
in sensitivity (particularly in the IR region) by introduction of heterodyne
detection schemes instead of direct photon detection. A further aspect of major
concern is the influence of the atmospheric turbulence (scintillation) in the
lidar signals. Another technical consideration in laser radar system design is
the need to be able to handle the Iarge dynamic range typical for lidar signals.
Before describing some DJAL systems in more detail we shall next address
these general points.

345.1. Dynramic Range Reduction

A special signal-handling problem in lidar systems is that the backscattered
intensity has a basic 1/R? dependence. Thus, the detection system must be able
to handle strong close-range signals at almost the same time as weak signals
from afar, This calls for a very large dynamic-range capability that is hard to
provide. Thus various methods to reduce the dynamic-range requirements
have been developed.

By separating the axis of transmission from the detection telescope axis, the
close-range signal is reduced since the transmission and detection lobes do not
spatially overlap until a certain range. Even in a coaxial system a strong
“geometrical compression”™ can be achieved (Harms et al., 1978; Harms, 1979)
by introducing an aperture defining the telescope field of view in the far-field
image plane of the telescope. The closer-range scattering volume will be
imaged at larger distance from the telescope mirror and will thus be out of
focus in the aperture plane. Only a fraction of the totally backscattered light
can thus pass the aperture, reducing the close-range signal,

There are also clectronic means 10 reduce the dynamic-range requirements
for the detection system. One possibility is to usc a logarithmic amplifict. A
logarithmic represcntation was used above in Fig 3.17. A further possibility
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is to ramp the high voltage supplied 1o the photomultiplier dynode chain,
triggering the ramp at the time of the pulse release. This was illustrated in
Fig. 3.18. Maximum and constant amplification is provided alter a time delay
when the signal has decreased to a level that can be handled by the transient
digitizer, i.c., onc having a limited number of bits for the digitizing of the signal.
Geometrical compression, logarithmic amplification, and dynode-chain
ramping all modify the recorded signal with regard to the lidar equation (3.4).
However, since all curves are influenced in the same way, this probiem is
divided away when one is forming the DIAL ratio between the signals.

35.2. Heterodyne Detection

Heterodyne, or coherent, detection is a valuable scheme particularly in the IR
region, where PMTs do not exist 10 provide strong and noise-free amplifica-
tion (Menzies, 1976). Infrared detectors have a high cfficiency but yield very
low signal levels, calling for electronic amplification. This can easily induce
additional noisc. This can be circumvented in the heterodync scheme, where
the incoming signal amplitude Ay is mixed with the radiation of a narrow-
band local oscillator with amplitude A, on the detector, as shown Fig. 3.20.
The detecied signal S from the detector is the square of the resulting amplitude:

S5 = (Agcoswg + A coswy )
= Ag A, cos{wg — w,) + (high-lrequency terms) (3.8)

Most terms in Eq. (3.8) oscillate at high optical frequencies (10'?~10'). If the
signal is passed through an clectronic filter centered at the difference {inter-
mediate) [requency w,; = ws-w), only the slowly oscillating component can
pass. We note that this signal is proportional to the original signal amplitude
A; as well as to the local oscillator amplitude 4, which can be increased
arbitarily for low-noisc amplification. Since the signal is proportional to the
square root of the normal lidar signal (A3}, heterodyne detection also handles
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Flgure 3.20. The principle of heierodyne detection.
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the problems with dynamic range in an efficicnt way. Because coherence
phenomena constitute an integrated part of heterodyne detection, it is impos-
1ant to adequately handle speckle noise through appropriate coherent lidar
design.

By varying the local oscillator frequency or by analyzing the intermediate
frequency spectrum, it is possible to detect Doppler shifts induced by move-
ments of the backscattering particles. In this way it is possible to measure wind
velocity with such a Doppler lidar system (Huffaker et al, 1984; Menzics,
1991). A wind speed of 1 m/s along the line of sight of the lascr beam roughly -
corresponds to & frequency shift of 200kHz at 10 pm wavelength.

' An alternative way of measuring stratospheric wind speeds is to directly
observe the Doppler shift in Raylcigh scattered narrow-band laser light. For
this purpose Fabry-Pérot interferometers (Garnier and Chanin, 1992) or
sharp atomic edge filters (Korb et al., 1992) are used on the detection side.

353. Atmospheric Turbulence

The useful range and the accuracy of a DIAL system will be limited by the
number of backscattered photons detected by the system (the shot noise).
However, even il a strong signal is obtained, the result is not necessarily
accurate. This is retated to the fact that lidar recordings have to be performed
at bath the on and off wavelengths (at least one and in general many lidar
returns al each wavelength) in order to calculate the concentration from the
DIAL curve. itis then very important that the atmospheric conditions remain
the same to provide identical backscattering from particles and molecules.
Becausc of atmospheric turbulence, as well as more macroscopic changes
induced by winds {cloud and particle plume movements), such changes occur if
the recordings for on and off wavelengths are not performed simultancously.
Then the curves are different for other reasons than [or the presence of the
gas tn be studicd, and etratic concentration values (even negative!) can be
obtained. Simultaneous recording can in principle be performed by using
two individually tuned lasers with overlapping beams. However, since the
wavelength difference is normally choscn very small to avoid diffierential Mic
scattering, it can be difficult to optically filter the two return signals in separate
detection channels. By delaying one laser about 100 s with respect to the
other, the same detector and electroanic transicnt digitizer can be used to detect
the two laser returns, Experiments have shown (Killinger and Menyuk, 1981}
that the time structure of turbulence is such that the atmospherc is practically
“frozen" if the recordings are made within I ms. Since in many DIAL systems,
many on- and off-resonance shots are averaged in separate memorics, atmo-

spheric movements are averaged out and no systematic error is made. Stili the

noise level increases owing 1o the turbulence. However, since the lidar curves
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are frequently evaluated out 1o maximum range, the signal becomes photon
limited and the turbulence s in practice found 10 be no serious limitation even
il a single laser is used a1 a repetition rate of 10-100 Hz, firing on, on- and
ofl-resonance wavelengths every sccond shot. For such systems, changes in the
DIAL curve larger than 1% can be considered significant. Thus, this number
for differential absorption can form a basis for a calculation of the DIAL
detectivity lor different pollutants, as further discussed below (see Table 3.1 in
Section 3.6.6). In order to test the proper performance of a DIAL system, a
DIAL measurement and data evaluation can be performed without aciually
changing the wavelength of the laser between the shots. Clearly, a zero
concentration value should be obtained for all range intervals. The size of
nonzero concentration readings (positive or negative!) indicates the uncertain-
ty in the particular measurement situation.

The problem of spectrally separating the on- and off-resonance signals can
be solved in the gas correlation lidar technique (Edner et al., 1984). Gas
correlation techniques for passive atmospheric monitoring have been de-
scribed by Ward and Zwick (1975) and Lee and Zwick (1985). The principle of
gas correlation lidar is shown in Fig, 3.21. A rather crude laser system with a
comparatively broad line width is utilized. Since the laser wavelength is not
sharp, it covers both on- and off-resonance wavelengths at the same time.
However, the information for on- and off-resonance wavelengths can be
scparated on the detection side by splitting the received radiation into two
parts. One part is detected directly, whereas the other part is first passed
through a cell flled with an optically thick sample of the gas to be studied. In
this way all the on-resonance radiation is filtered away, leaving only the
off-resonance radiation to be detected. In the direct channel the sum of the on-
and off-resonance radiation is detected. Unknown factors are eliminated by
dividing the signals. The simultancous detection of the two signals climinates
influences due to atmospheric turbulence and Auctuations due to changing

reflectivity in airborne measurements using the ground as a topographic
target.

354. Fixed DIAL System Design

Differential absorption lidar systems can be arranged with different degrees of
versatility and complexity. Fixed systems frequently can have a simpler design
than mobile systems. In particular, electricity and cooling demands can be met
using the normal utilities available in laboratories. We will start with a
description of a vertically looking ozone lidar system with a layout as shown in
Fig. 3.22 (Edner et al., 1991a). Since the ozone molecule doces not exhibit a
strongly structured spectrum but rather only a gradually increasing absorp-
tion {from 320 to 260 nm, it is nccessary to place the on- and off-resonance
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Figure 321. Gas correlation lidar, From Edner et al. {1984),

wavelengths much further apart than would normally be the case for DIAL.
The absorption spectrum of ozone is shown in Fig. 3.23. Since there are no
sharp structures, a continuously tunable laser is not needed but rather a
step-tunable system. This can be achieved by an excimer laser or a frequency-
quadrupled Nd:YAG laser in combination with stimulated Raman shifting,
When a KrF laser is used the primary emission occurs at 249 nm whereas the
quadrupled YAG emission occurs at 266 nm. The positions of the Stokes-
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shilted component obtained with hydrogen or deuterium in the Raman
converting celi ace indicated in Fig. 3.23.

The system shown in Fig 3.22 uses a KrF laser (pulse energy, 300mJ;
repetition rate, 100 Hz) and incorporates two Raman cells, one filled with
hydrogen and one filled with deuterium (Raman shifts 4155 and 2987 cm ™! for
H; and Dy, respectively. In the system the first and second Stokes components
{from H, at 277 and 313 nm are normally utilized and are transmitted together
with. the primary cxcimer radiation via a first surface aluminized mirror
vertically into the atmosphere. Backscattered radiation is reflected via the
same mirror into a horizontally looking telescope using a.30-cm-diameter
off-axis parabolic aluminized mirror. A dichroic mirvor is used to direct the
two Stokes components into separate photomultiplier tubes, mounted behind
narrow-band interference fillers. In this system the on- and off-resonance
waveiengths can be transmitted and recorded separately because of the large
wavelength scparation. Each photomultiplicr is connected to an input channel
of a digital oscilloscope where the transients are averaged for many laser
pulses. The data are transferred into a personal computer, where the DIAL
curve is formed. A practical range of about 2km is obtained.

As a further example of a fixed lidar system a CO,-laser-based system
operated by ENEA (Comitato Nationale per 1a Ricerca e per lo Sviluppo dell’
Energia Nucleare ¢ delle Energie Alternative) at Frascati, Italy; is chosen
(Barbini et al, 1991). A schematic diagram of the system is shown in Fig. 3.24.
Two line-tuncd pulsed CO, lasers generating 80-ns-long pulses with encrgy up
to 4 J arc used, tuned to the on- and off-resonance wavelengths, respectively.
The lasers are fired close in time for freezing the atmospheric conditions as
discussed above. The two laser beams are sent along the rotation axes of the
telescope, which is mounted in a dome at the top of a 5-m-high tower. By this
arrangement it is possible to keep the overlap between the transmission and
detection lobes. The radiation is detected by a HgCdTe deteclor cooled to

T7TK. This system is used for mapping of H,0 and O, and has a range of about
5km [or spatially resolved measurements.

355 Mobile DIAL System Design

Mobile DIAL systems are very versatile for research and operational measure-
ments. A pumber of efficient systems have been constructed (see ¢.g., Hawley
et al, 1983; Jolliffe et al,, 1987; Stacr et al., 1984 Fredriksson et al, 1981; Edner
¢t al., 1987b; Woll et al, 1990; Zanzoticra, 1990). In Fig. 3.25 two Swedish
systems ol similar layout are shown, one constructed at the Chalmers Institute
of Technology (Fredriksson etal, 1981) and the other one af the Lund
Institute of Technology (Edner et al,, 1987h). A photograph of the newer and
larger system during measurements in an industrial arca is shown in Fig. 3.26.
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Figure 3.26. Photograph of the newer Swedish mobile lidar sysiem.
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A schematic of the optical arrangements in the older system is shown in
Fig. 3.27. The new system is similar but uses updated optics and electronics.

Nd:YAG lasers are used as transmitters in the Swedish DIAL systems. The
pulsc encrgy at 10Hz at the fundamental wavelength was 250mJt in the

|

AD CONVERTE
LABER
STEERiNS
POSITIONID
STEERMG

original system of 198}. By using frequency conversion in nonlinear crystals,
100-mJ pulses at 532 nm (the second harmonic) and 50-mJ pulses at 355 nm
{the third harmonic) could then be generated. Since that time, laser technology
has been greatly improved. In the new system operating at 20 Hz the funda-
mental pulse energy is presently 1.200 ], with 500 mJ at 532 nm and 200 m} at

355nm. The frequency-doubled output is used to pump yellow and red N
rhodamine dyes in a dye laser in order to reach UY wavelengths around

300nm for DIAL measurements of SO, and O,. The [requency-tripled - *

radiation is used 1o pump bluc stitbene and coumarin dyes for reaching NO,

wavclengths, and afier frequency doubling NG and Hg wavelengths, Arrange- el

ments are made to provide fast wavelength switching from on- to off- gﬁ )

resonance wavelengths every second laser shot. In the older sysiem this is 2 1

made by rocking the laser oscillator grating by employing a stepper-motor- L __.__Ea-—

driven eccentric wheel acting on a cam on the graling mount. In the newer

Figure 3.17. DIAL sysiem optical and elecironic layout. From Fredriksson el al. (1981}

TR I
LASER

£ §
system two inqcpcndcmly set gratings are used in the oscillator and a rotating lL“;. -_v;§ E
quartz block in used to engage one or the other grating for alternate laser un vSe
h Y] 2
shots, =
o
For high pulse energies the laser beam is expanded in a Galilean telescope =2 ”
with one necgative and one positive lens 1o reduce the beam power density 51_}1‘-’_ Ee [y
belore hitting the system steering mirror. (A Newtonian telescope cannot be EEE sl “
used since air breakdown is obtained in the focus between the two positive 4
lenses.) The laser beam is sent vertically and coaxially with the receiving

telescope toward a large first surface aluminum folding mirror used to direct
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the laser beam into the measurement direction. The mirror is placed in a dome
equipped with a large quartz window, sealing off the lidar system toward the
outdoor weather conditions. The dome rotation and the mirror vertical
positioning arc computer controlled via powerful stepper motors. In Fig. 3.28
the layout of the telescope/dome arrangement of the newer system is shown. In
order to reduce the overall height of the mobile system during transport, the
dome can be retractéd into the laboratory as shown in the figure. This also
improves the serviceability of the dome construction. A motorized cover can
be moved forward for rain protection of the quartz window once the dome has
been hoisted out of the roof orifice into operating position.
Light backscattered [rom the atmosphere or from topographic targets
passes into the system via the quartz window and is directed via the folding
mirror down iato a vertical Newtonian telescope that has a diameter of 30cm
in the older system and 4Ccm in the newer sysiem. The telescope mirrors are
spherica! (for cost reasons) rather than parabolic, Via a secondary mirror the
light is focused toward an image plane, where an aperture is placed defining
the telescope field of view. With a telescope focal length of 1 m an aperture
diameter of 2 mm corresponds 1o & telescope field of view of 2 mrad, matching
a typical laser beam divergence, A small beam divergence and a correspond-
ingly small telescope field of view is desirable in order to achieve rejection
of ambient light, competing with the laser-induced signal during daytime
operation. This is not an important consideration below 300 nm, where the
stratospheric ozone layer provides an efficient cutofl of background radiation.
The vertical telescope arrangement with a rooltop steering mirror has the
following important advantages over most other constructions:

« 360° horizontal scanning capability

» Eye-safe near-field operation, with the laser beam leaving system high
above the ground

» Easy optical alignment

Space-saving arrangement in the mobile laboratory

» Easy weather protection

*

On the other hand, high clevation angies cannot be used. For vertical
sounding the whole dome can be dismantled or, more convenicently, a fixed 45°
mirror be used in front of the quanz window.

The aperture is arranged as a hole in a polished metal mirror that directs all
light, except the signal photons passing the aperture, toward a ccd camera that
displays sharply the trget arca except a black spot at the position of the laser

- beam. Such an arrangement is very useful for swift and accurate positioning of
the'measuring beam. When the dome is rotated, the TV image will also rotate
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unicss counter measures are taken. In the older system the TV camera is
preceded by a Dove prism that is rotated with hall the angular speed relative
to the dome rotation, In the newer system the whole TV camera is rotated
synchronously with the dome rotation,

When the stepper motors are activated, 10-turn precision potentiometers
are also tumed 1o generate analog voltages that are compared with set
voltages defining the limits of aliowed firing directions. If these limits are
accidently passed, e.g., owing 1o computer or operator failure, the laser firing is
inhibited. Such a system is an additional security measure when non-cye-safe
wavelengths are used (see also Section isn.

The light that passes the aperture is collimated by means of 4 lens. A

narrow-band high-transmission interference filter centered at the laser -

wavelength is used 1o reject daylight. A number of interference filters corre-
sponding 10 different pollutants (wavclengths) are mounted on a filter wheel,
The optical transient is converted into an-clectrical transient in 2 PMT. In
order to reduce the dynamic range requirements the PMT voltage is ramped
as discussed in Section 3.5.1. In this way the close-range intensity is reduced.
Beyond about 600 m the true signal shape is obtained.

The transients from the PMT are fed to a tramsient digitizer, which is a
critical component in a2 DIAL system. The transient digitizer normally has an
8-bit resolution (256 intensity levels), a very limited value, which is the origin of
the dynamic range reduction necds. F or tropospheric air poilution monitoring
the separation between the temporal channels in the transient digitizer is 10 ns,
which corresponds 10 a range interval of 1,.5m, matching a commonly used
laser pulse length of 10ns. The data string of numbers from the transient
digitizer is fed to a personal computer. The on- and off-resonance transients
are added in separate memories. In the older system a scparate hardware
signal averager was used since the computers were not fast enough 1o directly
handlc the data stream, Before one forms the DIAL curve by division of the
on- and ofl-resonance curves, it is imporiant to subtract the background
intensity due to the ambient light and the PMT dark current. This is done by
automatically blocking the laser beam every ninth shot and subtracting this
signal multiplied by 8 from the intensity collected during the cight previous
shots. This is done for the on- as well as the ofl-resonance wavelengths,

For a given measurement direction normally 50 data collection cycles
as described above are used, corresponding to 400 transients for each
wavelength. Then the DIAL curve as the ratio of the on- and off-resonance
curves is formed. From the DIAL curve the range-resolved concentration
curve is then calculated for the given measurement direction using Eq. (3.6).
Examples of this process were already given in Figs. 3.17 and 3.18. A new
measurement direction can then be chosen, and the procedure is repeated.
After the final measurement direction is finished, the procedure can be
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repeated if it is desired to form more representative averages. Finally, a
concentration map can be calcutated from all the collecied data. We shall
return 1o this process in Section 3.6,

To make the mobile system fully self-contained and operational, a motor
gencrator on a trailer is brought along. The new system is equipped with a
20-kV- A diesel-powered unit, amply covering the demands of the system.
Apart from the laser, particularly tocrgy-consuming umnits are a closed-loop
cooler for the laser and the laboratory air-conditioning system. The new
system is also equipped with four hydraulically operated supporting legs that,
when in use, fully stabilize the mobile laboratory for accurate beam pointing.

356, Airborne DIAL System Design

Airborne DIAL systems provide monitoring of gas constituents over wide
arcas. Such systems are normally looking downward or upward in a fixed
position, but scanning systems utilizing a laterally moving mirror can also be
used, Because of the swilt movement, special requirements as to high repetition
rates pertain. Furthermore, it is necessary that the on- and off-resonance
pulses be fired simultancously or with very small temporal spacing, since the
atmospheric backscattering conditions otherwise certainly would be changed.
For airborne operation, weight and power consumption are normally also
critical factors.

The layout of an airborne DIAL system operated by NASA is shown in
Fig. 3.29 (Browell et al, 1983; Browell, 1991}, The system utilizes two individ-
ually Nd: YAG pumped dye lasers, firing with a temporal separation of 100 ps.
The laser beams are split into two equal parts, one transmitted toward the
nadir and one transmitted toward the zenith, Correspondingly, two receiving
telescopes are operated back to back, The system is capable of large area
mapping of particles, ozone, and water vapor.

357 Eye Safety

DIAL systems are operated in the open environment, and it is necessary that
the measurements be performed in such a way that eye damage will not occur
to persons in the operating zone of the system. The sale use of lasers i
regulated by American standards, which have also been adopted in most other
countries (ANSI, 1986; Sliney and Wolbarsht, 1980). Of special concern is the
spectral region from 400 to 1400 nm, where the cornea is transparent and the
radiation is focused onto a small spot on the retina, Outside this region the
radiation is absorbed before reaching the retina and the irradiation threshold
values are relaxed by a factor of 1000, With a normal laser beam divergence of
afew milliradians the UV laser beam for NO, Hg, 0, or SO, measurements is
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From Browell (1991}
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cyc-sale for distances beyond 100m or sherter. Combined with rooftop
transmission from mobile systems, UV DIAL measurements give little safety
concern. For NO, monitoring in the blue region the eye safety distance is
several kilometers and special precautions must be taken with continuous
beam-path monitoring during measurements. Special consideration must be

given 1o the possible use of binoculars by ground observers of a lidar airborne
system.

36 DIAL MONITORING OF TROPOSPHERIC GASES

In this section we shall give several examplés of DIAL monitoring of atmo-
spheric gases. Most of the examples concern measurements of industrial
pollution. The measurements are performed with DIAL systems as described
in the previous section. .

346.1. SO, Mouitoring

Sulfur dioxide is one of the most important pollutants produced in the burming
of fossil fucts. The amount of SO, produced is directly related to the sulfur
contents in the fuel In the atmosphere the gas is converted into sulfuric acid
and sulfate particles largely responsible for acidification of certain areas. The
absorption spectrum of SO, is prominent in the region around 300nm, as
shown in Fig 3.5. There also the most common wavelength pair utilized in
DIAL measurements is indicated. .

The DIAL technique is very powerful for determining the total flux of a
pollutant from an industrial plant. This can be done by making a vertical scan
with the lidar system beam through the atmosphere downwind from the plant,
In this way not only the stack emissions are captured but also the diffuse
cmissions from ventilators and leaking valves. Such a downwind recording at
a Swedish pulp mill is shown in Fig. 3.30. The DIAL curves recorded in
different directions are automatically evaluated on the system computer, and
the concentrations are represented on a type of gray scale, Data were colfected
for a total time of 20 min, The area integrated concentration value N acanbe
calculated from the data in the figure, By multiplying this value with the wind

velocity component perpendicular to the measurement plane, the total flux
F,, from the industry can be determined:

F, [kg/s}= N  [(kg/m?®)-m?}+p, {m/s] -Jl Nda-vecos ¢[kg/s] (3.9)
A

where ¢ is the angle between the measurement direction and the direction
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Figure 330. SO, plume scan at & Swedish pulp mill From Edner et al (1957b].

perpendicular to the plume. For accurate flux determinations it is obviously as
important to make a correct wind velocity measurement as to perform the
DIAL measurements correctly. For the measurement situation shown in
Fig. 3.30 an hourly flux of 230 kg is estimated.

Since wavelengths for DIAL 5O, monitoring are obtained by frequency
doubling of very efficient rhodamine dyes, high-energy laser pulses can be
obtained and thus a substantial range is available. This is illustrated in
Fig 3.31, where on- and off-resonance curves and the corresponding DIAL
curves are shown for a horizontal range out to 4 km. At a distance of about
3km thin clouds were encountered, but the signal was retrieved also after the
clouds were passed. The recording was performed as part of a study of a
possible conversion of H,S into SO, downwind from an Icelandic geothermal
field. The SO, concentration was found to be very low and did not increase for
larger ranges and correspondingly longer times available [or atmospheric
chemistry to take place, .

Various aspects of practical SO, moniloring have been discussed by
Egeback et al. (1984).
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3.6.2. O, Moritoring

Great attention is presently being focused on the ozone molecule. A steadily
increasing concentration of tropospheric ozone is thought to be at least
partially related 1o the increasing damage to [orests observed throughout
Europe. The stratospheric ozone layer is being depleted, most likely because of

chemical reactions with fluorinated hydrocarbons (Freons). Measurements of -

stratospheric ozone have been performed by many groups (Werneret al., 1983;
Uchino et al,, 1983; Megie et al., 1985; Browell et al,, 19%0; Stefanutti et al,,
1992a). In order to reach stratospheric heights, lidar systems with high pulse
encrgies{= 1), large telescope diameters (= 1 m), and photon-counting detec-
tion electronics are pecded. For stratospheric measurements it is necessary to
use wavelengths that are only weakly absorbed by ozone (long wavelengths)in
order 10 avoid excessive absorption already at lower heights. As discussed in
Section 3.2.1 a special problem with O, monitoring is the need for a wide
wavelength separation, necessitating a correction 1o be applied for different
Mie scattering at the different wavelengths (Browelt, 1985). This correction
is particularly critical when particle layers are being passed, e.g, al the
tropopause. DIAL data for tropospheric ozone are shown in Fig. 3.32 (Edner
et al, 1992b). Here the new Swedish mobile DIAL system was used at high

clevation angles. The range- and angle-resolved data can be converted into a
vertical profile as shown in the fgure.

163, Nd, Monitoring

Nitrogen oxide (NO} is formed in all high-temperature combustion and is an
important pollutant from industrial activities and, in particular, from automo-
tive traffic. Shortly alter the emission of NO into the atmosphere this melecule
is oxidized into NO, and further on to HNO,, which contributes to waterand
soil acidification. NO, absorbs in blue spectral region and was the first
pellutant to be measured by the DIAL 1echnique (Rothe ¢t al,, 1974a, b; Grant
ct al, 1974). Recordings for NO, have already been shown in Fig. 3.17.

Praciical NO, monitoring by DIAL techniques has been discussed by
Fredrksson and Hertz (1984).

3.64. NO Monitoring

The NO molecule has a strong absorption band, the y-band at short UV
wavelengths, as shown in Fig. 3.33. First atmospheric UV lidar measurements
were reported by Aldén et al. (1982b), who used stimulated Raman scattering
to produce the required radiation. For DIAL plume mapping of NO frequency
mixing was employed, first generating 575nm by dye radiation [requency

(w) wBey

16:03-16:220 UT

TROLIX 91 910624

g 8

(w) Wiy

137

0O 20 40 &0 80 100

Ozone Concentration {ug/m*)

Distance (m)

sl (1992b}

Flgure 331 Vertical ozone sounding with & mobile dye-laser-based DIAL system. From the vertical lidar
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doubling and then mixing with residual fundamental Nd:YAG radiationina
sccond KDP crystal to reach 226 nm (Edner ct al,, 1988; Jolliffe et al, 1987).
The result from a vertical scan downwind from a smokestack is seen in
Fig. 3.34.

Since NO absorbs at approximately hall the wavelength on NQ,, it is
possible to measure the two gases simultancously using the same [requency-
doubled laser {(Nickolov and Svanberg, 1986). The low conversion efficiency of
the KPB (potassium pentaborate) frequency-doubling crystal was initially a
drawback but with the occurrence of the new nonlinear material BBO
(f-barium borale) double species monitoring became very realistic. Such measure-
ments have been reported by Kolsch et al. (1989).

3.65. Monitoring of Other Gases

DIAL monitoring of a number of other pollutant gases has also been
demonstrated, although the techniques may be less operational than for SO,,
0,, NO,, NO, and Hg. DIAL monitoring of toluene and benzene at 267 and
253 nm, respectively, has recently been reported (Milton et al,, 1992). Mole-
cular chlorine (Cl,) exhibits a broad absorption spectrum in the UV region.
Like for ozone it is necessary to have a sufficiently large wavelength separa-
tion in the DIAL measurements. A demonstration of DIAL measurements
on an artificial chlorine cloud has been made by Edner et al. (1987a), HCI
emitted from incineration ships has been monitored by Weitkamp (1981) using
a DF laser transmitter at 3.6 ym. By using frequency mixing techniques,
wavelengths around 5 gm could be produced by CO, lasers, allowing DIAL
monitoring of CO (Killinger et al, 1980), NO (Menyuk etal, 1980}, and
hydrazine and other fuels (Menyuk et al, 1982). Hydrocarbons can be mea-
sured at the CHe-stretch wavelength 3.4 um, and practical DIAL measure-
ments have been performed by Milton et al (1988). Special, simplified systems
have also been constructed for CH, detection, i.c,, from leaking natural gas
pipelines. In onc system the gas correlation lidar technique (discussed in,
Section 3.5.3) was employed for methane leak detection {Galetti, 1987). Several
demonstrations of direct and heterodyne DIAL monitoring at CO, laser
wavelengths (= 10 um) have been made covering species such as Freon-12,
cthylene, ozone, ammonia, and sulfur hexafluoride (see, e.g., Grant, 1989).

3.6.6. Sensitivity and Detection Limits of DIAL

Preferred wavelength regions, differential absorption cross sections, and
detection limits in ppb for a 100-m measuring path arc given in Table 3.1 for
pollutants for which realistic DIAL measurements can be performed. The
detection limits correspond to a 1% change in the DIAL curve over the range



[N
~

DIFFERENTIAL ABSORPTION LIDAR

Table 11. Important DIAL Detected Pollutznts with Detectioa Limits
for a 100-m Measurement fnterval (200-m Absorption Pathy

Differential Cross Detection Limit
Gas Wavelength fatm~'-cm~") {ppb)
NO 226 nm 100 5
Benzene 253 nm 61 8
Hg 254 nm 670,000 0.001
Toluene 267 nm 30 17
0, 280 nm 30 9
50, 299 am 25 20
NO, 450 nm 10 50
HCl Jbum ] 0
C;H, 10 pm 3t 16

* Only rough values are given, Differentia) cross-sections’ depend on detuils in
wavclength-pair, choice, luser line width, ete,

interval chosen. Many other gases can be studied, but the experience with such
measurements might be less extensive, The table is given to provide the reader
witha realistic assessment of the practical applicability of the DIAL technique.

7. SPECIAL CASE STUDY:
ATOMIC MERCURY MONITORING

Mercury is a troublesome pollutant that is unique in the atmosphere, as it is
mainly present in atomic form (Jepsen, 1973). All other pollutants are mol-
cules, for which each electronic transition is accompanied by thousands of
vibrational-rotational transitions, giving rise to a distributed band spectrum.,
For an atom the electronic transition probability (oscillator strength) is
instead concentrated in a single line, or af least in a low number of isotopic and
hyperfine-structure lines, which because of Doppler and collisional broaden-
ing appear as a single linc. Because of this the D1AL detection limit for Hg is
about 3 orders of magnitude lower than for other potlutants such as SO, or
NO,. When these latter pollutants can be detected on the ppb level, mercury
can be detected at ppt concentrations. That is exact]ly what is needed, since
atomic mercury has an Atlantic background concentration of about 0.25 ppt
or 2ng/m? (Slemr et al,, 1981).

Locally increased amounts of mercury in the air can be caused by industrial
activities such as chlorine-alkali plants, where liquid mercury electrodes are
used. Mercury is also emitted from coal-fired power plants as well as from

s = f—

. )
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incincration plants. Recently attention has been given to strong mercury emis-
sions from crematoria, which in some countries give risc to more mercury
pollution than normal incineration plants. As a toxic heavy metal, mercury
and its cycle in the environment have been much studied (see, e.g., Ngriau,
1979; Mitra, 1986; Lindqvist, 1991). :

Apart from being a pollutant caused by human activities, mercury is a
very interesting geophysical tracer gas associated with ore deposits (Bostow
and Jonasson, 1972; McCarthy, 1972), geothermal energy (Robertson et al,
1977; Varckamp and Buseck, 1983), and seismic and volcanic phenomena
{Varckamp and Buseck, 1981). These latter aspects are illustrated in Fig. 3.35
{Svanberg, 1991).

The mercury resonance line (6s'S,-6p°P,) occurs at 253.65 nm. Its width
and shape at ambient atmospheric conditions are shown in the cell absorption
spectrum in Fig. 3.36. There also the isotopic contributions to the Hg line
shape are indicaled and neighboring “forbidden™ absorption lines of molecu-
lar oxygen are shown (see also Fig. 3.18). First attempts to remotely monitor
mercury were made using anti-Stokes Raman shifting of frequency-doubled
dye laser radiation (Aldén et al, 1982a). On- and off-resonance curves and a

\*‘ < Topographic
’4“.:_’- target

Ore-ralated
googases

Figure 138, Measurement scenarios for atomic mercury of geophysical origin. From Svanberg
(1991},
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Flgure 337, On- snd off-resonance Hg lidar curves for an artifical mercury cloud a1 about 100-m
distance. Note the fluorescence emission peak in the on-resonance curve. In the lower part of the
figure the divided (DIAL) curve is shown From Aldn e1al {1982a}

resulting DIAL curve from an antificial mercury cloud at a distance of about
100m are shown in Fig. 3.37. However, the laser power z2nd line width did not
allow practical monitoring. In the on-resonance curve it is possible to ses a
Ruorescence signal associated with the dense mercury cloud. It occurs weakly
cven at atmospheric pressure because the 254 nm line is the only radiative
decay channel available. The occurrence of fluorescence does not induce any
problems in the evaluation of mercury concentrations, as demonstrated by
Edneret al. (1989). Real measurements of industrial mercury pollution became
possible when narrow-band coumarin dye laser emission at 508 nm could be
efficicatly directly doubled using the new nonlinear crystal BRO, Figure 3.38
shows the result of a horizontal scan around the cell house of a Swedish
chlorine-alkali plant {Edner ct al., 1989), performed with the new Swedish
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Figure 334 Horizontal lidas scx—:; I.l-.l Swedish chiorine-alkali plant showing the horizontal

distribution of atomic mercury, From Edner ot al. (19%9),

DIAL system. From data in vertical scans downwind from the cell house and
available wind data, an emission of 30g/h is obtained. Measurements at a
similar Italian plant yielded similar emission values and an estimated yearly
mercury emission of 500 kg (Ferrara et al., 1992). A vertical scan featuring a
strong plume and a weaker one is shown in Fig. 3.39. The mercury emission
from the stack of a crematorium is shown in Fig. 3.40 during the cremation
process (Edner et al,, 1991b). In order to alleviate environmental problems in
this connection, techniques like selenium addition at the cremation or gas
filtering are being tested,

Lidar measurements of mercury have been performed in Icelandic and
ltalian geothermal fields by the Swedish lidar group. Although no enhanced

ATO
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Figure 139, Vertical lidst scans, upwind and downwind from the ecll house at the chionne-alkali

plant a1 Rosignanc Solvay, laly,
placed along the lines of measure
From Ferraru et al. (1992).

The vertical Hg concentration plots 2re shown in diagrams
ment. The weak plume is related 1o a mercury waste deposit.
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Figure 3.40. The concentration of atomic mercury in the stack efluents of a Swedish crematorium
during a single cremation. The recording was taken with the Swedish mobile DIAL system, placed
200 m from the crematorium, From Edner et al {1991b).

Figure 341. Photograph of the Swedish mobile DIAL sysiem during atomic Y mcasure-
maents al the geolhermal plang at Castelauovo di Val di Cecina, Italy. From Edner el al (1992¢).
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atomic mercury emissions could be detected in three Icelandic geothermal
fields (Edner et al, 1991c), strongly elevated values were found ip Italy (Edaer
ctal, 1992c). A photograph of the new Swedish mobile DIAL system during
measurement at a geothermal power station in Tuscany, ltaly, is shown in
Fig. 3.41. As can be seen in Fig 3.42, substantial emissions are recorded. The

HEIGHT {m}

850
DISTANCE (m)

Figure 342, Vertical mercury lidar scan through the plume from the geothermal power plant al
Piancastagnais, Italy (20 MW). From Edner ctal, 1992c)
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Figure 343, Vertical idarscanat the grothermal power plant at Larderello, Taly, The DIAL data
for atomic ¥ ot ion are compared with the dats from 1brec point monilors placed

close 10 1he cooling tower. From Edner et al. (1992c)
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yearly total Rux of mercury from the plant is estimated 1o be about 200kg,
combining DIAL scans with wind velocity data, Data from a vertical scan
close 1o the cooling Lowers af the largest geothermal power station in Europe
are shownin Fig. 3.43. In the figure data obtained using point monitors based
on mercury amalgamation in gold and subsequent atomic absorption

monitoring are inserted. As can be seen there is a good agreement between the
two measurement techniques,

The aforementioned absence of elevated concentrations of atomic mercury

in the air over geothermal fields in Iceland presents a puzzle. There can be no

Flgure 344, Mercury concentration data from a horizontal fidar scan at 1

he sbandoned mercury
mine 21 Abbadia 5. Salvatore, lialy. From Edner et al, {1993a)
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doubt about the presence of significant amounts of mercury in well fuids in
these areas. The lidar technique is sensitive only 1o atomic mercury, Mercury
in a form other than elemental vapor would therefo: : not have been revealed
in our search. The occurrence of the mercury in some form other than
elemental vapor scems to be the most probable explanation for the failure of
the lidar scarch to detect significant concentrations, Mercury in Californian
geothermal fields is known 1o be present mainly in elemental form (Robertson
ct al, 1977), as is the case in Italy,

In connection with mercury mining there is a substantial emission of
mercury to the atmosphere. We have performed DIAL monitoring of the air
over the now abandoned mercury mine at Abbadia S. Salvatore in Tuscany,
Italy (Edner ct al., 1993a). A horizontal map over the mining area is shown in
Fig. 3.44, with mean concentrations given in circles for selected path lengths.
As can be scen strongly elevated concentrations are found, particularly in
connection with a distillation plant. On the other hand, the concentration
quickly reaches the background value (2 ng/m*} outside the central area.

In connection with the mine there are large deposits of roasted cinnabar ore
still containing about 0.2% of mercury. There is a substantial outgassing from
these cinnabar baoks. The DIAL technique can be used to measure the atomic
mercury gradient due to the outgassing, which. is particularly strong at
clevated temperature, Comparisons with point moritoring distributed along a

T
Vertical profile

Helght (m)

0 5 10 15 20 25
Concentration (ng/m?)
Fligure 145, Venical atomic mercury gradient over roasted cinnabar ore deposits a1 Abbadia §,
Salvatore. lisly, measured with a mercury DIAL system. From Edner et al, (199322
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vertical wire suspended from a crane showed good agreement (Ferrara et al,,
1991). Data are shown in Fig. 3.45. Attempts have also been made to measure
the very low mercury gradient above lake surfaces by comparing data
oblained in long paths chosen at low heights above the surface (Edner and
Svanberg, 1991). It has been postulated that this may account for missing
mercury in the full environmental cycle of this element. In these measurements
the lidar beam was directed onto large first surface mirrors mounted 1o
provide measurement paths across a lake a1 0.5 and 2.0 m above the surface. In
initial measurements the concentration gradient over the lake surface was not
high enough to be delected.

We conclude this section on atmospheric mercury monitoring by showing
an example of a background mercury concentration measurement illustrating
the sensitivity of the technique. The DIAL curve in Fig. 3.46 allows a determi-
nation of the ambient air atomic mercury concentration over the city of Lund,
Sweden, which was found 1o be 1.5 + 1.0 ng/m* Hg over a 1-km path.

As shown by the foregoing examples, DIAL monitoring of atomic mercury
is a very powerful technique that can be employed not only for traditional
pollution monitoring but also for studying geophysical processes.

1.5
LUND
1.m "YA_'"‘ -
3

[*] Hg 0.0 ng/m
Eon L5 ng/m*
3
I
™
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Figure 3.46. DIAL curve from 4 background atomic mercuty ¢ Lration meas inthe

city of Lund, Sweden. From Edner and Svanberg (1991},
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38. OUTLOOX

The DIAL technique for monitoring of atmospheric pollutants is reaching a
substantial level of general applicability and maturity. It provides unique
possibilities for three-dimensional mapping of the.atmosphere and for measur-
ing total fluxes from industrial and urban areas. The technique is starting to
be applied for routine monitoring. The largest obstacles to the widespread
application of the powerful DIAL technique is system complexity. This is
particularly true for the laser part. A very interesting development is the
emergence of diode-pumped Nd: YAG lasers that can be used for pumping of
titanium-sapphire lasers. Moderate-cost systems using this all-solid-state
technology would mean a breakthrough for DIAL technology: high reliabitity
and case of operation could be anticipated. Very powerful and low-cost
computers are already available for near-real-time data processing into
understandable graphs. The increased compactness possible with the new
technology will allow installation in small vehicles that can casily be moved
{rom one measuring site to another without tedious setup procedures. The
same technology will also enable construction of realistic DIAL airborne
systems.

The ultimate application of the DIAL technique is global monitering of
metcorological parameters and atmospheric pollution from space. Increasing
system performance, compactness, and reliability in conjunction with the
planned availability of serviceable space platforms shou!d make execution of
such a scenario possible, Both NASA and ESA (the Eurapean Space Agency)
arc planning space lidar systems providing global wind, temperature, and
poilution monitoring (see, e.g., Couch et al,, 1991),
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Fig. 2. Fibre-bascd fluorosensor for point monitoring of vegetation fluores-
cence (from [15]).

with the leaf or needle to be studied. A lay out of the system
is shown in Fig. 2 [15). As an excitation source a pulsed
nitrogen laser (A = 337nm) is used, either directly or after
frequency conversion in a dye laser unit, pumped by 2 nitro-
gen laser, The radiation is focused into a 600 pum fibre, the
tip of which is put in contact with the object to be studied.
Laser-induced fluorescence is collected by the same fibre
and is brought back to the entrance slit of a spectrometer
after passing a dichroic mirror, reflecting the laser light by
transmitting the red-shifted fluorescence light. The spectro-
meter is equipped with a CCD detector, proceeded by an
image intensifier. The intensificr can be gated electronically
only to accept light during a time window, normally set to
100 nis. In this way background light can be efficiently elimi-
nated. Following each laser shot a full spectrum covering
300800 nm is captured, displayed and stored. Averaging of
multiple shots can be performed.

2.2. Examples of spectra

As a first example, spectra from Picea Abies, growing at the
Italian CNR test site Camporgiano ar¢ shown in Fig. 3
[14]. Three excitation wavelengths were used: 337, 405 and
470nm. Strong chlorophyll fluorescence with peaks at 690
and 735nm can be seen for the longer excitation wave-
lengths, whereas such flucrescence is absent for 337 nm exci-
tation. For UV excitation the match to the chlorophyll
absorption band is poor while pigments emitting in the
blue—green region are optimally excited. Actually, the pen-
=tration into the needle is poor and most of the excitation
light is absorbed in the surface wax layer. This fibre-based
Auorosensor was used in a controlled Swedish study of the
influence of ozone exposure on fluorescence properties of
spruce and pine [16].

A further example is shown in Fig 4, exhibiting fluores-
cence spectra for maize [17). Here, a separate excitation
source yielding frequency-tripled Nd:YAG radiation at
355nm and Raman-shifted components at 320, 397, and
450 nm was employed. (Raman medjum: deuterium gas). It
can be seen that chlorophyll is efficiently excited for the two
longer wavelengths and that is appears very weakly for the
shorter wavelength. 397nm is a particularly useful excita-
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Fig. 3. Point monitoring of fiuorescence spectra of Picea Abies, excited at
different laser wavelengths (from [14]).

tion wavelength, since it allows eyesafe outdoor laser oper-
ation. The eye exposurc limit becomes 10000 times less
stringent for wavelengths below 400nm; an important
observation for airborne fiuorosensor operation,

3. Remote monitoring of flucrescence spectra
3.1. Mobile fluorescence lidar system

We are employing a mobile lidar system for remote moni-
toring of laser-induced fluorescence. An atmosphere lidar
system, described in [18), is modified for fluorescence work.
A scenario for field measurements of vegetation fiuorescence
is shown in Fig. 5 [19]. A schematic diagram of the fluoro-
sensor equipment is shown in Fig. 6 [19,20]). A pulsed
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Fig. 8. Remote laser-induced fluorescence spectra of spruce, maize and
maple obtained at 30m distznce using 397 nm excitation (from [17])

The performance of the system is further illustrated by the
spectra shown in Fig. 11, recorded during a field ¢ampaign
at INRA, Avignon, France [20]. In these recordings the
optimized seven-fibre pack was used for transferring the
radiation to the spectrometer. Spectra averaged for 100
shots are shown for poplar, cypress and plane-tree at 64m,
125m and 210 m distance, respectively. A single-shot record-

B 1(685)1(740)
O 1(685)/1(480)
1 July 3

1.0 1

0.5

Time of day

Fig. 9. Daily cycle variations of the Auorescence ratio I (685 nm)/I (735 nm}
and I (685 am)/f (480 nm) for a spruce tree. PAR (illumination) values are
also shown for comparison {from {17]).
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Fig. 10. Remote fluorescence spectra of beech (Fagus Sylvatice) at Pian di
Novello (from [14]).

ing at 125m distance is also included. Single-shot measure-
ment capability is important especially for an airborne
system moving at high speed, when averaging over several

shots may not be possible.
Daily cycle recordings for maize are shown in Fig. 12 for

a measuring distance of 40 m [20]. Single-shot monitoring is
shown to yield basically the same results as averaged data.
This demonstrates that our system is approaching the per-
formance required for effective airborne operation.

4. Remote multi-colour fluorescence imaging
4.1. Multi-colour imaging set-up

So far we have only discussed the acquisition of fluorescence
spectra from the target, which is illuminated by a laser beam

b) Cypress: 100 shots, 125m

u) Poplar: 100 shots, 64m

Fluorescence int
Fluorescence int

500 5§50 600 . 650 00 730
d} Cypress: Onc shot, [25m

500 S50 00 63 700 TS0
¢} Plane-tree: 100 shot, 210m

Fluorescence inL
Fluorescence inL

00 550 &0 60 700 750 Tei0 ss0 60 650 700 750

Fig. 1. Remote fiuorescence specira for poplar, cypress and plane-tree.
100 shots are averaged in (a)-{c), for distances 64m, 125m, and 210m,
respectively. A single-shot recording at 125m distance is shown in (d) (from

(20T
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BRASICA CAMPESTRIS

FLUORESCENCE INT. (arb. saita)

40 A0 s e o ™ "
WAVELENGTH (nm)

Fig. 4. Photograph and ratio image for leaves from Brasica campestris.
Spectra are also included for normal and UV treated {noisier specirum)
lcaves (from [19]).

image may be synthesised. Ground-based text experiments
of this kind are now in progress.

5. Discussion and a proposal of a European airborne system

European research activities in the field of remote vegeta-
iion fluorescence monitoring performed by German, Italian,
French an Swedish groups during the last few years show
hat it is possible to construct a fluorescence lidar system
-apable to make single-shot recordings at considerable dis-
iance. Collaberative work together with plant physiologists
1as also shown that fiuorescence signals can reflect the con-
-entration of chlorophyll in the leaves and also give some
ndications of stress of various kind. The temporal domain
:an also yield valuable information on vegetation status.

without
DCMY

blue

with
DCMmy

“ig. 15. Individual speciral images and ratio images for maize before and
fter preparation with the herbicide DCMU (from [20]).
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Fig. I6. Schematic diagram of a proposed European modular lidar system
for vegetation monitoring (from [26]).

Here the decay characteristics of the fluorescence in different
spectral bands is utilised [25). However, much further work
on the full interpretation of the fluorescence signatures
needs to be done to fully exploit the complementarity of
fluorescence and reflectance spectral characteristics. In view
of the possibility for the success of a more refined monitor-
ing system, the LASFLEUR collaboration has proposed the
development of a Europcan airborne system [26]. The
system, which is modular, is schematically shown in Fig. 16.
A frequency-doubled titanium-doped sapphire laser system
operating at 397 nm is proposed as the transmitter. Detec-
tion modules include a high-resolution CCD array, a multi-
ple filter/photomultiplier-tube system and a time-resolved
system. 'If realised, such a system could provide a valuable
test facility for developing a future fully operational system.
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