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Summary. - A eclass of Lorentz-covariani Lagrangians is deseribed
which seem to violate causality in the sense that the propagation veloe-
ity of wave fronts and parlicles can be larger than the velocity of light.
As a simple model of a T.agrangian of this type we consider a point
particle coupled to a massless rank-two fensor ficld. While it secins
kinematically possible to acecelerate a particle through the Minkowski
light-comne, it turns out that dynamical reasons prevent thig, The reaction
force duc to the radiation emitied by the pariicle diverges when the
particle approaches the Minkowski light-eone. This simple model seems
to indicate that Lorentz covariance is indeed sufficient to guarantce
caugality and no restrictions coneerning the type of couplings wlich
may be contained in the Lagrangian are necessary.

1. - Introduction.

A commonly accepted statement contained in most textbooks of special
relativity (1) is that causality implies that all sighals propagate with a velocity
¢ ¢. However, no general proof exists that the dynamieal cquations of an
arbitrary system exclude possible acausalities due to v e, Bome recent pa-
pers {*3} have therefore reconsidered this question in the framework of clas-

() SBupported by the « Fonds zur Firderung der wissenschafilichen Forschung in
Ostorreich ».
(1) E.g.,J. L. ANDERSON: Principles of Relativity Physics (New York, 1988), p. 191;
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sieal Lorentz-covariant Lagrangian field theories. The conclusion of thege
authors is that certain couplings seem to imply superluminous behaviour
(v>>¢) of the systems considered. This would mean that the usual formalism
of Lorentz-covariant Lagrangians does not in itself gnarantee the nonexistence
of superlight velocities (*). VELO and ZwANZIGER coneclude therefore that cer-
tain higher-spin interactions are inconsistent; in other words, causality would
restrict the choice of possible interaction Lagrangians, This result would be
of interest in elementary-particle field theory for instance. BrLuUDpMAN and
RupERMAN use such superiuminous models to arrive at equations of state
for ¢ superdenge » matter.

It is the aim of this paper to investigate to what extent superluminous
behaviour is possible in theories described by covariant Lagrangians. In Sect. 2
the usual argument that superlight velocities appear when the characteristics
of the field equations are changed in the presence of interaction is discussed
for a simple, purely field-theoretic model. However, since the solution of
coupled field equations presents rather severe difficulties, we consider in Sect. 3
the case where the field that is expected to propagate acaunsally is approxi-
mated by a point particle. Mathematically the problem is then similar to the
Cerenkov effect, where the source of the field has a velocity larger than the
propagation velocity of the radiated field. In contrast to the Cerenkov eifect,
however, the main result of this Section is that the radiation reaction force
diverges as the particle approaches the characteristics of the field. This reac-
tion force ig, of course, due to the fact that the particle loses energy when it
radiates off the field to which it is coupled.

Finally, assuming that a similar result can also be obtained in a pure field
theory, we discuss the possibility of noncausal effects in Lagrangian field theo-
ries.

2. — Characteristics of field equations and derivative couplings.

In this Section we briefly review the problem how noncausal effects may
formally appear in a covariant Lagrangian field theory. It is well known
that wave propagation is described by hyperbolic partial differential equations.
The velocity of a wave front (or signal velocity) depends on the characteristic
gurfaces of the wave equation. These surfaces are determined by the coeflicients

{*) We are not considering tachyons in this context, é.e. particles that are always
faster than light (3); for a discussion of the problems arising in tachyon theories see
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of the highest derivatives which are of second order for all known relativistie
wave equations (). The most obvious way to change the characteristics and
thus the propagation velocity of the wave front is to add derivative couplings
to the free Lagrangian. A simple model of a theory with derivative coupling
consists of a scalar field p(z) coupled to a symmetric tensor field ;. (2), with
a Lagrangian of the form (™)

(1) Liw) = L{y) + § {g (@) g (@) -~ m2g(0)} + fpiulz) i (@) ()

where we have not specified the free Lagrangian L(y) for the yp-field.
The field equation for the scalar field is

(2) @) a4 2fpale) + 2fpa (@) e i) + miee) = 0
instead of
(3) (1 + m3)g(x) =0

in the cage without interaction.
Thus the characteristics of eq. (2) are given by wsurfaces u(x) = const,
which obey the following equation:

(4) (n + 2fyala)) wilz) wia) = 0.

Since u{x) depends on the tensor field w,.(x), it is possible that the bicharac-
teristics (or rays) belonging to the characteristic surface become spacelike.
Of course, this would imply that the front velocity of a g-wave could be larger
than the velocity of light. However, it must be emphasized that only a detailed
discussion of the complete system of equations—i.e. including the field equa-
tions for . (r)—can give an answer to the question whether superlicht veloc-
ities are actually present in the theory. At this point one might argune that
one could always take w,{x) us an external field in eq. {4}, but it will become
clear later why such a freatment is not satisfactory.

To obtain a realistic field-theoretic model, we thus would have to solve the
coupled fleld equations, which is quite hopeless even if one chooses a gimple
free-field Lagrangian L{y) for the tensor fleld. However, at least s partial
solution to our problem can be given if one considers a point particle instead
of the scalar fleld @{z} coupled to w,.(x). For one thing, the Euler equations
will be much easicr to handle in this case. Furthermore, one can ascribe a
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definite velocity to a point particle; this is not the case if one considers wave
packets in a field theory. This fact allows one to formulate a precize condition
which has to be fulfilled if the particle is accelerated through fhe light cone.

3. - Point-particle model.

In this Section we shall consider the problem of a mass point coupled to
a symmetric massless tensor field p,, in some detail. We start from a Lagran-
gian

(5) Liz) = %wik_!(w)wm'z(m) — mfdﬂa‘(m— Z(A)) \/Z.T()*)z‘k(ﬁ)(ﬂ:‘k_2f§0ﬁk(w)) .

The form of the free-field Lagrangian L{y) is chosen to be as simple as possible.
This choice implies, however, that ¥, us not a pure spin-two field, but contains
additional spin-one and spin-zero parts. z'(4) denotes the world-line of a par-
ticle as a function of the arbifrary parameter 1. Note that (3) is invariant
against parameter transformations.

To first order in the coupling constant f this Lagrangian splits into a sum
of the free-field Lagrangian, the particle part

(6) L,=—m f dAd4(m — 2(4)) VE(A)Z(A)

and an interaction term of the form

(7) L' (@) = fyule) T{x) ,

where T%(x) is the energy-momentum tensor of the particle:

#(A)25(4)

(8) T;k(".U) =m|d4 64(56‘—2’(;{)) W .

From (3) one derives the following Euler equations:

(9) da #(AM)(na— 21 a(2)) ] _ — §3(A) 8 (A) e ofR)
da \/z‘l(j.)zk(il,)(nw—u2]‘1,)”:(3)) \/z'l(i)z"‘(l)(mk—2fwm(z))
and
) #i(2)2%(A) 04— 2(4))
(10) Tyt — mfar AAEW 2B
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Equation {9) then reduces to
(12) Zis) + L5 2R E () =0,

where Iy, are the Christotfel symbols for the « metric » g,,— N — 2fyaseq. (11) s
then a first integral of eq. {12), as it must be for consistency. Tt is well known
that eq. (12) defines geodesies in a Riemannian space with metvic g¢,,. The
condition (11) implies that the limiting velocity of the particle may exceed
the velocity of light. This is most simply seen by assuming that g, is diagonal
and that the particle moves in the a'-direction {*}; then for small deviations

from %, i.e |fy.|<1,
P2 = (Eli;)‘ < Yoo
dz/ g

and its limiting velocity is therefore given by

elr) = ’Zﬂp""(@ ,
14 2fpy(@)

which may be greater than one.
For arbitrary v, eq. (11) tells us that the four-velocity of the particle at
a point x' = (s} always lies inside the cone defined by

(13} (13— 2fpau(@) (2t — 2(s)) (#% — 25(5)) = 0.

The field equation (10) implies that the yp-ficld propagates along the ordinary
light cone although the limiting veloeity for the particle is changed.

Here we would to like emphasize the analogy to the Cerenkov effiect. In
a dielectric the characteristics of the Maxwell equations depend on the dielectric
constant &, Waves travel with a phase velocity v = 1/4/¢, while the velocity
of the particle is only restricted to v << 1. Thus, ignoring indices, eq. (10) is
similar to the situation in a dielectric where the source can move faster than
the phase velocity of the field.

The main quesfion is whether the coupled field and particle equations
admit solutions where the particle breaks through the light cone as is the
case for Cerenkov radiation. In other words, does the particle only see its
« own light-cone » or is it also influenced by the light-cone of the yw-field?

In order to give an exact answer to this question it would be necessary

B LA ST A F1RY . P N PR LI RIS . AT -4 1M
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radiation reaction force diverges at the light-cone, thus keeping the particle
from accelerating to velocities exceeding 1. This is in conftrast to the Cerenkov
radiation where the radiated energy does not diverge hecause of the frequency
dependence of g(w). This introduces a cut-off for high frequencies (since e{w)—>1
for @ —»co), thus allowing the particle to acquire velocities v > w.

The field eguations (10) can be solved explicitly:

(14) pi(z) = fm [52(6)84(5) Dyul0 —2(9)

where we have omitted a possible incoming free-field solution. The Green’s
function is given by

(13) Dyulw) = ng o).
T

thus

(16) () =1 )

EE |(z'(30)s & — Z(So))l !

(m—2(s0))2 =0, af — 205y > 0.

We decompose the lightlike vector x*— 2(s,) into a timelike and an orthogonal
spacelike vector

(2(80)’ r— z(sn))

) w—giag) =

#(8o) -+
with ((s,), ¥) = 0. From (& —2(s,))® = 0 one evaluates

(18) yt = _(2'(80), ‘?’:_ 2(8,})® -y,
#(sy)
where r is the spatial distance between the space-time point # and the particle
in the instantaneous rest frame of the particle; this rest frame is well defined
as long as 2%(s,) > 0.
From (11)

3%(s0) = 1 + 2fya(z(80)) £°(S0) 2%(5,) -
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Because of

d=

19) #*(s) = (%)2 {1—v?), v=—

ds

the velocity of the particle tends to 1 as s —s,.

Ingerting (2, # — #)> = »2(1 + 2fyp,{2) 2'£%) into (16) it turns out that y*(z)
diverges for tixed values of r as the velocity of the particle approaches 1. The
same is true for all derivatives of the field; ag an example we write down the
expression for v ()

% fmn
ik s
B0 VT g el

(G, & — =)@ — R)ilEEr - 30 E ] — 2i842,) — 2w - 2).[(F, @ —2) — 2T}

Since we consider a coupled particle-field theory the divergence of the fields
va(x) and all derivatives would, of course, heavily influence the trajectory
of the particle via (9). In other words, the particle « feels » the Minkowski
light-cone which is the characteristic cone of the -field. This statement is
only true if the forward light-cone lies inside the cone defined by (13) because
only in this case 2%(s) = 0 is compatible with (11).

Moreover, it is evident that an external-field approximation for w.(») is
not justified in this case where the retarded fields, which are produced by the
particle, diverge.

Let us consider in a little more detail the effect of the divergence of the
radiated fields. From the Lagrangian (b) one derives by standard methods
the symmetric conserved energy-momentum tensor ()

@) ) =y @)y ) — h s )y ) 2 ) ) —
— 2@ V) + @)y — v @) - e R} +

+ m{dedt{a — 2(s)) 27(s) #5(s) = Tf(w) + T, ) .

Ag the particle moves from a space-time point z(s) to z(s |- ds} it radiates
off the w-field into a space-time region V, which is the region between the
light-cones at 2(s + ds) and 2(s), thereby inducing a change of the four-
momentum of the wp-field.

This change is given by
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where ¢ is the boundary surface of V. In the rest frame of the particle the
integration over this surface is essentially an integration over a sphere with
radius #, where r — oo eventually. Since the first and second derivatives of »
decrease at least ag 1/r, the final expression is r-independent in the limit » —co
and only depends on quantities at the space-time point 2(s) of the particle,
In particular, each term in Ty’ contributes a factor

1
(1+ 2fpale(s))2(s)2 ()’

where n is a natural number 2= 1. Thus dPy/ds, which is the radiation reaction
force on the particle, diverges as |v|— 1.

We shall not write down the explicit expression for dP,/ds, mainly because
of the following reason. Our choice of the free-field Lagrangian for the y-field
implies that the energy of the field is not positive definite although the total
energy is, of course, conserved (7). When negative energies appear in a model,
one is, in general, rather hesitant to draw any physical conclusions from such
results as the divergence of the radiation reaction force. Therefore we shall
congider in the next Section the additional coupling to the electromagnetic
field, the energy of which is positive definite. However, we want to emphasize
that the main result of this and the next Section, namely the divergence of
the radiation reaction foree, is completely independent of the number of fields
appearing in the theory. It is suflicient that there be one massless field in the
theory, which propagates along the normal light cone and to which the particle
is coupled. This immediately leads to the factor |(Z, x —2)| in the denominator
of the retarded field solution (stemming from the §(x?) in the Green’s function),
whieh causes the divergence for 22(s) — 0.

4. — Reaction force due to electromagnetic radiation.

In thig Section we shall show explicitly that the radiated ecnergy (or more
exactly the radiation reaction force) diverges when the particle approaches
the velocity of light, as long as the radiated field propagates along the Minkowski
light-cone.

Our Lagrangian is now that for a charged particle coupled to a tensor field .
and in addition. to the electromagnetic field A;:

233 Tie) = —m rderm_zm‘n-
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We shall not specify the Lagrangian L(y) of the tensor field. Therefore,
the guestion of the characteristics of the tensor field is left open here. The
dependence of our results upon the choice of these characteristics will be dis-
cusgsed in some detail in Sect. 3. We only mention here that in (23) ¥, must
not be identified with a gravitational fleld, since e.g. its interaction with the
electromagnetic fields ig misging in the Lagrangian. The equation of motion
of the particle can be derived from (23) to be

(24) d[ 92(2) () ] S 2(A) e (2)

[4
- e ———— Sa—e - . F” ‘l,
G |Vememeae|  avemd@gss w0

where g, = 5, — 2fy,,. For the electromagnetic field we obtain the Maxwell
equations

(23) P (z) = jila) = efdzz'f(z)54(w—z(z)) :

Again eq. (24) permits a parameter transformation A= i{s) with
F(8) M) gule) = 1,

so that (24) becomes simply (from now on we write 2 instead of z(s))

(26) G [ = D AP

where g* is defined by g..¢" = 6! (note that g*' == »%*%*g,;}. As in the pre-
ceding Section it is possible to derive from (23) a symmetric conserved tensor:

27 Tit(z) = m f dsdt(m— 2)zig - Ty¥m) + T,*x) ,

where T3'(r) is the part of the p-field.
The energy-momentum tensor of the electromagnetic field

(28) T() = Fiu(@) F*(e) + 19 F () F¥(2)

is the only part of T'** which is relevant for us, since we are interested in the
energy radiated in form of electromagnetic waves only. Solution of eq. (25)
gives
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If this expression is inserted into (28), one finds for the radiation part,
.. the part that only contains terms which do not decrease faster than r-2,
where r is the distance from the source,

e )2 (#—2) (e — ) {'z'l_zl (%, m—z)}2

(30) TE walt) = — (4— (z & —2)t (2, 2 —2)

Smty

In exactly the same way as in the last Section the radiated electromagnefic
energy-momentum dP,* per line element ds is caleulated (see also vef. (»10)
for details) and turns out to be

d-PE‘- _ 62 z“ 2 ”2 (z’ é)
(31) ds T 4w (14 2fypafe)Eier) {_ }

Z— .
3 1+ 2fpale)dier
Of course, (31) reduces to the well-known expression

d Pt

2
& = :—ﬂ ; Z%(g) 2i(s)
for f =0, taking into acecount (¢,%)= 0 because of 2%s) = 1.

From eqs. (31}, {11) and {19) it follows again that dP,/ds diverges as the
particle approaches the Minkowski light-cone.

Concerning the possible trajectories of the particle there are the following
two cases which are distinguished by the position of the ray cone

Floe —z) = (na — 2fypule)) (@ — 2 {@h — %) = 0.
@) Fle—2z) =0 and gz’ —2)(a* — 2¥) < 0, i.e. the generating rays are

spacelike (Fig. 1 a}). In this case the radiation reaction force will prevent
the particle from crossing the light-cone.

L X070
(x—2) =0 F=0
@) F=0 x=2¥=0
x-z x-z

Fig. 1. — The regions to which the particle is limited; F(w— 2} = (1, — 2fve(2)-
H(af— )@ —2F).a) Flx—2)=0 and 2fyu(e)a’— o) (@ —2%) < 0; b) Flz—2) =0 and
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bl Flr—z) =0 and n,;(e'—29)(@* —2%) > 0, which means that the ray
cone lies inside the light-cone (Fig. 15)). Thus the particle cannot even ap-
proach the light-cone.

In both cases a) and b) the limiting velocity of the particle is always de-
termined by the innermost cone.

3. — General relativity.

Let us turn briefly to the field-theoretic treatment of gravitation (*-11},
In this approach fo general relativity one starts ont with a tensor theory of
gravitation in a flat space-time (metric »;}. The gravitational field v, is
coupled to the energy-momentum tensor 7', of all matter in a universal way,
so that the interaction Lagrangian is given by

(32) Ly () = fop ) T5()

(f = 8xff, ¢ = Newton’s gravitational constant). It turns out that the metric
ig « renormalized » by this interaction and the observable metric g, is Rieman-
nian

(33} i — Har — 2f'¢ik -

The original flat space-time metric 7, loses its significance completely and
becomes unobservable in prineiple. The Lagrangian (5) and the one used in
the work of THIRRING are almost identical, except that the yp-field part L(y)
is more involved in {7), due to the requirement of gauge invariance and positive
definiteness of the energy. The eguations of motion for a point particle in
& gravitational field agree therefore with those derived in Sect. 3, while the
field equations for the gravitational fleld

{34) Llypt(e) = {7, ™)
take this simple form only in the Hilbert gaunge (harmonie co-ordinates)
(33) Ya ) =10.

In (34) the energy-momentum tensor of the particle is given simply by
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Thus the situation appears to be basically the same as in Sect, 3. This seems
to imply that the particle emits gravitational waves of infinite energy as its
velocity approaches 1, {.e. the « unrenormalized » Minkowski light-cone. This
seems to disagree with the interpretation given in (*) of g, = 5w — 2fwa as
being the « physical » light-cone.

The solution of this apparent contradiction is of course that (34) is only
consistent to first order in fy due to gauge invariance. This follows e.g. from
the fact that the gauge condition (35) would imply 7%, = 0, which is certainly
not true. The field equations used here imply that the energy-momentum tensor
which i3 used as a source is conserved. One is therefore forced to nse the com-
plete energy-momentum tensor (i.e. including the one of the gravitational field)
as the source terms in (34). Since T7, contains derivatives of the field, vari-
ation of the complete Lagrangian changes the characteristics of the field equa-
tions. It has been shown that gauge invariance to all orders of fy leads to the
complete equations of general relativity ('?). Thus the field equations are
changed exactly in such a way that all characteristics are determined by the
« physical » metrie g,,. If both the geodesics of the particle and the propagation
of the field are determined by ¢,. instead of %, then the flat metric loses its
physical content. It is then not surprising that the ecnergy of the particle or
the radiation energy will no longer diverge at the normal light-cone.

6. — Conclusion.

The results of the preceding calculations have shown that a point particle
cannot be accelerated to superlight velocities if at least one field which was
assumed to be massless propagates along the normal (Minkowski) light-cone.
The particle would radiate this field in the form of a Cerenkov-type radia-
tion, when it moves with velocities » > 1. The reaction force due to the ra-
diation diverges when one tries to accelerate the particle across the light-cone
and therefore prevents thiz acceleration. It is at least plausible that these
results also hold true in a more realistic field theory which does not contain
point particles. Assuming this to be true we have to distinguish in general
three cases:

1) There is only one field in the theory which is, however, self-coupled
in such a way that the characteristics of the free-field equations are changed.
This is the case e.g. in the field theoretic model for superdense matter which
has been proposed by BrLupMAN and RUDERMAN. It is not surprising that
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other field in the model which propagates normally. Therefore, the normal
{(Minkowski) light-cone exists only formally in the theory and has no physical
significance whatsoever.

2} There are two interacting fields in the theory, one of which propagates
normally, while the characteristics of the other field are altered by the interac-
tion. This cage ig a field-theoretic analogue to the point-particle models discassed
before. Let us assume that the conclusions derived there are also true in this
case. This would mean that it would require an infinite amount of energy
to accelerate a wave packet to velocities > 1, which vbviously would prevent
the existence of gignals faster than light. This would also invalidate the con-
clusions of VELo and ZwANZIGER, because aly external-field approximation
evidently loses its meaning due to the existence of infinite reaction forces.

3) Finally it may happen that all the ficlds in the Lagrangian have their
characteristics changed in the same way. This is the case in the field-theoretical
treatment of gravitation which we have bricily discussed in Sect. 3. Thirring’s
work shows that the flat metric %, loses ils significance in this case and the
observable space-time becomes Riemannian with the metric g,.. Since the
characteristics of the electromagnetic field arve determined by g, as are the
characteristics of all other fields, it is easy to sec that the velocity of light is
again the limiting wvelocity in thiy theory. Thus, no acausalities appear.

Our final conelusion, which we have proved for point-particle models only,
is as follows. The requirement of covariant couplings in Lagrangian theories
is not sufticient to exclude superlight velocities. If, however, at least one inter-
acting field exists in the theory which propagates normally, so that the Min-
kowski light-cone does not lose ity meaning completely, no signals can prop-
agate with a velocity ==1.

@ RIASSTUNTO (M

8i deserive una classe di lagrangiane covarianti sceondo Lorentz, che sembra violino la
eausalita nel senso che la veloeitd di propagazione dei fronti d’onda ¢ delle particelle pud
essore pitt grande della velocitd della Inge, Come modello gemplice di una lagrangiana di
queste tipo si considera una particclla puntiforme accoppiata ad un campo tensoriale di
rango 2 privo di massa. Mentre, cinematicamente, sembra possibile aceclorare una parti-
cella tramite il cono di lnee di Minkowski, risulta che motivi dinamiei bo impediscono.
La forza di reazione dovuta alla radiazione emessa dalla particella diverge gnando la
particella si avvicina al eono di lnee di Minkowski. Questo semplice modello sembra
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JlopenTi-KoOBAPHAHTHEIE JIATPARKHANG! B HPHYHHHOCTD.

Peatome (*). — OnuceiBaerca knace JIOPeHTU-KOBAPHAHTHLIX JNATPAHKHAHOR, KOTODHIE,
No-BRAMMOMY, HApyLWIAOT NPAYAHHOCTE B TOM CMBICIE, 4TC CKOPOCTE PACIPOCTPAHCHHSA
BOJIHOBEIX d)pOHTOB H YACTHII MOXKCT IIPEBbIMATh CKOPOCTH CBCTA. B kadecTBe HDOCTOFI
MOIENH JIArpamKuaHa 3TOrQ THIIA, MbI PacCMaTpHBAeM TOYEYHYHD YacTHLY, B3aHMO-
OeHCTBYIOINYIO ¢ MOJIeM, HMEIOMIUM HYJIEBYFO MACCY M OMHCHIBAEMEIM TEHIOPOM BIOPOTO
padra. XoTd KHHEMATHYECKH LPEACTABIAETCH BOIMOXHEIM YCKOPHTL YacTHLY 4Yepes
CBETOBOH KOHYC MHHKOBCKOFO, CKa3BIBACTCA, YTO JUHAMMHYCCKHE IIPUYHHBL OPCHATCTBYHOT
ITOMY. Cuna PeaxIiuy, oﬁycnonneﬂnaa H3JIY9CHHEM YACTHUIIBI PACXOOUTCH, KOTAQ YacTulla
NpubIMKAETCA K CBETOBOMY KORyCY MuHKOBCKOTO. 3Ta MPpOCcTas Moaenk, HO-BHINMOMY,
YE&3bIBAE€T, YTO HOpGHTH-KOBaprIaHTHOCTb, B IlcﬁCTBHTeJ'JI:HOCTH, HBJIACTCH )IOCTaTO‘-lHOf[,
YTOOLI TApaHTHPOBATE IPHYMHEHOCTL, OTpPaHUYeHHs, Kacalollimecs THNA CBssel, KOTODEI
MOTYT COIIEPXATLCHA B JIATPAHXUAHE, HE SBIIHOTCT HEOOXOIHMBIMMU.

() Ilepesedeno pedaryueil.



