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(1}

Dr. Picasso mentioned our work in the opening talk at this
Conference when he gave Fulton, Owen and Repko's latest theoretical result
for the muonium hyperfine splitting. Actually, this calculation was an
afterthought and at the time hardly seemed worth the effort, as the
uncertainty in both the measurement and theory for this quantity was so

(2)

large because of the Ruderman effect We primarily were interested in
calculating the hyperfine structure of positronium which did not suffer
from this limitation. Our interest in positronium was motivated by the

following considerations:-

(1) The positronium ground state triplet-singlet splitting
affords, potentialily, a very accurate test of quantum
electrodynamics. This follows since to our order of
approximation, the bound electron-<positron system is
free from contamination by hadronic effects or unusual
leptonic corrections. Thus agreement between theoret-
ical and exper{mental determinations of the triplet-
singlet splitting is necessary in any systematic check

of the predictive powers of quantum electrodynamics.

{(2) Furthermore, positronium is the only experimentally
accessible bound state system which can and must be
described by using the relativistic two-body equation
for interacting fermions. The external field approxi-
mation used in treating the Lamb shift, etc., is not
applicable here as both particles must be treated on an

equai footing.

when we, (Fulton, Repko and myself) started our calculation, quantum

(3,4)

electrodynamics was in a state of disarray Different values for o

and the Lamb shift were''floating around! The situation for positronium

was equally unclear.
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The positronium hyperfine splitting had first been measured by

(5)

Dr. Martin Deutsch in 1952 , and subsequently several times by Hughes
and his collaborators (their latest result came out in 1970)(6). For the
positronium hyperfine frequency, v, they obtained

vexp = 2,03403(12) x 10° MHz . (1)

Their experimental arrangement is i{llustrated in Figure |, where the Na2?2
is the positron source. By varying the static magnetic field he deter-
mined the field intensity which gave the greatest number of two photon

decays.

This magnetic field at which the increase of two photon-positronium
decays is observed is related to the Zeeman pattern and the frequency of

the r-f field (see Figure 2}, from which (via the easily derived Breit-

: = . AW 2u, 9 Hz

Rabi formula, A =E+ 80 /T +x2, x2=—2——; Hz = magnetic
- 73,4 2 AW

field. A are the energy eigenvaiues of the Zeeman substates while

3,4
AW is the triplet-singlet splitting in the absence of a magnetic

field)(7’8) the triplet-singlet splitting can be determined.

(9)

The previous theoretical value obtained by Karplus and Klein for
the positronium hyperfine splitting was
KK 5
Vip = 2.03381(36) x 10° MHz (2)
for o = 137.03608. The ''theoretical error! is our estimate of the
expected order of magnitude of the uncalculated diagrams(lo). We see

that the theoretical uncertainty limited the usefulness of this quantity
in providing a test of quantum electrodynamics and the Bethe-Salpeter

equation.
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With the result of our calculation we have been able to improve the

Karplus and Klein result so that the present theoretical value reads(lo)

FOR

\,Th = 02 Rw[7/6 = (1% + &n 2} %4' %32 Ln G-I]

= 2.03415(7) x 105 MHz . (3)

Comparing this with (1) we find that there is agreement between theory and

experiment within quoted errors.

We extended our calculation to muonium which gave an additional

(1)

theoretical contribution Avm

m |2 m, - -
v, = 24 o [1 + Er& 5 ¢ ot R &na
n

= 0.0252 MHz (5.6 ppm) . (4)

The Ruderman correction which was the major source of error and limited
the muonium hyperfine structure as a ''good' test for quantum electro-

dynamics had just been shown not to exist by the recent experiments of

(11) (12)

Hague and Telegdi » who found for the ratio of the muon to proton
u .
magnetic moment, -
*p
!
-k = 3,183347(9) (Hague)
¥p
(5)
B
:‘* = 3.183340(11) (Telegdi)
P

respectively. Since Dr, Picasso described this last experiment, I shall

not discuss it.
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(13)

Using these values, equation {(4) with the Brodsky and Erickson

result gives for the theoretical predictions

+h
(v Vwash/LRL = 14#63.323(19) MHz (6)
+h
(vm )chi/lll. 4463.313(21) MHz (7)
This is to be Eompared with the experimental determination of vm(lh)

vorP = 4463.3022(89) MHz Chicago

(8)
voP = 4163.310(30) MHz Yale

Thus with the major source of uncertainty associated with the chemical
correction due to the muon's environment eliminated we have another

precise test of quantum electrodynamics.

Basides which, comparison of this quantity with the hydrogen hyper-
fine structure gives an experimental upper limit oh the proton

m

polarization , 1.8,

where Gp is the proton recoil correction [(=35 & 1)ppm], Gp, is the proton
polarization correction, and Gu is the muon recoil correction. Assuming
Gp, = 0, the left- and right-hand sides of equation (8) are, respectively,
3.1422727 and 3.1422737, where we have temporarily suppressed the
uncertainties in Vi? ;E-and Gp. The difference between the above numbers
leads to an upper limiz on Gp, of (0.34 % 5.0)ppnﬁhhich is in accord with

current estimates of proton polarizability.
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Yet perhaps more importent, the muonium hyperfine splitting affords,
using the simultaneous high precision measurements of v and ;ﬂ- by the
Chicago~lilinois group with our latest, theoretical, result in {4), an
independent determination of o with accuracy comparable.to that obtained

from the Josephson effect(]h). We find

o ! (muonium hyperfine structure) = 137.03617(30) (10)
which is in good agreement with

«'! (Josephson effect) = 137.03608(21) . (11)

(13)

The foregoing calculations are based on the Bethe-Salpeter equation
which is the relativistic two-body equation derived from quantum field
theory. I wish fo take this opportunity to briefly describe how this
equation is used for these calculations and sketch our positronium

calculation.

To begin with, the Bethe~Salpeter equation is the equation for the
two-particle Green's function obtained by selectively summing the diagrams
when the Green's function is expanded'}n the interaction picture or in

(15)

terms of in-states A compact way of writing the Bethe-Salpeter

equation for two 3-spin particles is

G(34;12) = s;(')(a,l)s;(Z)(n,z) + s;(‘)(3,5)5;(2)(h,6)1(56;78)ﬁ(78;12)
(12)

where

G(34;12) is the two-particle propagator,

Sé(])(B,I) is the full one-particle propagator,

I1(56;78) is the irreducible kernel which is the

‘set of two-particle Feynmann diagrams



-

-6 -

and where we have replaced X, -~ i and are integrating over repeated

arguments. .

For positronium the two-particle propagator G(34;12) b s .
' L7y :

6(34:12) , _ 0| T, (319, )3, (115, @} o>,

0 T{uix, 91 (x, )3, (x, )3, (x,) 5} 0> :
<0|S|0>

(13)

X <0|T{$(x1)ﬁ(c)(x2)5}|0?

where the second term arises because of the absence of exchange diagrams

for non-interacting fermion and anti-ermion.

The w“’ and @(c) in equation (13) are given by

¢(°) = C[;]-;]T and ﬁ(t) = ch with € = 1 v,y

(14)

Equation (12) derived from equation (13) yields for I(xsxq;xlxz)

(assuming the usual electromagnetic coupling)

I(xaxu;xlxz) a Ia(xsxu;xlxz) + IA(xsxu;xlxz) + ..
(15) .'

where
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1B(x3xq;x1x2) - je? 6(x3-x1)6(xq-x2) Tu(])Yv(Z) DF(xl;x

z)uv '

-1

!A(xsxh;xlxz) - ie2 6(x3-xu)6(xl*x2)(yvc)(c ¥ DF(xl’xa)uv )

(16)

etc.

To obtain an equation from (12) describing bound states(le) consider

the propagator in (13) for the case (xg),, (x), > (x)), = (x,), = ¢,

then

: : e (c) eI
6(34;12) | o > <0IT{y, 30y, " (W} 9, 03,2 o>,

E <°|T{¢H(3)¢H(c)(k)}fn><n|@H(l)5H(c)(2)|0>NE

(pos) (pos)t
f h 1,2 .
E O3, h) £ POSIT( e me, - (D)

Equation (i12) becomes

RACOIAUCT NN Eﬂfo) G.1500.2) |

+5.(3,5) 58 (4,6) 1(56;78) I £(1.8) 0.0

(18)
Taking out the centre of mass of motion in f:(l,Z)t _ it can be

L)

written as

iK X
t = aT(Z n
o2, = et e

-iK X
Multiplying equation (18) by fq(?) e 9 where Kq is the four-vector of

a bound stéte, and taking the limit of both sides as t + == in the sense
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that all oscillating terms are taken to approach zero, equation (18)

becomes

as the inhomogeneous term in equation (18) must vanish.

pos
£29%(3,4)

503,505 ,6) 1, _(56:78)65°%(7,8)  (19)

In the case of

two-particles of unequal mass an equation of the same form as equation

(19) can be derived, i.e.

where

does not contain any annihilation diagrams.

1
m

fK(B.k)

511 (3,551 ) (1,6) b, (56:78) F((7,8)
(20)

(56;78), besides being dependent on the masses m, and m,

172

parts for the fermion propagators equstion (20) can be written as

Solving equation (21) exactly appears entirely hopeless.

many problems is

e = 596,552 0,6 + s ensP 01 a6 sle s

‘In terms of self-energy

(1) (2 a0y (20 c1ys1 (1) (g1 £)5(2)
+5.7(3,30] (3,557 (51,5)8 7 (B,6)

+ s 3,301M G505V 50,58 4,

512 (61,6)} 1(56:78) £, (7,8) . (21)

1{56;78) cannot be expressed in closed form.

for this reason we start with a simpler equation

where

£, (3,4) =
Ke

(1) (5 5)5(2) .
st G558 ,6) 1,(56:78) 7y (1,8) (22)

I)Z(z) (A|’6|)

One of the

It is



(2) 6(t5-t6),

1.(56:78) = 'f_‘“ 5(“5‘5735(x5'x3) Yé]) Yo =

(23)

is the Coulomb interaction.

Although equation (23) cannot be solved exactly it can be solved
using standard perturbation techniques. We shall develop the relation-

ship between the energy eigenvalues of equations (21) and (22).

Defining

F(s6:78) = {s(s55)8066") + o551 ) (6,615:() (61,6)

i

+ 105,50 5100 (50,50)606,6)

+ T 5,550 (5,501 @) (6,652 @ (61,61 } 150613 78)
(24)

equation (21) can be written in the form
e = s s 5P we) Ts6:78) 7 (p) (25)

Introducing centre of mass coordinates

+
X = n1x3+n2xq with n, n, = 1

and
X o= X =X
each of the factors in equation (25) may be written in the CM system.

Thus
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iK' {X-X") z-ip(x-x')

Sél)(35)5é2)(4.6) - ‘[' d¥K! d¥p L

(2) 8 2)

[(p+n K*)y" -m 1L (-ptn, k! )y 2 om,
(26)

where
K! = p1+p2 and P = TnaP;"MP,

While i(56;78) can only depend on X "X., X,"Xg oOF the difference of

the centre of mass coordinates X-X! qnd thus can be written as

T(s6;78) = —L f avn 2 TTRTOXD 1 ekt (2D)
(2n)*

while it is easily seen from the definition of fK(Bﬁ) that it can be

written as

£ = x4 (28)

Equation (25) in centre of mass can be written as

o (x) = G lx=x") T (x',x") oy (x') T (29)
where
-ip(x-x")
G, (x-x') = ! J d'p 2
K (2m)* [(P+“1K)Y(])‘m1][(-P+n2K)Y(2)-m2]

(30)

GK(x—x') can be written as the product of two factors, i.e. in the frame

where ﬁ = 0 we have
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6, (x=x") ! atp ¢~ 1P L") { )
X=X ]
¥ (20 | 87 @) (p)-k1 (M ()= kep )

. ; }v“’v‘z’
HTZ)(-E)-(nZK-pO) °© °
(31)
= QK(x:x"),AK(x“.x') Yé?)Yéz)
s0 here
-ip(x-x")
(x,x') = — d'p & (32)
T (2m) [ 60 () +# @) (<) K]
H(I)(E) - a(i}a + B(i) m,
and
A(x. x') = ] gty g 1P lxx') -~ 1 + 1 }
K (zn)'*f i W G-t kepg) 12 (B (ngepy)
(33)

= i - I d3p zi;-(;-;'){a(t-tl)!‘i})(I_)) e"ilt".tll(E(p)-an)
(2n)

- emea® iy 11 EBn 0 e

- G(t"'t.)AEI) (5) Li | t-t' l (-E (P)‘HIK)

A_'(_z) (-p)o(t'~t) £i [t-t* ] ("E(P)"‘T'IZK)} _

with
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AV G) - (')(P) ')
* 26\ (p)

Writing

te 6 ex )y 3P s (o)

Lox') = - - 2 + Ik(x,x‘) (35)

and noting that _AK(;,;') is independent of K we have from (29)-(32)

that
o) = gy (x» x'") Ag(x'sx") Yél)Yéz) L(x",y) #,(y)
or

o Gox) 4(x) = Alox) v3y P

), @)
ja 6{x'-y) §(t')
2t TR D ¢ Il | 8 )

r :
(36)

More explicitly equation (36) is

gy A (x,3) )

Ty

G+ w2 ) - kg0 = - e

* I d4x'd'y AK(X.X')Yél)Yéz) I;(x'.v) o(y) (37)
with
rp, = vl

For t = 0, equation (37) becomes
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[H(])(S) + H(z)(';) - K] ¢K(;a = f d3x! A(;,;') %T.¢K(;')

+ I dux' dhx"_ AK(E.X.) Yél)Yc£2) Il'((x'.x") ¢K(x”)
(38)
where

Alx,x")

=i AK(;’;')

We note that the non-relativistic limit of equation (38) is just the
Schrodinger equation for two particles interacting through their mutual

coulomb force.

We define ¢K (x) to be the solution of the equation
c
DG+ HD 5 - kT () = ifamr e (x) B B
c c <
or
WG + w25y - & -k ) = f dx alx") & ¢ G )
C

(39)
where
Ble,x') = AMex') = 8(x,%') .

Equation (39), the Bethe-Salpeter equation with a coulomb interaction does
not in the limit of m - = give the Dirac equation. This is because the
Dirac equation effectively contains other coulomb contributions which are

in Ik(x,x') - namely, the crossed coulomb graphs.

It is useful in developing the perturbation theory to define the

hybrid wave function, ¢k(x) by
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Hl

- 000 = -1 [ @ a0,V G+ D ) - kT S G
' [

(40)

- - [ @ a0, F) ()
with

x(r)

@)+ 0@ ) - k17 T (0 . G

Applying the operator 6 1 {x,x!) - IE(x,x') on ¢k(x') gives
[6, ' {x,x') - Iﬁ(x,X')] o (x') = G_;l(x.X')(-i)AK(x';O.F“)x(F")
- - 180X (1) A (x',0,7) ()

(1)

=—iYo

Yc(,Z),Eg;l (x;0,7) x(r) - 2 ¢KC(F)]
v SV B ek ) x® (12)
where we have used

Axxt) x(r') = () = ¢ (%)
c

and
. Fo ) = ) 4 W) - kD (P
Rewriting equation (29) as

(6} Gex') = TEGexD] gelxt) = Tlxxt) aylx') ()

and using equation (42) gives-
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BE = KK = =0 g (x) 1 (xxDeplx') (44)

We express the exact wavefunction ¢K(x) in terms of ¢k(x) as this
wavefunction is similar in form to the Coulomb wavefunction by writing

equation (43) as

[G;I(X.x') - IE(x,X') - Tp(x!) Tlof (%) + (9 (x') = ¢p(x'))]
D) aE (B - 1gtxx) alx) + B (xox)

o

x [g(x') - ¢g(x')] = 0

or
dx) = gk(x) + Blx,x') Te(x',x) oplx) = 1 aE & lx,x")
PIRARMCTCD IRt (45)
where
e l' c € ¢, pnC
6, = —————— = G-+ G [} G, + ... (46)

[+
K

equation (45) our result (&) bécomes

G being'the Coulomb propagator for two particles. Using

'AE - - 3k(x)lk(x'x.)[¢k(x') + EK(X',X“)Ik(X".x"')¢k(x"')
0

- i EK(xf,x”) Yil)Y(z) x(r') AE;

= o0 {BeOR TR b Vo (xf) + BRI TElx,x DB (x! XD T (et

s foam 1 {47y
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To order less than o® we may approximate ¢é(x) by b {x). oy (x} may
: c c
be calculated to the desired accuracy by iterating the Pauli wavefunction

¢p(§) where for the lowest S-state

f d3p ¢ 1P% 1 4, (0)

(x) =
ot (2n) 3 (p2+y2)2
with
%
¢P(°) Xlxz [ﬂ;_] E ’ i = _I‘l'% ' (ha)
] 0
0 ]
ST P 2= | g
0 0
Thus
oplx) = ¢KC(X) = G, (x,x') Ic(x'.X”)¢P(§“) (49)

In our calculations of the uzzna'1 corrections to positronium and muonium
we considered the one-and two-photon graphs in Ik(x,x‘) as the three-

photon graphs lowest order contribution is ma® (see Figure 3).

As an example of the foregoing perturbation theary we sketch the
calculation of the azznu-l contribution to positronium, The trans-
verse photon and the single annihilation diagram lead to the lowest order
splitting as well as higher order corrections. The two-photon diagrams
contribute an o correction to the lowest order correction and a three -

i 2 | s lculate the a2tna
photon diagram an a“ correction, etc. o to calculate the a“tna

correction all one-and two-photon diagrams (Figure 3) must be considered.

The contribution from the single transverse photon Is



-17 -

(4E}y = =i $K (x)} Iglx,x') ¢, (x') (50)
c <
with
- u._]) agz)
I(x,x') = - bn i a8%(x-x') Yé”véz) i %
(2n)"
qu e T (s, - ) (51)
q2+ig 1 q2

where ¢K.(x) is obtained from (49) and can be written as
c

¢KC(X) - ¢C(X) + 6 ¢C(X) + 4 ¢::(X) (52)
¢, (x) = —22 f"a" A mF (t) ¢_(0)
K 2m2 ! (k22 kP
with
F i) = RO + 5 F (0 (53)

- )
FO () = 10+ a0 - 91 6% 6w

(D) = [me) e EMI, (g o E el

k2 (1) L k2 =) 52y 7 el2)
5 F (1) = S—mEEG f 7 (t) — (@' + o) L k& £

-i(E+m)it|

'i(E"M)ItI + (mE) e

8 fin =" (m-E) e

@ . T\;_!{e'-i(E-m)[tl - omTEm 2]
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(BE)g = - i ¢ (x) Iglx,x') ¢ (x') = 16 ¢ (x} Tglx,x') o (x')

(55)
- $C(X) Ig(x,x'} & ¢ . (x')

since the other terms do not contiibute.

We find

oo
[(E)g] 6gne! = 8 2 a2|s(0)[2<5¢") 5125 [ d3% p2 tan ' E
[+ 3 T g0 1

y
3 m (27)3 (p2+y2)2 p E{p)

= :—2 m asﬁ,nu._l <c-!“).a(2)> (56)

In a similar fashion the Coulomb transverse diagrams may be calculated.
They contribute (AE)CT where

Ge)gy = - [ it [35(0) Tepluxt) o (x)
+ . () Toplx,x') ¢P(0)]

= - %E-m «S2na ! <5(I).5(2)> . (57)

This cancellation between the single transverse photon and the Coulomb

transverse diagrams is not unexpected, Such a cancellation also occurs

in the fower order, Karplus and Klein calculation.

The two transverse photon is the only remaining diagram which leads

-1 . .
to an a2tna correction. For this we find
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ae) ] = -1 [ avm vt {3,000 TGnnt) + Tolx) Gy ()

1g(x,x)] o (x') + 3_(x) {1 (x,x")

$ 1 0,x") G (x" X T (x%x")] 4,(0)} (58)

Neglecting wavefunction retardation which does not contribute to this order
we have

[(aE) 170 = 3 mofena”’ (59)

aslna'l

-1 . . A X
In summary, the af2na contribution to the hyperfine splitting in

positronium is
AE = %-m aszna-l

Taking

o} = 137.03608

gives

avlabina 1) = 34 MHz

comparing previous and present theoretical values with the current

experimental measurement we see

vth(Karplus and Klein) = 2.03381 x 10° MHz
vth(present calculation) = 2.034i5 x 105 MHz

vE*P (1970) = 2.03403(12) x 105 MHz
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Thus by examining the following table which includes an estimate of the

uncalculated diagrams we see the agreement is quite good.

The situation in quantum electrodynamics has changed rapidly in the
last several years from a state of confusion to one in which there is

excellent agreement between theory and experiment(]7).

Since physicists find their challenge when experiments and theory do
not fit too well, we have mixed feelings about our contribution to the

scene.

¥ The latest value (3.2 + 3.6)ppm has Just been brought to my attention.

See R.S. Cole and W.W. Repko, Bull. Amer. Phys. Soc. 16, 849 (1971).
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TABLE I
A v Percentage of contribution
Order of last order
10° MHz | Actual Expected
Schroedinger Level -
| 16449.2 -- --
(ionization frequency) o 3
Triplet-singlet at 2.04386 0.012 0.005
ground state a3 -0.01005 0.49 0.73
splitting aSgna 0.0003% | 3.4 3.6
ab (est) +0,00007 -- 20

Theoretical Contributions to Positronium Frequencies




Figure 1:

Figure 2:

Figure 3:
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Figure Captions

r-f cavity with a static magnetic field. The y-ray
counters, which are 180° apart are used in coincidence

to detect 2y-annihilation of the singlet state.

In the presence of an external magnetic field the m=0 sub-
level of 381 includes a mixture of singlet and triplet
states. The singlet state decays rapidly into two
photons. At the observed magnetic field this process

is subtained by r-f induced transitions between m=0

and m=1 substates of 351.

Lowest Order Diagrams in Ik(x,x').

(a) One-transverse photon exchange.

(b) Single annihilation.

(c) Single iteration of the one-transverse photon
exchange (i.e. I} G lé)*.

(d) and (e) Coulomb-transverse.

(f) Crossed Transverse.

{g) Crossed Coulomb.

(h) and (i) Double annihilation.

*
See second term of equation (58).
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