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1. INTRODUCTION AND DEFINITIONS
1.1 DEFINITION

A Monte Carlo technique is any technique making use of random numbers 1o solve
& problem. (We assume for the moment that the reader understands what & random
number is, aithough this is by #0 means a trivial point and will be treated later in
some detail.) ’

The sbove definition should be supplemented by & somewhat narrower but more
enlightening definition as given by Halton (I1970): The Monte Carlo method is
defined as representing the solution of & problem as a parameter of & hypothetica)
populatioh, and using & rendom sequence of numbers to construct & samplc of the
population, from which statistical estimates of the parameter can be obtained.

l.elu:e:preslthc:olmionofthept&!emlltmulll’.wﬁchmaybenrel]
fumber, & set of numbers, 8 yes/no decision, etc. The Monte Carlo estimate of F
will be a function of, among other things, the random numbers used in the calcula—
tion. The introduction of randomness into an olherwise well-defined problem pro—
duces solutions with rather special properties which, as we shall see, are sometimes
surprisingly good.

12 SIMULATION

Historically, the first large-scale cakulstions to make use of the Monte Carlo
method were studies of neutron scattering and absorption, random processes for
which it is quite natural to empioy random numbers. Such calculations, a subset of
Monte Carlo calculations, are known as direct simulation, since the ‘hypothetical
population’ of the narrower definition above corresponds directly to the real popu—
Iation being studied. However, as those involved were well aware, the numerical
results obtsined were perfectly ‘deterministic’ and in principle obisinable by classicat
computational techniques (in fact integration). Whether or not the Monte Carlo
method can be applicd to a given problem does not depend on the stochastic
nature of the system being studied, but only on our ability to formulate the prob—
lem in such & way that random numbers may be used to obtain the solution. This
can be seen by inverting the neutron scattering probiem and considering first the
classical solution in terms of a comphicated mubtidimensional integral. The valuve of
this integral is quite non~random, but happens also to be the solution of a problem
involving random processes. The Monte Carlo Method may be applied wherever it
i possible to estnblish equivalence between the desired result and the expected
behaviour of a stochastic system.

The probicm to be solved may already be of « probabilistic or statistical nature,
in which cast its Monte Carlo formulation will usually be a straightforward simuls—
tion, or it may be of a deterministic or analytic nature, in which case an appropriste
Monte Carlo formulation may require some imagination and may appesr contrived
or artificial. In any case, the suvitability of the method chosen will depend on its
mathematical properties and not on its superficial resemblance to the problem 10 be
solved. We shall see how Monte Carlo techniques may be compared with other
methods of solution of the same physical problem.



1.3 INTEGRATICN

AL least in a formal sense, all Monte Carlo caiculations are equivalent to integra~
tions. This follows from the definition of 8 Monte Carlo caiculation as producing a
resull Fwhich is a function of random numbers r . Let us assume for simplicity the
usual casc that the r are uniformly distributed between zero and one. Then the
Monte Carlo result F = Fis ,r), ... ;v )} is an unbiased estimator of the mullidimen—
sional integral

[= ' Flxy o X,) dx,dx,... dx n

or, staled another way, the expectation of F is the integral I. [When the problem to
be solved is explicitly the problem of integrating a function f, the F above is not to
be identified with f, but rather the Monte Carlo estimate of its integral.] This formal
cquivalence will allow us [o lay a firm theoretical justification for Monte Carlo tech—
niques and will also lead us 10 many results of praclical importance.

2. MATHEMATICAL FOUNDATION FOR MONTE CARLO
INTEGRATION

In this chapter we will define some basic statistical terms and invoke some of the
imporiani results of mathematical siatistics to lay a formal foundation for the valid—
ity of Monte Carlo calculations. The results of this chapter will be imporiant to the
later chapters, so we will iry $0 make it complete, bul since many readers will
already be familiar with this material, no anempt is made 1o be mathematicaily rigo—
rous. Those who wish a more detailed treatment are urged 10 consull an indepen—
dent text such as Eadie et al (J971). Those who still remember their elementary
stalistics are advised to skip directly 10 2.6.

2.1 RANDOM VARIABLES AND DISTRIBUTIONS

A random variable is a variable that can take on more than one value (generally a
continuous range of values), and for which any particular value that will be 1aken
cannol be predicied in advance. Even though the value of the variable is unpred—
ictable, the distribution of the variable may well be known. The distribution of a
random variable gives the probability of a given value {or infinitesimal range of
values). Since we will usually be working with continuous variables, we define:

gluku = Plu < u'< u+du]

The function glu) is the probability density function of u, and gives the probability
of finding the random variable u’ within du of a given value u.  This is the most
usual way for physicists 1o express the way o' is distributed, although it is some-
times more convenient mathematically to use the integrated disiribution Junction
defined as the definite integral of g from minus infinity 10 u:

u
1 a(x)dx

Glu) =
B
dG{u)
glu) =
du

Note that G{u) is & monotonically non—decreasing function taking on vaiues from
zero to one, and that g is always normalized so that its imegral over all u is one.

A function of a random variable is of course itself a random variabie, although
it will in general be distributed differently from its argument. The functions G{u)
and g(u) defined above are however not to be considered as random variables, since
they are functions of the variable u rather than the random variable u’.

2.2 INDEPENDENCE OF RANDOM VARIABLES

Let us consider two random variables o and v'. In order Lo specify completely the
distribution of u' and v', we now require a function of two variables, say b{u.v),
and the ensuing mathematics becomes considerably more complicated. However, an
important special case is when the function h(u,v) can be factored exactly into a
product of two functions, each of which depends only on one variable, Muy) =
P(u) q(v). In this case we say that v’ and v* are stochastically independent since the
distribution of u* does not depend on the value of v’ and vice-versa.

When more than two variables are considered, the concept of independence
becomes more complicated, and it is no longer sullicient to consider only the
dependence of pairs of variables. Indeed, it is possible to have all pairs of variables
independent and still have dependence among triplets or higher combinations of
variables. For example, let r and s be two independent random variables, each uni—
formly distributed between zero and one, and consider the three new variables:

X=r
y=s
2 =(rt+s)mad |

Now each of the three random variables x,y.z is aiso uniformly distributed between
zero and one, and all pairs (x.y), {y.z). and (x.z) arc independent (knowledge about
the value of one member of a pair gives no information about the value of the
other member). However, the three are clearly dependent, since knowledge of any
two determines the third completely.

2.3 EXPECTATION, VARIANCE, COVARIANCE

The mathematical expeciation of a funciion Ru') is defined as the average or mean
value of the function;

E = [fu)dGw) = [ glu) du



where G(u) is a distribution function giving the distribution of the independent vari-
able . Usually the v will be uniformly distributed between & and b: dG =
du/(tr-a), 30 that the expectation becomes:

1 b
{ Ru) du
{(b—a) a

EM =

Similarly the expectation of a variable u'is the average value of u:
E(u) = IudG(u) - J'u;(u)du

The variance of a function or variable i the average of the squared devistion from
ity expectation, and is most conveniently defined in terms of the expectation:

V(O = Elf - BOP = {If - E()IIG

Note that calculsting the expectation requires one integration, and the variance
involves one more integration.

The square root of the variance is called the standard deviation. Tt is more phy—
sically meaningful than the variance since it has the same dimensions as its argu-
ment, but the square root makes it more clumsy to manipulste mathematically,
The standard deviation can most easily be interpreted as the root—mean—square
deviation from the mean,

Considering expectation and variance as operalors, we may verify some simple
rules for applying these operators to linear combinations of variables. Let x and ¥
be random variables and c be a constant. Then

Elcx+y) = cE(x) + E(y) @n
and V(ca+y) = c'Vix}+ V(y) + 2cEl(y-By)Xx—E(x))) (2.2)

Expectation is thercfore a lincar operstor, whereas variance is not linear. The last
term in the above expression for the variance is called the covariance berween x
and y and is zero if x and y are independent. 17 this term is positive, x and y arc
said 0 be positively correlated, and if negative, x and y are negatively cotrelated,
Note that x and ¥ may be uncorrelated (i.e., their covariance may be zero) even if
they are not independent, but if they are independent they must siso be uncorre—
lated. Note slso that even though the variance operator in not linear, the following
relationship holds if x and y are independent varinbles:

Vx+y) = V(x) + V(y) , xy uncorrelated.

24 THE LAW OF LARGE NUMBERS

The law of large numbers concerns the behaviour of sums of large numbers of ran—
dom variables. Let us choose n numbers v, randomly with probability density uni-
form on the interval from a to b, and for esch u, evaluate the function ffu ). This
law says that the sum of these function values, divided by n, will converge to the
expectation of the function . That is, a3 n becomes very large,

I n 1 b
—ZIfw)—> ——f Ruidu (23)
n im| {(b-a) a

In satistical language, the left~hand side of (2.3) is & consisient estimator of the
integrat on the right-hand side, since (under certain conditions) it converges to the
exact value of the integral as n approaches infinity. The ‘certain conditions’ involve
the behaviour of the function f, since it must of course be integrable, and we will
generally require that it be everywhere finite and at least piecewise continvous (it
may have a finite number of discontinuities in the interval under consideration).

Since the left—hand side of (2.3) is just the Monte Cario estimate of the integral
on the right-hand side, the law of large numbers can be interpreted as a statement
that the Monte Carlo estimate of an integral is, under ‘centain conditions’, & consis~
tent estimate, ie. it converges 10 the correct answer as the random sample size
becomes very large.

25 CONVERGENCE

It is worthwhile discussing st this point the meaning of convergence in the statistical
context, since it ir considerably more complex than the more familiar convergence
of calculus. We recall that in calculus, the sequence [A) is said to converge to B il
for any arbitrarily small positive quantity &, an element of {A) can be found such
that all the succeeding clements of {A] are guaranteed 10 be within Sof B.

In the statistical context, the ‘guarantee’ must be teplaced by & statement of
probability, so tha the corresponding definition becomes: A(n) is said 1o converge
to B as n goes to infinity if for any probability P [0<P<1], and any positive
quantity §, n  k can be found such that for all n>k the probability that A(n) wil
be within & of B is greater than P. Note that this is Quite weak in that no matter
how big n is, A(n}clnneverbe;uulnwedlobewithhcgiveudiuumdﬂ.

This risk, that convergence is only given with & certain probability, is inherent in
Monte Carlo cakulations, and is the reason why this technique was named after the
world's most famous gambling casino. Indeed the name is doubly sppropriate
because the style of gambling in the Monte Caslo casino, not 1o be confused with
thenoilylndundeugnmblinghousunfl.uleandllmo.icleﬁmlnd
sophisticated. The apparent contradiction between the unpredictability of the gam—
bling process and the seriousness of the results is one of the fascinating aspects of
the Monte Carlo method which hes been responsible for a great deal of the interest
shown in the method, but has aiso resulted in considerable confusion and misun—
derstanding. This point will come up again, especiafly in our discussion of random
numbers,



2.6 THE CENTRAL LIMIT THEOREM

Whereas the Jaw of large numbers tells us that the Monte Carlo estimate of an
integral is correct for ‘infinite’ n, the central limil theorem 1elis us approximately
how that estimate is distributed for large bul finite n. This very important theorem
says essentiglly thar the sum of a large number of independent random variables is
abways normally distribuicd (i.c., 4 Gaussian distribution), no matier how the indi-
vidual random variables are distributed, provided they have linile expectations and
variances, and provided n is ‘Ylarge enough’. How large n has to be depends ol
course on the individual distributions, but in practice the convergence to the Gaus—
sian distribution is surprisingly fast, even when the wnderlying distributions are, for
example, uniform, as we shall see in an example in the following section.

The Gaussian distibution is completely specified by giving ils expectation a and
variance s*. We denote by N(a,s?) the distribution whose density is Gaussian with
mean a and variance s’

] —{x—a)/2s?
c

fix) =
syi2x

we can complete the statement of the Central Limit Theorem by giving the expecta~
tion and variance of the {Gaussian) distribution resulting from summing a (large)
number of independent random variables. This expeciation and variance will of
course depend on the expeciations and variances of the individual distributions and
can be calculated immediately using (2.1) and (2.2). Let the n independent random
variables x  have distributions with finite expectations ¢, and variances v , Then
S=EIx, wilt have expectation E{S)=Ee, and variance V(S)=Iv + This is an ecxact
result even for finite n, which follows from (2.1) and (2.2). The fact that the distri-
bution of S is asymptotically Gaussian is the important part of the theorem which
enables us to turn our knowledge of E(S) and V(S} into statements of probability
about the value of S for a given trial.

2.6.1  Example; Gaussian random number generator

The Central Limit Theorem allows us 10 construct a Gaussian random number
generator, given any other kind of random number generator, simply by 1aking
sums of random numbers. Let us see how this works in practice, using a uniform
random number generator which we assume for the moment 1o be given. We will
denote the sum of & uniform random numbers as R o $0 that R, will be a random
number distributed uniformly (belween zere and one). Then R, will be distribuled
as in Fig. 2.1{b), that is with a density function which is_a triangle. This kind of
distribution is familiar 10 gamblers using dice, where the outcome is the sum of 1wo
numbers umformly distributed between one and six. The extreme values of the sum
(2 and 12} are the most unlikely, and the middle value {7} is the most probable. R,
is distributed as shown in Fig. 2.1(c}, that is a parabolic spline function with knots
at | and 2 (that is, three difTerent paribolas joined at the points x=| and x=2,
with the first derivative continuous at these points), which is beginning to look like
the well~known beli-shaped Gaussian curve. R, is & cubic spline function, and
higher sums are higher—order dhline functions which approximate more and more
closely the Gaussian distribution, Afler Rs or R, the distribution is atmost indistin—

—-6_
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N A \— Ry,
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Figure 2.1: Distributions of sums of uniform random numbers compared
with the normal distribution. (a) R, (b)R, ()R, (d}R,,



guishable from & true Gaussian by eye, except for the cxtreme tails which are of
course of finitc length whereas the true Gaussian tails go to infinity in both direc—
tions. The area under these tails is extremely small, so the discrepancy in probabil-
ity content is negligeable for many applications, but care must be taken since the
tails may be the most important feature,

Since the expectation and variance of the uniform distribution are respectively
1/2 and 1712 (by straightforward calculation from the definitions of expectation and
variance), we have:

ER,) =w2 and VR,) = /12

Usually we want a standard Gaussian distribution, that is, with mean zero snd var—
iance one. We therefore take:

R, -n/2
— —> NOD
/12

A convenient choice for a practical Gaussian tandom number generator is n=12,
which reduces simply 1o R,,76. The properties of this generator will be discussed
below in chapter 7.

27 RESUME:MATHEMATICAL PROPERTIES OF THE MONTE CARLO
METHOD

Let us consider again (2.3), where the lefi—hand side is the n—point Monte Carlo
estimate of the integral on the right—hand side, the u, being truly random numbers
uniformly distributed between the integration limits & and b. The mathematical
propertics of this estimate arc rather gencral properties of numerical results of
Monte Carlo calculations, which we resume here:

I. If the varisnce of I is finite, the Monte Carlo estimate is consistent that is, it
converges (o the true value of the integral for very large n.

2. The Monte Carlo estimate is unbiased for all n, that i, the expeciation of the
Monte Carlo estimate is the true value of the integral. This follows directly
from the lincarity of the expectation operator,

3. The Monte Carlo estimate is asymprotically Normally distribured (approaches
8 Gaussizn density).

4. The standard deviation of the Monte Carlo estimate is given by o= /V({)/\/n,
This result is true for all n, but is only useful insofsr as the estimate is
Gaussian-distributed {true only for ‘large’ n).

3. FROM BUFFON'S NEEDLE TO VARIANCE-REDUCING TECHNIQUES

In this chapier we present one of the eardiest real Monte Carlo calculations, that of
Buffon's needle, and examine some of ils properties. We will see that its most
important and worst property is its slow convergence (low eficiency). We then pre—
sent & series of techniques known collectively as ‘variance-reduction’, designed to
improve this efficiency.

3.1 BUFFON'S NEEDLE: HIT-OR-MISS MONTE CARLO

Although it is hard 1o imagine nowadays doing Monie Carlo cakculations without a
high—speed computer, the technique was first investigated and used long before the
existence of electronics, One such early calculation known as Bullon's needie
IBuffon, 1777} was used to calculstc the value of x. )i is a good exampie of the use
of the Monte Carlo Method to solve & problem which has no immediate statistical
interpretation and which we are accustomed to stiacking with more iraditional
mathematical tools.

The ‘calculation’ proceeds as follows: Lay out on the floor a pattern of paraliel
lines separated by & distance d (the stripes of an American fNag will do). Repeatedly
thiow ‘randomly’ & needle of length d onto this siriped patiern. Each time the pee-
dic lands in such 8 way as 1o cross the boundary between two stripes, count & “hir’.
When the needie does not cross a boundary, count a ‘miss’. After a given (large)
number of tries. estimate 2 by twice the number of tries (hits + misses} divided by
the number of hits.

The above recipe Is based on the fact thal the probability of a hit is 2/x. This
can be calculated very easily as foflows. Let the sngle between the peedie and the
perpendicular 1o the stripes be equal to a, then the projection of the needle onto
this perpendicular is of kngth deos(a). and the distance between stripes is d. For a
given sngle w, the probability of 2 hit is clearly the ratio of these two lengths,
deos(a¥d = kostal Since all angles are equally fikely, the aversge value of kos(a]
can be calculated by integrating k:os(lj over its range and dividing by the range. By
symmetry it is sufficient to integrate over one quadrant, say from O to x/2, where
the integral is just one, and the probability is therefore 2/x.

Estimating this probability by the actust ratio of hits 0 random tries is called
hit-or-miss Monte Carlo and is in general the least efficient Monie Carlo method.
Let us calcutate the expected accuracy after n tries. The number of hits follows a
binomial distribution with expectation np (where p is the probability of a hit, 2/2)
and variance np(1-p) {Eadie o1 al, 1971, p, 44]. The variance of 2/x is therefore
p{1=p¥/n, and the standard devialion is the square rool of this. Converling this to
the standard deviation on x gives 237/, n. (We have 1o know x 10 calculate this
resull, but it could also be estimated from the data). This means that the uncer—
tainty on the value of xis:

after 100 tries: .2374
aller 10 000 tries: 0237
after | 000 000 tries: .0024



These uncertainties are untolerably high compared with those of almost any ather
method of calculating . In addition, physical binses are difficult 10 climinaie, as
will be discussed below in connection with the generation of truly random numbers.
We can thercfore conclude that Buffon's needie represents an amusing exercise and
8 good cxample of the application of the Monte Carlo method in an unexpecied
domain unrelated 1o stochastic phenamena, but that il should not be used in prac—
tice 1o calculate x. Now let us sec how to improve upon it, still within the general
framework of the Monte Carlo method.

3.2 INTEGRATION: CRUDE MONTE CARLO

Consider doing the Buffon needle calculation on & computer. We would choose a
random angle a and a random distance x from the cdge of the stripe panern along
the direction perpendicular to the siripes {the oulcome is clearly independent of
translations along the direction of the stripes). On these (a,x) axes, Figure 3.1
shows the region corresponding to a hil, namely the area between the a—axis and
the curve cos{a). The calculation is equivalent 10 the integration of cos(a).

7

¢ a T2

Figure 3.1: Buffon's needle as an integration problem.

Let us therefore perform this integration using crude Monte Carlo instead of the
hit~or-miss variety, by straightforward application of the method of chapter 2,
choosing randomly values of a and averaging the valves of kos{aj. It is casily veri—
fied that this results in a standard deviation smaller by a faclor of 0.82. This is a
general result: Crude Monte Carlo is always more efficient than hit—or~miss Monte
Carlo, since hit—or~miss can be considered as crude Monte Carlo on a step—Tunc—
tion taking on only values zero or one, and of all functions bounded between zero
and one with a given expeciation, the step—function has the largest variance.

Another way of looking al the comparison between crude and hit~or—miss is the
following: For a given angle a , the probability of a hit is kos(d Instead of finding
the expectation of this value by direct averaging {crude Monte Carlo), we take it as
the probability of actually generating a hit. In order to make & hit with probability
km(aj, generate another random number x, 0<x<l, and call it & hit whenever
x<kos(a) This is less efficient, but it does mean that all the values entering into the
average arc equal o one {or zero), which may be advantageous in some situations.
In many practical calculations it may correspond o using ‘unweighted’ rather than
‘weighted’ events, by taking the weight as the probability of accepting Lhe event. In
terms of pure Monte Carlo efficiency, this unweighting procedure is ;Iwnys disad—
vantageous, but it may improve the efficiency of other parts of the calculation, as
we shall see later.

3.3 CLASSICAL VARIANCE~REDUCING TECHNIQUES

From the resuits of chapter 2, the square of the uncertainty on a Monte Carlo
integral is;

s = V(D/n

This uncertainty can be decreased by increasing n, but this improves (converges)
very slowly. Another way is Lo Iry 1o decrease the effeclive variance V(. We have
aslready seen one example of changing the variance in comparing crude with
hit-or-miss Monte Carlo. In this seclion we iniroduce the most imporiant techni—
ques lor variance—reduction,

3.3.1  Siratificd sampling

We may feel intuitively that the reason why Monte Carlo integration has such a
large uncertainty is that the points are chosen unevenly, and that if the points were
more uniformly distributed the fluctuations would be smalier. Intuition is not
always right as we shall see in chapler 4, bul there is at least one way to make the
point distribution more wniform which we can show will produce in general an
improvement in the variance. Since it is a special case of a more general technique
of controtling the distribution of points, let us first present the general technique,

Mathematically, stratified sampling is based on the fundamental property of the
Riemann integral:



1 = [ fu)du
0
[ ] 1
= {Rudu + [ Hajdu ,0<a<l
[+] a

The splitting up of the integral ino picces is a common technique in sdaptive num—
erical quadrature, but the properties of this technique in the framework of Monte
Carlo integration are somewhat different, The technique consists, in the generat
case, of dividing the full integration interval (or space) into subintervals (subspaces),
and choosing n ; points in the jih subinterval, whose length (volume) we will denote
by {it. Then instead of adding the contributions from all points directly, partial
sums are formed over each interval, and the partial sums are added, weighted pro—
portionally to (i} and inversely to n ;- This yields a result with the variance:

il !
= L— [faddx-  L-——{ffix)dn r
j n; i} LA il

which is of course just the sum of the variances of the individual picces. If the
intervals {j) and the numbers of poinis n ; 3¢ chosen carefully, this can Jead to a2
dramatic reduction in the variance compared with crude Monte Carlo, but it can
also kead to & larger variance, so something must be known about the function in
order 10 use this technique most advaniageously.

Suppose we don't know anything aboul the function and simply divide the space
into equal volumes {j}, choosing in each volume cqual numbers of points n ; (uni-
form stratification). It is easily verified from the sbove formula, using the tnln;le
inequality, that uniform stratification cennot increase the variance, and will in gen—
eral decrease it if the expeciation of the function is different in the different subre—
gions. In particular, if the stratification is into just two equal regions {1) and (2},
the improvement in variance is;

1
Dis) = - Lf fads~  fMxdx r
nil) 2}

Since this cannot be negative, uniformization by uniform stratification can be seen
1o be a safe method, but the improvement in variance may be arbitrarily small.

In real cakulations, sdditional complications may arise. In many-dimensional
integration, for exemple; it may not be at all straightforward to divide the integra—
tion region into subregions of known volume, Computational overheads in time and
memory space may also be prohibitive.
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3121  Importance sampling

We have seen that a large variation i the value of the function [ leads t0 a large
uncertainty in the Monte Carlo estimate of its integral. Conversely, Monte Carlo
calculations will be most efficient when each point (cvent} has nearly the same func—
tion value (weight). This can be arranged by choosing & large number of points in
regions of the sampling space where the function value is largest, and compensating
for this overpopulation by reducing the function values in these regions. In this
way the reweighted funcion values become more nearly constant and the effective
varisnce is reduced.

Mathematically, importance sampling corresponds to a change of integration var—
iable:

fx)dx ~——2 {f(x) / g(x)] dG{x)

Points sre chosen according to Gix) instead of uniformly, and [ is weighted
inversely by p(x) = dG{x)/dx. The relevant variance is now V(I'Ii). which will be
small if g has been chesen 10 be close to [ in shape,

To apply importance sampling to s function [, a function ¢ musi be found such
that:

I. glx) is a probability density function; that is, it is everywhere non—negative
and is normalized so that its integral over the sampling space is unity.

2. G(x), the integral of g, is known analytically. This is an integrated distribution
function, which increases monotonically as a function of x, from zero to
one,

3. Either the function G{x} can be inverted (solved for x) analytically, or, alterna—
tively, a g—distributed random number generator is available.

4. The ratio Rx)/g(x) is as nearly constant as possible, so that the variance V(f/p)
is smail compared with ¥({).

Importance sampling then proceeds as follows: Choase values of G randomly and
uniformly between zero and one; for each G, solve for x, and evaluate x)/g(x), tak—-
ing the sum of these ratios as the result.

Although importance sampling is undoubtedly one of the most basic and useful
Monte Carlo techniques, it suffers in practice from a number of drawbacks:

1. The class of functions g which are integrable and of which the integral can be
inverted anslytically, is small: essentially the trigonometric functions, expo~
nentials, and polynomials of very low degree, and some combinations of
these, O course the inversion can be done numerically, bul this is usually
slow and somewhat clumsy or cisc inaccurate.

2. True multidimensional importance sampling is extremely clumsy for all but the

simplest functions, so that it is usually used one-dimension—at—a—time in
multidimensional problems.
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3. I is unstable in the sense that if the function g becomes very small, I/g
becomes very large and in general ils variance also. In particular, il g goes
to zero somewhere where [ is not zero, V(f/g) may be infinite, and the usual
technique of estimating the variance from the sample points may nol detect
this fact if the region where g=0 is small. It is therefore dangerous 10
choose functions g which go through zero, or which approach zero quickly
(such as Gaussian functions).

On the positive side. importance sampling is the only general method for remov—
ing infinite singularities in the integrand I, by using a sampling function g with a
similar singularity in the same place.

3.3.3  Control variates

The control variate method is similar to importance sampling in thal one again
seeks an integrable function g which approximates the function 1o be integrated f,
but this time the two functions are subtracted rather than divided. Mathematically,
this technique is based on the iinearity of the integral operator;

[Madx = JIa-gis)l ox + | goxpdn

Now il the definite integral of g over 1he entire interval is known, the only uncer-
tainty comes from the integral of (—g), which will have a smaller variance than 7 il g
has been chosen carefully,

The method of cantrol variates is more stable than importance sampling, since
zeroes in g cannat induce singularitics in {~g). Another advantage over imporiance
sampling is that the integral of the “approximating function’ ¢ need not be inveried
analytically. .

3.34  Antithetic variates

Usually Monte Carle calculations make use of random numbers {poinis) which are
independent of each other, at least in principle. The method of antithetic variates
deliberately makes use of correlated points, taking advaniage of the fact that such
correlation may be negalive as well as positive. We recall from (2.2) that the vari~
ance of the sum of two function values  and  is just the sum of the individual
variances when the random peints where the function is evaluated are chosen inde—
pendently, but that in the general case an additional term is present:

V(P +) = V() + V() + 2 cov(fi™)

If we can arrange 10 choose points such that I* and f* are negalively correlaled, a
substantial reduction in variance may be realized. Thig requires knowledge of the
function f, and it is not easy Io give general methods for accomplishing this nega=-
tive correlation. Hammersiey and Handscomb 11964, pp. 60-65] discuss this in
some delail and give further references. For our purposes it will suffice (0 give a
simple example to sec how the technigue works in general.
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Suppose that it i kaown (hal 11a) s & awnotonically increasing funclion of x.
Then chovst x, randomly and independently as usual, umformly distributed ber—
ween the integration lmits (say 0 o 1), but instead of forming the sum of f{x )owe
tuke une=hall’ of the sum of {i(x )+ (1-x J. Then each time x | is small, resulting in
a small value of ix, ), 1=x, and thus fi-x ) will be large, and vice-versa. The partial
sums (ftx, )4+ 1~x )] will therefore be more constant than the individual funetion
values, und have u lower varianve. Looked at in another wiay, we are taking the
average of the estimate of the inegral of fix) and the estimate of the integral of
f1-x) using the same points x, and since these two functions are highly (negatively)
correlated, the variance of the sum is less than the sum of the variances.

34 ADAPTIVE VARIANCE-REDUCING TECHNIQUES

With the possible exception of uniform stratification, all the variance—reduction
methods described above require some advance knowledge of the behaviour of the
function, and il misapplied may easily lead 10 a degradation of the Monie Carlo
efficiency rather than an improvement, aol lo mention the additional labour facior
invalved in the application of the variance—reduction. A natural extension is woward
adapiive lechniques which learn abour the funclion as they proceed, preferably
TeQuINng no @ priori knowledge about the function. Similarly—inspired technigues
abound in pumerical quadrature where it is probably sale to say that most auto—
malic function intcgration is done using adaptive methods. Truly adaptive methods
for Monie Carlo integration are less common. perhaps because they are rather dilii—
cull 1o realize (and casy 10 misinterpret). We shall consider three examples which
should serve 10 illustrate the problems involved and ideas that have proved to bhe
uscful. The programs | shali describe here are all designed for multidimensional
integration of general functions, especially badly—behaved functions with spikes and
large variances,

3.4.1  Sheppey and Lautrup's RIWIAD

The program RIWIAD of Sheppey and Lautrup is one of the earliest 10 be used
with success on difficult mulivaniale functions on the hypercube. 1t first divides the
full hypercube evenly into a number of subhypercubes and estimales the integral
and ils variance in each hypercube by crude Monte Carto (uniform stratification),
Based on the values found in each subvolume, it then adjusls the boundaries 1o
form new hyperrectangles such that subvolumes are smaller where the lunction is
larger, and the process is continued. Al each step, an estimate ol the integral and
ils uncertainly is made in each subvolume, and the interval boundaries are modified
to improve the next stratification. A running weighted average of the integral esti—
mates and uncerlainty estimates is maintained, and the procedure stops when the
desired uncertainty is achieved.

RIWIAD has several drawbacks. The stratification boundaries are always paral—
Iel to the original parameter axes and always run along the whole length of the
hypercube, dividing all the volumes through which they go, even if the previous
results indicated that some of these subvolumes did not have (o be divided. Worst
of all, the weighted average of partial results produces a bias due 10 the correlation
between the estimate of the expectation and the estimate of the variance. Suppose,
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for example that the funclion has a narrow tpike, and that on the first step no
point falls in the spike. Both the integral and its variance will be estimated ioo low.
Then on the next siep, a point hits the spike; this time the estimates are both about
right, but since the vanance is large the value gets a low weight and the overall
estimate remains (oo low. The program never recovers from such an incident since
it never forgets an carly value even if later experience shows il to be & bad estimate.

342  Friedman's adsptive importance sampling

A more recent program of J. Friedman lunpublished, superceded by his more
recent effort described immediately below| uses a quite different approach. The pro—
gram is divided into an exploratory phase and an evaluation phase, and none of
the function values found in the exploraiory phase are used explicitly in the evalua~
tion. This avoids the bias due to the way the exploratory points are chosen, at a
modest cost in efficiency. The exploratory phase is used 10 establish a control func—
tion which will be used for the importance sampling of the evaluation phase. The
control function is & sum of Cauchy (Breit-Wigner) peaks, whose positions and
shapes correspond to those of the function to be integrated, as determined respec~
tively by & peak search using a function minimizing routine, and an eigenvector
analysis of the covariance of the function around each peak. Cauchy—shaped peaks
are used because shey tend to zero more slowly than Gaussian peaks, helping to
avoid the instability problem mentioned above.

Aithough this program is an improvement over RIWIAD for most functions, it
also has several drawbacks in practice, and is unsuitable for fenctions which cannol
be approximated by a small number of peaks,

343 Friedman's DIVONNEZ with recursive partitioning

A more recent offering of J. Friedman, catied DIVONNE2 |Friedman, 19778 and
bl represents a synthesis of the ideas seen 1o be most valuable in the sbove pro—
grams, together with some more modern ideas in multidimensional data structures,
It consists of two separate programs, the first of which performs a recursive multi~
dimensional partitioning (stratification) of the function parameier space, and the
second does a wratified—sampling Monte Carlo integration based on this partition—
ing.

The gosl of the partitoning is 1o produce subvolumes in which the range of
funciion values, as determined by functi inimization techniques, is as small as
possible. The pantitioning program retains the drawback of RIWIAD that partition
boundaries must be parallel to the parameter axes, bul since the partitioning is
recursive {only one sub-volume is split in two at esch step, not a8 whole row), the
algorithm evemally tends to liberate itself from the orientation of the axes.

The partitioning slgorithm has other applicstions than integration, and can be
used, for example, in conjunction with a specialiy—designed random number genera—
tor lo generate points in the parameter space distributed sccording to the function
(see the section below on generating random numbers according to empirical distri—
butions).

The actual integration need not be performed using Monte Carlo. Other methods
are offered as options in the program, but in practice this choice does not seem 10
make much difference in the accuracy obtained, and Monte Carlo is usually used
because it gives a reasonably accurate uncertainly estimate,

4. COMPARISON WITH NUMERICAL QUADRATURE

In order 1o decide whether a Monte Carlo method should be applied to a given
probiem, it is reasonable to see how it compares with other available methods. In
the case of integration, alternative numerical techniques have been the subject of
extensive studies for centuries, and the widespread use of computers has lead 10
considerable practical experience in this field. The current chapter is & briel review
of the properties of numerical quadrature as il is commonly practiced today, for the
purposes of comparison with Monte Carlo. This is not intended 10 be a complete
or detailed account of any quadrature tech iques, but is i ded only to give the
properties of most use in deciding whether to use quadrature at all.

41 ONE-DIMENSIONAL QUADRATURE

Unless otherwise stated, numerical quadrature is always donc in one dimension.
Some of the ressons for this will appear Iater, but certainly a prime motive for stick—
ing with one dimension is the beauty and elegance of the methods that have been
developed for one dimension.

All quadrature formulas approximate the value of the integral by a linear combi—
nation of furction values:

n
I, =L w flx}

Different formulas correspond 1o different choices of the points x and the weights
w. Crude Monte Carlo could be considered a quadrature formula with unit weights
and points chosen vniformly but randomly,

4.1.1  Traperoidal rule

This simplest of all rules consists of dividing the total interval into n subintervals,
and approximating the integral over each subinterval by the area of the trapezoid
inscribed under (or over) the curve 1o be integrated. The sum of these approxirma-
tions reduces 10 the average of the n+1 function valves multiplied by the length of
the interval (in Fact the end-points must be added with a factor one—half, but this
important detail can be considered as a boundary correction and is not relevant 10
our arguments here). For large n, we can think of the Tunction expressed as 8 Tay—
lor series expansion about each of the n points; then the constant terms and the
first derivative (lincar) terms will be inlcgrated exactly by the trapezoidal rule, and
Lo the extent that higher order terms are of decreasing importance, the targest con—
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tribution 10 the error will come from the second derivative (constant curvature)
terms. This error is proportional to the sagittas of the curve segmenis over each
band, and these sagittas will cach be proportional to the square of the distance
between successive points. Therefore if the function is evaluated at n equally—spaced
points, the uncertainty on the integral should be proportional to 1/n* for large n.

Recall that for Monte Carlo integration, the convergence was only like the
square roat of n, so that where increasing n by a factor of 100 only buys you one
more decimal digit with Monte Carlo, you get four digits with the trapezoidal rule.
This is especially interesting becausc the two methods are so similar. Indeed the
methods arc identical except that points are chosen equally spaced in onc case and
randomly in the other, and the randomness apparently causes us to lose a factor of
four in convergence rate (decimal digits per factor of 100 increase in n). Before see—
ing what randomness gives us in return for this disastrous convergence rate, let us
consider still more impressive convergence rates of other quadrature methods.

4.1.2  Higher—order quadrature

By choosing the points and weights appropriatcly, it is possible to integrate exactly
polynomials of higher degree and therefore achieve higher convergence rates. The
next step after the trapezoidal rule is Simpson’s rule which requires three points on
a given intcrval and integrates exactly all polynomials of degree three. The highest
possible degree for a given number of points is achieved with Gauss quadrature
formulas which integraic exacily all polynomials of degree 2n—1 (or iess) with n
carefully chosen points and n corresponding weights. The numerical values of these
points and weights, as well as the basic properties of Gaussisn quadrature, arc
given by Siroud and Secrest (1966).

The theoretical convergence rate for Gauss quadrature is enormously higher
than for Monte Carlo, but some of its other propertics are not so nice. The uncer—
tainty is not easy to estimate, error—bound formulas being given in terms of the
values of higher derivatives of the funclion over the interval, which arc much harder
to calculate than the integral itsell, so are essentially useless in practice. In addition,
the validity of the crror—bound formulas depends on continuily propertics of the
function and its derivatives, which may not be known. In practice, one is forced 1o
use ‘overkill’, aiming at a precision much higher than that required, and uncertain—
ties, i estimated 81 all, arc usually estimated by comparing the results of more than
one different Gauss rule on the same interval. Unfortunately, the nature of these
rules is such that the best way to combine the results of 1wo different Gauss rules
over the same interval is 10 throw away the lower—order result and keep only the
higher. Practical experience indicates alse tha there is no advantage in going to
exiremely high orders, and Lhat beyond about 12 or 15 points it is usually better o
sphit the interval and apply a lower—order rule several times. This indication of the
breakdown of the polynomial philosophy is discussed below.

-18_

4.1.3  Adaptive quadrature

The gquadrature rules described above are all fixed-point rules, that is the points
and weights are fixed in advance. Adaptive quadrature, on the other hand, is an
attempt to atlain a prescribed accuracy by adapting the quadrature method 1o the
function. The mosi common class of adaptive methods consists in using & flixed—
point rule and &n error—bound estimate, then dividing the interval into two or more
pieces, usually of equal length, if the error—bound estimate exceeds the required
value. The same procedure is then applied recursively 1o each subinterval until all
subiniervals satisfy the error bounds, or until the sum of all estimated uncertainties
reaches an acceptable level. The most common strategies are compared by Malcoim
and Simpson (1975).

Most computer centres offer one or more ‘automatic integration’ programs based
on adaptive quadrature of the above type. These programs differ mainly in the fix—
ed-point rule used and in the method of obtaining an estimate of uncertainty
which, a5 we have seen, is not always straightforward.  Because of problems in
obtaining reliable estimates of uncertainty, the better programs aim for a ceriain
amount of overkill, but may be unreliable nonctheless. For example, & spline func-
tion which appears smooth to the eye, has discontinuous higher—order derivatives
which tend to produce poor results with high-order Gauss rules and consequenily
adaplive quadrature based on them. Other problems with adaptive quadrature are
discussed by Lyness and Kaganove (1976).

4.2 MULTIDIMENSIONAL QUADRATURE

Numerical quadrature formulas are based on the sludy of orthogonal polynomials,
which are well undersiood in one dimension. For higher dimensionalities the
mathematical basis is not as well understood, and practical studies are much more
reccnt and less extensive. We resume here briefly the current situation.

4.2.]  Multidimensional region boundaries

In one dimension, only three ‘different’ regions of integration need to be considered:
finite. semi—infinite, and infinite. Choosing one particular interval in cach class, all
other intervals can be mapped onto one of the three by a lincar mapping, which
conserves alt the convergence properties of any integration method. In general in
this paper, we consider only the finite interval, Simple non—lincar transformations
are available 10 transform semi—infinite and infinite intervals into the unit interval,
and this is a standard way 1o perform integration over infinite intervals, bul these
translormations do modify the properties of quadrature rules.  For Monte Carlo
integration, lhese transformations do not effect the n~dependence of the conver—
gence, but the function whose variance determines the uncertainty of the estimate is
of course the (ransformed function.

In more than one dimension, the situation is quite different. Aiready in 1wo
dimensions, and restricting ourselves to finite regions, there are an infinite number
of ‘different’ regions which cannot be transformed into each other by linear trans—
formations. For example, a circle is fundamentally different from a square, in the



sense that s quadrature formula for a square will not have the same properties
when applied to a circle.

The standard Monte Carlo technique for deafling with odd-shaped regions is 10
embed the region in the smallest hyperrectangle that will surround it, snd integrate
over the hyperrectangle, throwing away the poinis that fall outside the inner region.
This leads to some inciliciency of course, due 1o the rejected points, but is capable
of dealing in a siraightforward way with essentially any finite region. Such a gen—
eral technique does not work for numerical quadrature methods, since it introduces
discontinuities on the boundary of the inner region, thus destroying some of the
nice convergence properties.

The ability of Monte Carlo to integrate over compficated multidimensional
regions (albeit not always very efficiently) is one of its most valvable propertics,
since it is often the only known technique capable of handling such problems. Pur—
ists may be right in saying that this only expresses our ignorance of better meth—
ods, bul for people with real problemt to be solved, it does represent & way out.

4.22  Extension of one~dicnensional rules

For rectangular regions, which are sfter all the mast common, multidimensional
quadrsture rules can be formed by traightforward exiension of one—dimensional
rules. Such rules, known as produet rules, generally preserve the properties of the
one—dimensional rules of which they are extensions, but only st the cost of increas—
ing the number of points exponentiafly with the dimensionality. Thus » product rule
requiring n function evaluations in one dimension, will require n® evaluations in two
dimensions, n’ in three dimensions, and 50 on.  This slows down the effective con—
vergence rate in d dimensions by a factor 1/d in the exponent as follows:

Uncertainty
as a function of in one ind
number of poinis n  dimension  dimensions

=172 -1/2
Monte Carlo n n

-2 -2/d
Trapezoidal rule n n

-4 -4/d
Simpson’s rule n n

-2m+1 -2m-1Vd
Gauss rule n n

Since the convergence of Mome Carlo is independent of dimensionality, there is
atways some d above which Monte Carlo converges faster than any fixed quadra—
ture rule. Thus Simpson's rule in more than 8 dimensions converges more slowly
than Monte Carlo, and & 10-point Gauss rule converges more slowly than Monte
Carlo in more than 38 dimensions, even assuming that the function has the nice
continuity properties required by these higher—order rules.
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But suppose we actually try to apply a 10~point Gauss rule in 38 dimensions.
This requires at least 10°* funciien evaluations, which is clearly unfeasible, This
brings up two new points:

L. The feasibitiiy {imir is the largest number of function evaluations we can
sfford to make. Depending on the computer resources available, the feasibil-
ity limit will usuaily be between 16° and 10" points for functions which can
be evaluated ressonably fast. This limits the use of a 10-point Gauss rule
to 3 dimensions for somcone with moderate computer resources, or 10
dimensions for someone with ‘unlimited’ camputer resources. Fig. 4.1 shows
that, except for very low order rules, the feasibility limit is reached long
before the crossover point where Monte Carlo converges {aster than quadra-
ture, so that the theoretical convergence rates for high—order rules in high
dimensionalitics will remain purely theoretical.

2. The growth rate is the smallest number of addltional function evaluations
needed 1o improve the current estimate. Monte Carlo estimates can be
improved by adding a single point, but 1 the other extreme Gauss rule
esliimates can only be improved by going 10 a higher—order rule, requiring
(m+1)¢ additional points, or by subdividing the space, which requires a1
least 2m4 additiona) points even for the simplest partitioning. In both cases
all the previous Gauss points must be thrown away.

One way 10 get around the problems of feasiblity limit and growth rate has been
suggesied by Tsuda (1973). He uses a rule with far 100 many points actually 10
evaluate, and then applics the standard Mome Carlo technique of sampling the
resulting terms randomly. He reports good results for this combination of quadra—
ture and Monte Carlo, but the reasons behind this success are not clear to me. It
could be that the use of poinis of a quadrature rvke guards against any Iwo points
being too close, and therelore ensures a certain uniformity of distribution even if
only a random subset of these points is actually used (this explanstion was sug-
gested to me by J. Friedman).
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DIMENSIONALITY OF INTEGRATION
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Figure 4.1: Comparison of Monte Carlo integration and
numerical quadrature in many dimensions.
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4.2.3  Multidimensional rules

The situation is grealy improved if truly multidimensional quadrature rules are
used instead of product rules. Unfortunately, good quadrature rules are not known
for many regions, dimensionalities, and orders. The situation is well described in the
article of Haber (1970) and in the book of Stroud (1971}, of which we summarize
some of the more important resulls here,

As in one dimension, multidimensional formulae can be found which will inte—
gratc exaclly any polynomial of degree less than or equal 1o some degree 1. In
addition we may require the formulae o satisfy two important criteria:

1. That all the weights be positive. This is important in order to avoid numerical
instabilities arising from canceliation of large 1rms of opposite sign, and
seems also to make the formulae more robust with respect to the validity of
the polynomial assumption.

2. That all the points used lie within the region of integration. This seems such
an clementary requirement that one is surprised 1o discover that many for—
mulac in d dimensions do not possess it, even for convex regions.

If we resirict ourseives to formulae satisfying the above requirements, very few gen—
erally applicable formulae have been found. Even for the simplest region, the hyper—
cube, the only known formulac valid for all dimensicnalities and even reasonably
close 10 the theoretical efficiency limit are of degree 2 and 3, as summarized in Lhe
table below:

Degree r Best known n n(Gauss)
2 W+ 1
3 2d 24
5 d*), 34
not found
>5 ? [_rii) 41 odd
2

We see that therc exist low—order multidimensional formulae considerably beter
than the Gauss rule, and in fact some higher-order (ormulae of comparabic theoret—
ical efficiency are known, but they do not have all positive weights for all r. Stroud
has shown tha1 a formula of degree r=5 exisis, with n of the order of d* and posi—
tive weights, but 10 my knowledge no one has as yet found it.
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4.24  Adaptive multidimensional quadeature

Like non-sdaptive quadrature, adaptive quadrature is much better developed in one
dimension than in many dimensions, since the problems mentioned above for mul~
tidimensional quadrature in general, clearly make adaptivity difficult too. Neverthe—
less, several attempis have been made, of which we will mention & few that have
been published. They appear to be reasonably successful, at least for small dimen-
sionalities (up 10 6).

1. Van Daoren and de Ridder (1976) have published an algorithm not too difTer—
ent from Friedman's DIVONNE2 (197D, except thal the former use multi—
dimensional extensions of one—dimensional Gauss rules instead of Monte
Carlo for the basic imtegration technigue, and their subdivision of regions is
always into (wo equal parts.

2. Genz (1972) presents s algorithm cspecially interesting for its use of extrapo—
lation methods, but the mulidimensional adaptivity does not seem 1o result
in n great improvement in eMeiency.

3. Kshaner and Wells (1979) use an interesting technique based on simplices
rather than hypercubes. Their basic thesis is that the lack of good adaplive
Quadrature procedures in many dimensions is mainly due to problems in
organization of mulidimensional data structures. Their work is &5 much an
exercise in programming as numecrical analysis, and it presents many inter~
esting ideas in both sreas. It probably poinis in the direction where we can
expect the most significant advances. From a practical point of view, their
program is not of much interest since it is written in & language (Madcap}
not generally available,

4.3 THE MONTE CARLO PARADOX

Some of the conclusions to be drawn from the comparison of Monte Carlo integra—
tion with numerical quadrature are somewhat surprising and call for deeper consid—
eration:

L In ofie dimension, the perfectly ‘regular’ trapezoidal rule converges much faster
than the identical rule with randomly distributed points, but in many dimen-
sions, a random distribution leads w0 faster convergence than the perfectly

regular grid.

2. Just to confuse matters further, the random distribution which is superior 10
the regular distribution in many dimensions can nevertheless be improved
by making it more uniform, cither by steatified sampling as we have already
seen, or through quasi—-Monte Carlo which is discussed below,

The explanation of this paradox is thal our intuitive feeling for what constitutes
‘uniformity’ in distribution, based on one—dimensional knowledge, is not quite right
for higher dimensions. For example, consider the projection of the point distribu—
tion onto one axis, for the hyperrectangular grid of poinis. Great spikes appear in
this projection whenever we come 10 a ‘hyperrow’ of points, which no longer looks
very uniform; the projections of & random distribution are more uniform in this
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sense. (See Sobol 1979 for & simple and convincing example of this.) In the chapter
on quasi-Monte Carlo, we will define and discuss a more precise measure of uni—
formity (or non—uniformity) called discrepancy, which will explain this paradox.

Furthermore, the volume of multidimensional space is always very big, so that
points are always far apart, which negates the very basis of quadrature rules.

431  The’polynomial hangup'

Let us look more carcfully at the theoretically fast convergence rate of high—order
quadrature rules. This is reisted to the ‘polynomiat hypothesis’ dear to the hearts of
Quadrature experts. For low orders, it is hard to find fault with the polynomial
hypothesis; the zero~dcgree polynomial is certainly the simplest function and it is
reasonable to expect a good integration method to be able to intcgrate it exactly.
(Even Monte Carlo docs that, by the wayf) Similarly, a first—degree (straight-fine)
polynomial naturslly comes next in the scale of complicatedness as perceived by the
human eye, but who is to say that a parabols is simpler or smoother than, for
eximple, a sine funclion or an exponential? Is there a Justification for seeking
muthods that integrate exacily potynomials of degree t, when the function to be
integrated is not & polynomial?

We may seck such a justification in Taylor's theorem. This theorem states that
under certain conditions any function can be expressed as a polynomial of degree r,
plus a remainder term. The conditions are that the function and all its derivatives
should be continuous: the coefficients of the polynomial are given in terms of these
derivatives evaluated at the point where the independent variable is equal to zero.
The usefulness of the theorem comes from the cases where the remainder term
becomes very small as r increases, but the theorem says nothing about when this
can be expected to be true.

Indeed, there is nothing apecial sbout the polynomial in this respect. Other theo—
rems give conditions under which general functions can be expressed as other infin—
ite series (e.g. trigonometric series, Fourier series) and conditions under which the
series can be truncated with a given remainder. The property that makes the Taylor
scries special is (hal under very general conditions the higher—order terms can
indeed be neglecied in the meighborkood of zero (ihe poimt about which the expan—
sion is performed). Unfortunately this has very litthe to do with the macroscopic
properties of the function which are important for integration over a large region,
especially 2 multidimensional region which is atways Inrge.

In practice, polynominls are notoriously bad at approximating functions over
large inlervals, so we should not be surprised that refated quadrature rules some—
times give unsatisfactory results, Experience shows spline functions to be good at
approximating 2 wider class of functions, and although spline functions are piece—
wise polynomials, they are nol polynomials, and indeed have discontinuous deriva-
tives of some degree at the knots. Integrating spline functions is of course easy il
you know where the knots are, although Gauss rules generally fail without this
knowledge. :
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5. RANDOM AND PSEUDORANDOM NUMBERS

In principle, a random number is simply a particular value taken on by a random
variable (which was defined above). However, in Monte Csrlo studics, one ofien
uses the word ‘random’ with various other, quite different, meanings. Here it is usu—
ally applied to sequences of numbers which, once they have been determined, are
not at all random in the statistical sensc, but may have some properties which are
similar 1o the properties of a truly random sequence. To be precise one must dis—
tinguish three different 1ypes of sequences: fruly random, psewdo-random, and
quasi—random. (The first 1wo of these are described in this chapter, and the third in
the chapter on Quasi—Monie Carlo.)

Unforwunately, it is common to confuse the randomness properties of a sequence
with its distribution. This is unnecessary, since the two are quite independent: A
perfectly random sequence may have any distribution (uniform, Gaussian, eic.),
whereas a perfectly uniformly-distributed sequence may be not ai all random.

5! TRULY RANDOM NUMBERS

A sequence of iruly random numbers is unprediciable and therciore unreproducibie.
Such a sequence can only be generated by a random physical process, for exampie
radioactive decay, thermal noise in electronic devices, cosmic ray arrival times, eic.
If such a physical process is used (properly) 1o generate the random numbers for a
Monte Carlo calculation, there is no theoretical problem, since the theory outlined
above is sufficient justification, provided there is no physical defect in the appara-
tus.

In practice, however, it turns out 10 be very difficult to construct physical gener—
alors which are fast enough (one needs typically hundreds of floating—point num—
bers per second) and ai the same time accurale and unbiased. Faced wilh these
practical difficulties, very few large-scale calculations have been made using such
generators,

One important exception is the work of Frigerio et at (1975 and 1978). They
used a radioactive alpha—particle source and a high—resolution counter turned on
for periods of 20 msec., during which time they counted on average 24.315 decays.
Whenever the count was odd, they recorded a zero—bit, and when even a one—bit,
ali writlen to magnetic tape. A careful correction was made (o eliminate the bias due
to the fact that the probability of an odd count is not exactly one—hall (the bias
could have been removed without even knowing this probability, using the method
given in the next subsection). Their apparatus yielded about 6000 31-bit truly ran—
dom numbers per hour. These numbers have been stored on magnetic tape, sub—
Jected 1o 8 number of tests for ‘randomness’, and used in Monte Carlo calculations.
Copies of the tape, containing 2.5 million truly random numbers, are available from
the Argonne National Laboratory Code Center, Argonne, Illinois 60439,

To illustrate the practical problems of physical bias in truly random generators,
let us again consider the Buffon needle experiment. First of ail, the width of the
siripes must be constant and equal to the length of the needle 1o within the accu—
racy ultimately desired for the final result, which is not so hard il we only want one
or two figure accuracy, but will clearly prevent us from going much further, Also,
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an unbiased decision procedure must be found for the cases when the needle almost
crosses a boundary. Thirdly, we musl ensure that the actual distribution of angle
and position of the needle is uniform. The angular distribution may be uniformized
by spinning the needle very fast as it is thrown, provided the surface is very MNat
and of homogencous fricion properties. The distribution of needle position will not
be uniform, but may be expecied to follow some Gaussian distribulion aboul the
point where the thrower aims. In practice, one would determine the width of this
distribytion experimentally and carry out a rather complicated correction of the type
performed by Frigerio et al a5 described above,

5.1.1  Bias removal technique

It often happens when generating truly random numbers, ss in the example just
above, that the major problem is in determining the exact distribution {i.c., the bias
of the apparatus), whereas the ‘truly randomness’ is guarantced by the nature of
the physical process used. In these circumstances, a very useful wrick to eliminate
the bias is the following:

Suppose we are given a truly random sequence of zeroes and ones, but where
the probabilities P(0) and P(1) may not be exactly ene—half. Using this original
sequence, we produce a second sequence in the following way: Consider pairs of
bits in the sequence, and if the two bits in the pair are the same, reject both bits; il
the two bits are different, accept the second bit (always rejecting the first of each
pair). The new sequence thus formed is guaranteed to have zeroes and ones with
equal probability as long as there was no correlation between the bits of the origi-
nal sequence. This can be seen easily by calculaiing P(0) and PY(1), the probabili—
ties of zero and one in the new sequence, in terms of P(0) and P(1), the original
probabilities.  Since a zero can only come from a one followed by a zero.
PO=P) PO}, and similarty P'(1)=P(0)*P(1}. These probabilities must therefore
be equal no malter what P(0) and P(l) are. Uniortunaicly P{0) and PY{1) do not
add up to one, because the probability of rejecting a pair entirely is PAO)+P(1).
which must be greater than or cqual to one—hall. In addition half the bits are lost
because a pair yields at most one bil, so the efficiency of the procedure is at mos(
25%, but it allows the use of a basic generator which is of unknown bias, as long
as this bias is nearly constant in time. (Any method using an explicit correction for
bias must also know the exact time—dependence of this bias.)

The efficiency of this method is casily seen 10 be P(0O)*P(1), which is equal 10
P*(1-P), where P is cither P(0)} or P(1). This means that for heavily biased original
sequences, the efficiency is approximately equal to the probability of the less prob—
able bil.

5.2 PSEUDORANDOM NUMBERS

The random numbers most ofien used in real calculations are those known as
pscudorandem, which arc generated according to a strict mathematical formula and
therefore reproducible and not at all random in the mathematical sense, bul are
supposed to be indistinguishable from a sequence gencrated truly randomly. That
is, someone who does not know the formula is not supposed to be able 10 tell that
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a formula was vsed rather than & physical process. The theory outlined in chapter
2 is generally assumed to hold for Monte Carlo resulis calculated with pseudoran~
dom numbers as well as with truly random numbers.

Unfortunately, there is no way to generate such numbers, which are both truly
random and not truly random. This hat not prevented people from using pseudo—
random sequences (often with considerable success), closing one eye 10 the theoreti-
cal impossibility of it ell. In this chapter we discuss how this is done in peactice.

5.2.1  From mid-squares to multiplicative generators

Perhaps the carliest pseudorandom number generator was that of Yon Neumann
known as ‘mid-squarcs. Given a starting number of r digits, the first ‘random’
number s the middle r/2 digits of this number. Then the first ‘random’ number is
squared, (forming snothver number of r digits), and the middle 1/2 digits of this
square are the second ‘random’ number, etc. The digits may be decimal, octal,
binary, or in any other base. If the original number is chosen carefully, this method
can yield a reasonably Jong string of numbers which appear random, but the pro—
perties of this generator, 1o the extent that they are kriown at afl, are not very good,
and il is not used any more. First of all, this generator is characlerized by a period,
since if any number reappears, the entire sequence from the first appearance (0 the
second will reappear. This in & rather general property of pscudorandom generators
including those commonly used today, Also, certain numbers teproduce themselves
immediately {for example zero), which means that those numbers can never Appear
unless the period is one.

It may appear that the mid-squares method canrot possibly be very good
because it is not complicated enough. The naive approach then consists in
fimproving’ the unacceptable method by making it more complicated. An excellent
example of how one might do this is given by Knuth {1969, pp. 4-€6). His
‘super—random’ generator is 30 complicated that one could mever hope to under—
stand ils properties, and turns cut nevertheless to be very bad. The lesson to be
learned is that & simple gencrator whose properties (and wesknesses) are known, is
slways 1o be preferred o a complicated generator of unknown properties. A corol~
lary of this lesson is that it is not casy to “improve” a bad pseudorandom genera-
tor by making it more complicated. Such an exercise cannot sdd any true random—
ness, and usually serves only (o shorten the period by using up several numbers to
produce one. Exceptions to this are the shuffling technique discussed below in con-
nection with quasi-random numbers, and the Dieter—Ahrens generator also dis—
cussed below.

Indeed the pseudorandom generator most widely used is even somewhat simpler
than mid~squares; it is the method attributed to D.H.Lehmer, known as mudriplica—
five congruential or linear congruential. Given » modulus m, a multiplier a, and a
starting value r,, the method generates successive pseuddrandom numbers by the
formula:

r,=ar._ (modm}

A variation known as the mixed congruential generator requires in addition an
additive constant b:
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r, = ar,_ +b (modm)

The two generators have very similar propertics and will be considered together,
For both generators, m is invarinbly chosen as 24, where ( is the number of bits in
the representation of an integer on the computer being used, %o that in peactice the
algorithm consists of muhiplying two

numbers of « bits each. yielding a number of 2t bits. of which (he jower (least sig-
nificant) t bits are retained as the next ‘random’ number. These integers are then
converted to floating—puwint numbers in the range zero 1o one by dividing by m.

5.2.2  The early approsch: maximum period

1t turns out 0 be & relatively easy problem in number theary to give the conditions
for a congruential gencrator to attain the maximum period, which is generally of
length m/4. Early theoretical results therefore concerned primarily this aspect with
very little progress on other properties. This gave rise 1o a large number of genera—
tors with long periods, which were then subjected to "tests for randomness”, and
the ones for which no "nonrandom® behaviour could be discovered were used.
Often these generstors were later found to be unacceptsble but continved o be
used by those who hadn'l yet stumbled upon the unfortunate properties. !

The nineteen—sixties may be termed the ‘durk ages’ of pseudorandom gencrators,
characterized by an enormous number of articles (mosdy unpublished} purporting
to show. on the basis of ‘tests’ as described below, that one pseudorandom genera—~
tor was better or worse than another,

5.2.3  Testing psetidorandom generators

Since there was in the early days no good theory about the behaviour of pseudo—
random number gencralors, il was necessay (o resort (0 "tests of randomness” in
order to certify a given generstor as "good”. These tests usually consist of forming
some furction a given siring of pseudorandom numbers and comparing the value of
this function with the expected value of the same function of truly random mum-
bers. For example, the simplest test would be 1o take the mverage of the first n
numbers from a pseudorandom generator, which should be close to 0.5, the expec—
tation of the average of truly random numbers uniformly distributed between zero
and one. The variance of the average for truly random numbers being n/12, the
square rool of this quantity is the expected standard devistion, so we expect that
95% of the sirings of n numbers will have an average within two such standard
deviations of 0.5. If our pseudorandom generator yiekds an average which falls
outside this range, we say that it fails that test at the 5% level, Of course cven a
truly random sequence would fail such a test 5% of the time, but that is just teo
bad.

' The best exampic of this is RANDU which was distributed by IBM with their
360 series and was found almost immediately 1o be very poor. One can still find
anicles being published (oday by people just getting around to making this pain-
ful discovery.
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In praclice one uses somewhal more complicated tests, based on more compli—-
cated [unctions. These tests have names such as the runs test, poker 1est, elc.
Some tests are felt to be more sensitive than others, but since one does not in prin—
ciple know what kind of “non-~randomness” to look for, it is not possible to mea—
sure the power of & test in any precise way. The most common ests are described
abuudantly in the literalure (c.g. Ahrens et.al., 1970} and summarized in Knuth
1969.

Since there is an uncountably infinite number of possible functions that could be
applied 10 each of the possible sequences coming from a pseudorandom generator,
no gencrator can be “tested” thoroughly. The most interesting such function is Jjust
the calculation for which the pseudorandom numbers are needed, and the (unk—
nown} correct answer to this problem provides yet another test of the generalor —
indeed the only est we really care about. The philosophy of pseudo-Monte Carlo
could therefore be stated in these words: If a pscudorandom number generator has
passed a certain number of tests, then it will pass the next one, where the next one
is the answer 1o our problem. It is of course not known in general why it should
pass this next test, except for the fact that it is not known why it should not.

A somewhat different kind of test was used by J. Lach (1962, unpublished) who
wis suspicious because resulis using the 1BM 709 pseudorandom generator pro—
duced fluciuations greater than expected. He simply plotted the random number dis—
tribution on a cathode ray display and observed the “non—randomness” by eye.
Taking pairs of numbers as (x,y) coordinates of points, no obvious correlations
were scen, but when triplets (x.y,z) were considered, and (x,y)‘were plotted only for
z<0.1, the resulting point distribution showed a structure of slanting bands, with all
the space between the bands completely empty of points. The pseudorandom gen—
erator was later corrected by changing the mulliplier so that the particular effect
observed by Lach disappeared, but what Lach had observed was later showed by
Marsaglia 10 be a defect inherent in all generators of this type {sec next section).

My personal feeling about testing is that it is best 1o avoid il through a decper
Iheoretical understanding of the generator. |In the case of the multiplicative con-
gruential generator, the important propertics are now known exaclly; sec below.| IT
testing must be done, 1 prefer visual tests of the type used by Lach, since these
tests not only are rather sensitive to the kinds of "non—randomness® we arc inter—
ested in, but may also give some insight into the properties of the gencrator.

5.24  The Marsaglia effect

In his classic paper Random numbers fal mainly in ihe planes Marsaglia (1968)
finally brought some genuine understanding into the occult art of pseudorandom
number generation. He showed that if successive d-tuples from a mulliplicative
congrucntial genersior are taken as coordinates of points in d—dimensional space,
all the points will lic on a certain finite number of parallel hyperplanes, this number
always being not greater than a certain function of d and the bit-length of integer
arithmetic on the machine. We give some values of this function here: :
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Maximum number of hyperplanes = (df 2+ )

no. of bits d=1 d=4 d=6d=10
L= 16 73 35 19 13
1= 32 2953 566 120 4}
1= 36 1442 1133 19) 54

1 =48 L9086 9065 766 126
t =60 190537672520 3064 290

Furthermore, it is usvally the case that the points lic on more than one such sel of
hyperplanes, making an cxtremely regular patern rather than the 'random’ distribu—
tion desired. |Of course it is true that any points must lie on some sel of hyper—
planes, but truly random points would lie on a much targer number of such
planes.] We can use the table above to decide the maximum dimensionality for
which we care to use such random numbers to perform, for example, numerical
integration, based on the word length of our machine. For machines with tong
wards, the limit is probably beyond anything we would be likely 10 need, but with
integers of 36 bits and less, care must be taken.

Note that Marsaglia completely explained the effect observed earlier by Lach,
and which was ‘corrected’ by changing the mulliplier of the generator. Lach was
observing the hyperplanes in three—dimensional space, and taking a slice in one of
the dimensions produced the bands when projecied onto the other two dimensions.
Changing the multiplier may have increased the number of planes, and certainly
changed their orientation, so that the eflect then appeared to go away. Lach was
using a computer with 36-bit integers, so thal it should have been possible to gel a
good distribution in only three dimensions.

5.25 The Ahrens—Dicter soluticn

About the same time as Marsaglia was discovering the hyperplanes, he and others
were investigating multiplicative generators in more detail, and found ways to del—
ermine, for exampie, the exact distribution of pairs of numbers (Dieter, 1971), and
the autocorrelation function {Dicter and Ahrens, 1971). The result of all this work
is a good understanding of both the good and bad properties of such generators,
as well as how to find good multiplicrs. Dieter and Ahrens (1979) show that the
way around the Marsaglia hyperplane problem is to use compound multiplicative
congruential generators of the form:

r, ={ar_ +br ;) (mod m}

i

which will increase the number of hyperplanes by a factor 2 vo provided the con—
stants a and b are chosen carefully. The hyperplanes do not g0 away, but their
number may be increased arbitrarily by adding more terms as above.
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5.26  Good pscudorandom generators

On a computer with integer length t bits, The best simple multiplicative generator is
probably that proposed by Ahrens et.al. (1970), where the multiplict is

A= 20 8-1/2

(You may recognize the famous ‘golden section’ constant here.) In practice the con-
stant a is determined for & given value of the integer length t by multiplying 2 -7
iMo &  wvery precisc value of the golden  section  constam
(=0.6180339887498948452045868) and rounding to the nearest integer congruent
to 5 (mod 8). This will yield a generator with period 2! and good distribution
properties.

On CDC 6000, 7000, and Cyber machines, it is unfortunately not easy to take
advantage of the full 60-bit words, since integer multiplication is performed only on
48 bits (for compatibility with Nosting—point numbers which have 48-bit mantis—
s#5). For such computers, the value t=d8 is therefore approprinte. and the constant
uis:

a = (1170673633457725), = (43490275641445),,
which has a period of 2% = 70,368,744,177,664.

On 1BM 370 and 1BM-compatible computers, the 32-bil integer  mrithmetic
makes simple generators somewhat risky for large calculstions. With only 31 signi—
ficant bits available, the maximum period is 2** or aboul 500 million. Since it iy
dangerous to come anywhere close to exhausting the period (exhausting the period
would give a perfectly uniform distribution since all numbers would be generated) it
is nol too difficult 10 imagine calculations where a better generator is needed. In this
case 1 reccommend using the McGill University package ‘Super—duper’, available
from Prol. George Marsaglia, School of Computer Science, McGill University, P.O.
Box 6070, Montreal, Canada. The basic gencrator of this package combines two
methods to give a period as long as one would expect from a 64—t machine.

327 Machine—independent pseudo—generators

It is sometimes convenient 10 have & random number generator which produces
exactly the same numbers on any computer. Assuming that we want floating—point
numbers between zero and one, we therefore choose the precision of the lowesi~
precision machine we are likely to use, and simulate that precision on other compu—
ters. {On computers with longer words, the lower bits will be zero.) Such a geners—
tor will in general not be optimal on any machine, either in terms of period or of
speed, but we will show here that it can be implemented, in FORTRAN, on most
larger computers. It can then be used to test programs and compare and conlinue
calcuiations across changes of computer.

If we choose IBM 32-bit words as our minimum precision, such a generator,
called RN32 (CERN Program Library) has been implemented as follows. As
default starting integer use the value 65539, Multiply the previous (or staning)
integer {'seed’) by 69069. Keep only the lower 31 bits of the result. This 3 1-bit
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integer becomes the seed for the next number, We get 8 foating—point
pscudorandom number from the sced by masking off the lower 8 bits to assure
exact floating-point representation of the integer, floating it, and muhiplying the
result by the exact fNloating representation of 2-*',

Differences in FORTRAN and foating-point representations require slighty dil-
ferem implementation on different machines. We show here as examples the CDC
and 1BM versions.

FUNCTION RN3INIDUMMY)
CDC VERSION. FJAMES. 1978
IY IS THE SEED, CONS = 2**-3)
DATA 1Y/65539/
DATA CONS /166 140000000000000008/
DATA MASKI/17771777771718/
1Y = 1Y *69069
C KEEP ONLY LOWER 31 BITS .
1Y = 1Y .AND. MASK 11
C SET LOWER 8 BITS TO ZERO TO ASSURE EXACT FLOAT
JY = IY AND. 07777777177777771400B
YFL = JY
RN12 = YFL*CONS
RETURN
C ENTRY TO INPUT SEED
ENTRY RN32IN
1Y = IDUMMY
RETURN
C ENTRY TO OUTPUT SEED
ENTRY RN320T
IDUMMY = |Y
RETURN
END

00

FUNCTION RN3IXDUMMY)
C IBM VERSION. FJAMES, 1978
C IY 1S THE SEED, CON§=24*-3)
DATA 1Y/65539/
DATA CONS/Z39200000/
1Y = 1Y * 69069
c ASSURE LEFTMOST BIT ZERO (POSITIVE INTEGER)
IF(IY .GT.0) GOTO 6
1Y = 8Y + 2147483647 + |
6 CONTINUE
C SET LOWER B BITS TO ZERO TO ASSURE EXACT FLOAT
1Y = (0¥/256)*256
YFL = jy
RN32 = YFL*CONS
RETURN
[of ENTRY TO INPUT SEED
ENTRY RNI2ZIN(IX)
Iy = IX
RETURN
C ENTRY TO QUTPUT SEED
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ENTRY RNI20T{IX)
IX =1y

RETURN

END

With the default seed shown, the first two numbers produced by these generalors
are approximalely: ?

Ri1 = 0.10791504.......
R2 = 0.58747506.......

5.2.8  Practical computing considerations

The usage of random number generators from FORTRAN programs requires some
special considerations ol a practical nature. Perhaps the most important of these
siems from the fact that most pseudorandom generators, like the one above, are
coded as FORTRAN functions rather than subroutines. Strictly speaking, this is
not in accordance with the rules of FORTRAN, since random number generators
are not functions of Lheir arguments only, they have ‘side elects’, namely they set
up the next number. Since they are functions, the FORTRAN compilers reserve the
right Lo optimize them out of existence by replacing each function cvaluation by the
constant value of the function. For example

X = RANDOM(1} + RANDOM(1)
could be compiled as if it were
X = 2.0* RANDOM(1)

which is of course nol the same thing at all. The well-known way around this is to
do something like

X = RANDOM(I) + RANDOM(I+1)

in order to fool the compiler into thinking the two calls have difTerent ATguUmMents
and must therefore be called twice. Similar problems may arise when calls to ran—
dom number generalors appear in DO—loops. Of course the proper way around
this is 1o use random number gencrators coded as subroutines rather than as func—
tions. This may be somewhat clumsier to use, but is much safer.

In many applications, the actual time taken 10 generale the random numbers
may be important. In earlier days this was usually the case, and it is still a point of
great pride among programmers to chop half a microsecond off the generation time,
even though it may be quite negligeable compared with the rest of the calculation.

? The .numhcrs produced by different computers are exactly the same if represented
a; .bmary fractions, but the exact decimal representation requires many more
digits than we reproduce here, and more than your computer is likely 1o give in a
priniout,

_34_

In cases where generation time is important, several tricks may be used.

One is of course 1o code the generator in assembler, which is ofien done anyway
since the operations needed may be easier 1o code in assembler. Even better i5 1o
code the generator ‘in—line’ in the calling program 10 avoid the overhead of 8
subroutine call, which is usually the greater part of the time spent in getting a ran—
dom number. The standard CDC FORTRAN function RANF causes the compiler
1o produce in—line code, although the multiplier used by RANF is not the best.

Ofien a calculation requires n—tuples of random numbers, in which case it is
much more ellicient to use a subrouting that returns » random numbers al a time
rather than calling a single generator n times, because of the overhead in the call.

Sometimes il is desirable 10 have exactly the same sequence of random numbers
in one calculation as you had in the previous calculation. and sometimes it is
equally important that the sequence be different. Many generators therefore offer
different ways of initiating the sequence. Most generators use a default siarting
value (like RN32 above) and thercfore always produce Lhe same sequence unless
requested otherwise. Such generators ofien allow inpulting and outpufling Lthe seed
value, 50 that at the end of a run the current seed value can be ouiput. and read
back in al the beginning of the next run to continue the sequence (this is the case
with RN32).  In this way. different sequences can be forced by inputting differemt
starting sceds. Skl other generalors use ‘random’ staruing seeds gollen by using
the 1ime of day and dale from the system clock and transforming that into an
appropriate integer. This removes all control from the user and even adds some
element of truly random unprediciability.

6. QUASI-MONTE CARLO

The theoretical diMficullies and practical success of pseudorandom numbers have
given rise 1o another type of sequence known as quasirandom. {in English usage,
‘pseudo—’ means false, and ‘quasi—' means almost. but in the technical context of
random numbers their meanings are somewhat differemt and much more precise.)
Quasirandom sequences are not even inlended 1o appear random, bul only to give
the right answer 1o the problem at hand. Thus they are more satisfactory since they
are not based on an illusion, but on the other hand they must in principle be 1ai—
lored to the problem at hand. Since this problem can ofien be reduced to mulliple
integration, the lailoting becomes ready—to—wear in practice, and the Lheory appli—
cable to most cases,

6.1 THE QUASIRANDOM PHILOSOPHY

The concept of quasirandom numbers arises from the realization thar the mathemat—
ical randomness of pseudorandom numbers is neither attainable in theory nor
necessary in praclice, and it is more meaninglul 10 assure that the ‘random’
sequence has Ihe necessary propertics to produce Lhe desired resull. For exampile,
in multipl¢ integration and in most simulation studies, each multidimensional point
or simulated event is considered independently of the others and the order in which
they appear is immalerial. That is, correlations between successive points (cvents) is
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useally of no imporwnce — this aspect of randomness can safely be abandoned
for most calculations. Another aspeci which can be abandoned is the degree of fluc-
tustion about uniformity for ceriain distributions — in Many CASES a super—uni—
Jorm distribution is in fact more desirable than a lruly random distribution with
uniform probability density.

Since we have now dropped all pretense of randomness, the reader may object
at this point to retaining the name Monte Carlo. Stricily speaking he is right, but it
is probably more justified to enlarge the concept of Monte Carlo to include the use
of quasirandom sequences. Quasi-Mome Carlo is indeed rather o downward (in
dimensionality} extension of Monte Carlo than an upward extension of one—dimen-
sional quadrature, since it retains some fundamentg! properties of Monte Carlo
such as applicability 10 spaces of very high dimensionality, performance nearly
independent of di ionality, very small growih rate. even for high dimensionali—
tics, and robusiness with respect o the continuity properties of the function. In
addition. the thcory of quasi-Monie Carlo outlined below is much closer 10 that of
true Monie Carlo than to that of quadrature.

6.2 THE THEORETICAL BASIS OF QUASI-MONTE CARLO

6.2.1  The discrepancy of » point st

Ler us here introduce s measure of non-uniformity valid for any dimensionality,
called diserepuncr. (see Weyl (1916, in German), or sccondary references Zaremba
(1968). Zaremba, ed. (1972). or Stroud (1971)). Consider the unit hypercube in d
dimensions. with each coordinate of x varying from zero 1o one, and we are given a
set of n points, the ith poimt having coordinates .+ The Tunction v(x} gives the inte-
grated number of points, from the origin ta the point x (the empirical distribution
function). The corresponding volume from the origin (o the point x is just given by
the product of the coordinates of the point x, and the local discrepsncy g at x is
defined as the difference beiween the number of points in this volume and the
expecied number based on the volume:

gx) = Ivlxkin) — x| x,.x,

One can then define various measures of global discrepancy by taking different
norms of the fumction g. The most common are the extreme discrepancy given by
the maximum of the absolute value of ¢ for all x, and the mean square discrepancy
given by the integral of the square of g over all x, The gencral term ‘discrepancy’ is
sometimes loosely applicd also 10 the global measures.

Since we will use discrepancy to test the hypothesis of uniformity of & point dis~
tribution. it is not surprising that this measure is stready well-known to statisti~
cians, who will recognize extreme discrepancy as the Kolmogorov statistic, and
mean-squarc discrepancy as the Smirnov—Cramer-Von Mises statistic for testing
compatibility of distributions (see Eadic 1 8l 1971}, pp. 268-2170)

If the extreme discrepancy of » point set approaches 2ero as the number of
points approaches infinity, the {infinite) set of points is said 1o be wnfform. We
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refer to this as uniformity in the sense of Weyl, to distinguish it from more
common meanings of the word. A truly random point set in a finite—dimensional
space can be shown to be uniform in this sense. In quasi-Monite Carlo we will use
non—random poimts which are also uniform (for infinite sets) or which have low dis-
crepancy (for finite scts).

6.2.2  The convergence of Quasi-Monte Carlo integration

The thecorems given in this section concern the approximation of 8 mulidimensional
definite integral by an unweighted sum of function values over 3 set of points. The
function to be integrated will be assumed to be of finile veriarion. A precise defini—
tion of variation is nel very enlightening and is beyond the scope of this article (sec
Zuarcraba 1968 or Stroud 1971): we give here only a rough idca sullicient for an
understanding of te results presemed below. The varistion in quasi-Mome Carlo
theary plays the role of variance in true Monte Carlo, being also 1 measure of 1he
avn-constancy of the function.  For a differentiable function of d variables, the var—
iution can be thought of as an average of the absolule values of the dth mixed par—
tial derivatives.  Integrable funciions of interest 1o physicisis (with st most a finite
number of discominuities) have 4 finite variation.

The following theorems form the mathematical basis for integration by guasi-
Monie Carlo,

1. (Weyl. 1916) If a definite integral is estimated by an unweighted sum of func—
tion values over a set of points, the estimate will converge Lo the true valuc
of the integral 2s the number of points approaches infinity if and only if 1he
poinl sel is yniform in the sense of Weyl, This theorem is the equivalen of
the fuw of large numbers fr true Monte Carky, snd gives the conditions
under which the quisi-Monte Carlo estimate is consistent.

2. (Hlawka, se¢ Zaremba 1968) If & definite integral is approximated by an
unweighted sum of function values over & finite set of points, the resulting
error wilt be bounded by the product of the discrepancy of the point set and
the variation of the function.

3. (Roth and others, sec Kuipers and Niederreiter or Zaremba 1968) The discre-
pancy of a poin sel cannot be made smafler than a ceriaim value, which
depends on the number of poinis n and the dimensionality d. Atlempts to
find point sets which achieve this fundamental lower Emit have been success—
Tl only in a small number of cases.

4. (Korobov, sec Stroud 1971) The discrepancy of the first n points of an infin-
ite point set cannot decrease as a function of 0 any faster than 1/n for large
n.

The second theorem above implies that the estimate of the integral will converge to
the correct answer as fast as the discrepancy of the point set converges 1o zero, and
the fourth theorem gives us hope that this could be as fust as I1/n, compared with
the much slower square root of n for true Monte Carlo. Unfortunatcly. it is not
generally known how 10 genermie points which attain the lower discrepancy bound,
but one can least generate points with considerably lower discrepancy than the
expeclation of 8 truly random set,
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Afier reading the above theorems, we should not be surprised to learn that the
expected value of the exireme discrepancy of a set of n truly random points
decreases with n like 1/ for large n in any number of dimensions,

6.3 QUASI-RANDOM NUMBER GENERATORS

Because Lheorem 4 of the Jast section applies only 1o infinite sequences, we must
distinguish here between finite quasi-random sequences of n numbers where n is
fixed in advance, and the first n numbers of an infinite sequence. The latter will
ciearly be more convenient 10 use since it can be extended if necessary, but the
above theorems indicate that we might be able to get & better discrepancy if we fix
n

6.3.1  Good lattice points

Optimal points for function integration are generated by fixing n (and the dimen~
sionality d) and actually minimizing the extreme discrepancy of the n points with
respect to their positions.  The computational complexity of such a calculation
being overwhelming, only an approximate minimum—discrepancy solution can be
found for anything but a very small point sei. A considerable amount of theoretical
work has been done on d—dimensional latiices (Kuipers and Niederreiter, 1974, and
Zaremba, editor, 1972}, but this approach has not yet produced technigues of great
interest for large calculations, except for the Korobov sequences described below.

6.3.2  Finite Korobov sequences

Korobov considered sets of points restricied to belong 10 certain families character—
ized by different expressions for the coordinates, with each expression containing
some [ree parameters, The values of these parameters were then optimized by
requiring a minimum extreme discrepancy. Probably the most successful Korobov
family is the parallelepiped lanice, where successive points x are given by:

uk bk dk
& = -, -, - &=1N
N N N
od | od 1 od |

where a, b, ... are coefficients 10 be determined in order 1o cplimize the discre-
pancy for the given value of the number of points N and the dimensionality. Dis~
cussion of Korobov sequences and references o the original Russian articles can be
found in Stroud{ 1971} and in Zakrzewska etal. (1978). The latter articke describes
a program for multiple integration using Korobov sequences. These sequences can
also be used as an option in DIVONNE2 (Friedman (9778), and extensive tables
of optimal coefficients for generaling Korobov sequences are given in Keas(1972).
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6.3.3  The Richimyer generator

This generator is the eyuivalent of the Korobov parallelepiped family described just
above. but for infinitc N and “any’ d. Since one can no longer optimize 1he coelli-
cients. it is apparently sufficient to use ‘irrational’ numbers, in order to avoid a
short period. Since truly irrational numbers cannot be represented in computers, it
has been suggested 10 use the square rools of the first few prime numbers. Thus
one gels the simple (ormula for the jih coordinate of the ith quasirandom point:

x, = i§ ,mod |

where 8, is the square rool of the jth prime number.

In theory this generalor is supposed to have very good properties lor an infinite
number of points, and ils discrepancy should decrease like i/n for very large n.
The problem is then 10 make it behave well for small n {which may still be very
large in practice} without destroying the asymptolic behaviour. This is done |, lirst
of all, by observing the two—dimensional distributions of the first few thousand
numbers of two of the coordinates. When a pair is seen 10 be badly distribuied.
one of the corresponding § values is dropped from the lable and replaced by a
higher root prime. OF course, this observed distribution would in principle improve
with darger n, but one dues not know how large, so il is better in practice to be
careful.

The second method for improvement of short—term behaviour of such quasiran—
dom generators is the shuffling technique, which assures that all the numbers from
the gencrator will be wsed, but not quite in the order in which they are generatcd.
Usually another (pseudo-) random generator is used for the shuffling, which is per—
formed using a buffer {usually 10 or 20 words per dimension), and selecting Lhe
next quasirandom number  psewdorandomly from the buffer of the appropriaic
cuordinate, filling the used location in the buffer with the next quasirandom number
in the corresponding sequence. This yields points different from those of Lhe
unshuffled generator, but preserves the super—uniform distribution of each of the
coordinale values.

6.34  The van der Corput generator

The formula of Van der Corpul correspands 1o expressing Lhe integers in a sysiem
of base P, reversing the digits, putting a point in froni, and interpreting the resuhting
seyuence as fractions in the basc P. P is any prime, so the ith coordinale is gener—
aled using this formula with P being the ith prime number. For example, for P=2
this gives:
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decimal  binary  binary  decienal
integer  integer  fraction  fraction
j= | 0.1 0.5
10 001 0.25
1] ol 075
100 0.001 0.125
101 0.101 0.625
1o 0.0 0313
(N} Q.11 0875
1000 0.0001 0.0625

I R

This geoerator has properties similar 10 those of the Richtmyer generator, except
thal it seems to behave much better for smaller n. In spite of the apparent compu-
tational complexity. il can be madc fast, thanks 1o a relatively simple algorithm for
implementing it. due to Halton ( 1960).

As with the Richimyer generator, this method can be improved by shulling. A
particularly effective scrambling technique. based on explicit minimization of the dis—
crepancy for this generator. is given by Braaten and Weller (1979},

7. NON-UNIFORM RANDOM NUMBERS

Up to now we have been almost exclusively concerned with uniformly—distributed
random numbers, cither with wniformly—distributed probehility of occurrence, or for
quasi—random  sets, & distribution as uniform  as possible  (sometimes  called
'super—uniform’, since it is more wniform than a truly random set with uniform
probability density). In this chapter we discuss the problem of generaling random
numbers such that the peobability of obisining a number in & given range is nol
uniform, but lollows some other distribution.

Gencerating non—uniform distributions is very imporiant in many applications.
where the physical phenomena being simuiated are known 1o Follow certain other
distributions.  The most important of these are the Gaussian (or Normal) and
exponential distributions for confinuous variables, and the Poisson and binomial
distributions for discrete variables. Many other distributions may be required for
special applications. and many different techniques are known for gencrating them,
We present here only a briel review of the most important methods with some indi~
cation of where 10 look for more. It is assumed throughout this chapter that an
appropriste generator of uniformly—distributed random numbers is available for use
in gencrating the non—uniform distributions.

7.1  GAUSSIAN GENERATORS

The Gaussian distribution is one of the most important in statistical and physical
cilculations. and atsw one of the richest in terms of different methods proposed for
generating random numbcrs,
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LLI  Using the Central Limit Theorem

This method has already been described above in 2.6.1. Tt is not exact, although it
may be good enough for many purposes, and the absence of points in the extreme
tails may even be desirable in some cases. It is also not especially fast, but may be
faster than some other methods when a good generaior of arrays of uniform num—
bers is available. |[Note that this method, like most of those given in this chapter,
must not make use of & quasirandom uniform number generator, since serial coree—
lations in the uniform generator lead to distortions in the distribution of the output
random numbers.|

As a word of warning, 1 should point out an interesting mistake sometimes
made in connection with this generator. It arises from the realization that the Cen—
tral Limit Theorem of course works for differences as well as sums, so that taking
the sum of six uniform numbers minus the sum of six other uniform numbers,
would be as good as taking the sum of twelve uniform numbers and subtracting
six. Some clever peaple decide therefore 1o use twelve uniform numbers to generate
two random Gaussian deviates, once using & sum and once with differences. It is
certainly true that this gives two (spproximately) Gaussian numbers, but they are
unfortunately highly correlated. Correlation has also been the source of some con—
cern about the simple generstor of 2.6.1, since any correlations in the uniform gen—
erator would produce deviations from the Gaussian distribution of the sum,

7.1.2  The transformation method
Since the Gaussian probability function cannot be integrated in terms of the usually
available functions, it is nou straightforward to apply & transformation from uniform
to Gaussian~distributed variables. There is, however, a clever method of transform-—
ing two independent uniform varisbles u and v into two independent Gaussian vari-
ables x and y:
= (=2inu}"? cos{2xv)
y = (=2inu}'? gin{2xv)
This method is exsct and easy 1o program, but is mot quite as fast as il may
appesr, since il requircs calculation of a logarithm, square rool, sine, and cosine, alf
of which are reasonably time—consuming operations.
An improvement on the above method is the polar method of Marsaglia.
1. Generate uniform random numbers u and v.
2. Calculate w = (2u—1) + (2v-1)".
3. I w>1, go back to 1.
4. Returnx = uz and y = vz, where 2 =J2inw /W)
This variation eliminaies the sinc and cosine st the slight expense of =21% rejec—

tion in step 3 and a few more arithmetic operations.
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7.1.3  The Forsythe-Von Neumann method

This is an ingenious method for generating random numbers in any distribution of
the form:

fix) = cexpl—G{x)] ,0<G(x)<1 and a<x<b
based on the fact that if you:

L. choose u, uniformly between a and b

2. calculate t = Gluy)

3. generate uniformly Uplys o U, O<u .,

where k is determined by the condition:
1Z2u>u,>. 0, <u,

then the probability that k is odd is P{t) = ¢ .

Therefore, whenever k is even, reject that value of u, and go back to 1. When k is
odd, accept that v, as & member of a sample from f. Unfortunately, the fact that
the range of G must be from zero to one requires some fiddling to usc this techni—
que for gencrating from the Gaussian distribution, but some good methods are
based on it. (See Ahrens and Dieter, 1973.)

7.4  Compound methods

Many other techniques have been proposed for generating Gaussian random num—
bers, and the best (fastest exact) methods are composed by combining several of
these technigues. The general idea is to use a fast approximate method most of the
time, and then with a carefully calculaied (small) probability, one draws from
‘corrective’ distribution which just makes up for the approximation in the first tech—
nique. In addition, different regions under the Gaussian curve are attacked using
different techniques, with the region first being chosen using an auxiliary random
number. Such metheds are ofien somewhat complicated to program, and require a
table of constants wsed to choose regions, methods, corrections, elc. A detailed
account of a good compound method is given in Dicter and Ahrens (1973), and a
summary ol many good methods, both simple and compound, for the Gaussian
distribution, is given in Ahrens and Dieter (1972),

7.1.5  Genersting correlated Gaussians

The above sections deal only with the generation of one—dimensional Gaussians,
which can be used directly for multidimensional Gaussian distributions only when
the different variables (dimensions) are uncorrelated (i.c., when the covariance matrix
is diagonal). For the general case of multidimensional Gaussian variables with a
general covariance matrix V, uncorrelated standard Gaussian variables may be used
when transformed as indicated here. Let z be a standard normal random vector (i.e.,
independent Gaussian—distributed components with zero mean and unit variance),
then a unique lower—triangular matrix C exists such that

x=Cz+m

and (x —m) has the covariance matrix
v=CC
where C'is the transpose of C.

Given V, the marix C can be calculated by using the following recursive formu—
las {the ‘square root’ method):

vll
e, = — ©ISism
Vvi
w2
-
€, = v,— Lcjt A<iSm
k=1
()
v, ELcgcey,
=l
6y = ———————  I<j<ism
cJ-l

In practice, one usually wants a large se1 of random vectors ali generated with the
same covariance matrix V, so the matrix C is computed once at the beginning of
the program and then used cach time a random Gaussian vector is wanted,

7.2 ALL OTHER KNOWN DISTRIBUTIONS

A vast pumber of transformations, tricks, and formulas is known for generating
random numbers according to different distributions. For example, given (wo uni—
form numbers, their sum is distributed according 10 & triangular distribution, and
the largest of Lhe two is distribuled like vu. An extraordinarily complete and very
dense collection of such techniques is given in Everett and Cashwell {1972).

7.3 EMPIRICAL DISTRIBUTIONS

It often happens that one wants to generate random numbers distributed according
lo some probability density I which is not any of the usual distributions, but may
for example have been determined empirically, from measurements on a particular
complex sysiem,
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7.3.1  The rejection (hit~or—miss) method

One can of course always usc the hit—or—miss method if the probability density [ is
bounded and its upper bound is known. In this method, one simply chooses points
randomly and wniformly in the space, using the function value at each point
(divided by the maximum function value) as the probability of accepting the point.
A point is then accepted if and only if [/, is greater than a uniform random
number chosen between zero and one. This well-known technique becomes very
ineflicient when the variance of [ is large, in which case nearly all the points are
rejecied, For this reason it is usually better 10 use one of the methods described
below.

7.3.2  Disiribution given as histogram

A distribution in the form of a histogram is usually represented as u vector of fre-
quencies, where the first value is the relative frequency of points desired in the first
bin, #1c. These frequencies must first be normalized so that their sum is unity, then
it is usualy convenient to form the cumulmive distribution, where the ith number in
the cumulative distribution vector is the sum from one to i of the numbers in the
corresponding density vector. (The last number in the cumulative vector is therefore
always equal to one} To genersic a random number sccording to the histogram,
one first generates & uniform number u, and then looks for the first position in the
cumulstive distribution vector where the value is greater than u,. This is the bin in
which that random number should be generated. It may of course be very ineffi-
cient to do this search sequentially {at least for long vectors), and a better method
would be to do it by a binary search technique. {The CERN library program RIS-
RAN uses this method.)

A still fasier method, although much more complicated, is that of the Marsaglis
Tables, described in Ahrens and Dieter (1972).

7.3  Distriwtion given as function

To randomly sample according to a one—dimensional distribution given as a
smooth function, the usual technique is first 10 determine the percentiles of this dis—
tribution, that is the points on the independent variable mxis where the integral of
the function takes on given values. (Called percentikes because Ihey are chosen o
that the integral over each interval is & given percentage, often one percent, of the
fotal} This is the inversion of the cumulative distribution function. The result of
this relatively time—consuming operation is a set of x~values which ¢an then be
used 10 generate random numbers very rapidly, by direct interpolation in the table
of x now considered as a function of F. The CERN library program FUNRAN
uses this method with four-peint polynomial interpolation in a lable of 100 values.

734 Mukidimensional distributions

Muliidimensional distributions given as histograms may of course be treated exactly
as for one dimension. However when the desired disiribution is given as & smooth
function, the method outlined above cannot be extended in & straightforward man-
ner, and would anyway require multidimensional tables and multiimensional inter—
polation, which cilher consume considerable time and space or are quite inaccurate,
especially when the function involved has a large variance, i

The problem of randomly sampling a space of high—dimensionality is closely
related to that of multidimensional integration, so it is reasonable to look at integra—
tion methods for indications on how ¢ proceed. Indeed the recursive partitioning
method of Friedman 1977b is directly applicable and DIVONNE2  (Friedman
1977a) has as an option the generation of points according to the function. This js
because the aim of the partitioning algorithm is to delimit regions in which the func—
tion varisnce is small, afier which one can efficiently apply hil~or—miss generation
or simply produce weighted points,

8. APPLICATIONS

In Monte Carlo calculation, the siep from theoretical undersianding to correct
results is often far from trivial. Uniike analytical calculations where BTOSS errors
usualty produce resulis which are obviously abserd. subtie bugs in Monte Carlo
‘reasoning’ easily give rise to answers which arc completely wrong but sill appear
sufficiently reasonable 1o go unnoticed. If only for this reason, it is indispensable to
consider 8 few examples, particularly those which illustrate the most notorious traps
for the unwary.

8.1 THE UNCERTAINTY OF A WEIGHTED AVERAGE

The results given here can be derived easily from the definitions of mean and vari-
ance, but are included here because they are of such central importance in real cal~
culations. We suppose (hat (s is the usual case) the result of our calculation is an
average aver & set of terms which we will call weights w + We further assume that
this average is Gaussian—distributed in sccordance with the central limit theorem.
and wish 10 determine the standard deviation of this distribution. In order 1o esti-
mate the average and its standard distribution it is necessary (o accumulate

1. The sum of the weights, W
2. The sum of the squares of the weights, Q
3. The total number of cntries, N

Then it follows from chapter 2 that the best estimate of the average is just W/N,
and that the standard deviation of this is D=(1/N) V‘(Q-W’/N).

For the imporiant case when most of the weights are zero (for example for one
bin of a histogram when most of the events go into other bins), the second term

—d5 -



under the square rool in the expression for D is negligeable compared with the firse
term and the result is simplified considerably.

In the other limit, when all weighis are equai (and non—zero), the 1wo terms
under the square root cancel and the standard deviation is of course zero. In prac—
tice it may not appear to be zero because of rounding error in the computer, which
is especially serious for this particular caleulation, For this rcason, the sums Q and
W should be accumulated in double precision, and it is nccessary (o test that
rounding has not caused the argument of the square rool 10 become negative.

8.2 INTEGRATION OVER A TRIANGLE

One of the fundamental advantages of the Monte Carlo method is the ability to
casily handle problems with awkward integration regions (interdependent integration
limits). However, as this example shows, there are a varicty of differemt ways 1o
handle these problems, and not all of them are correcl.

IV
/]

/

X —

Figure 8.1: A triangular integration region.
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Consider (he integration of the function g over the wo—dimensional region
specihed as:

] »
P= [ glx.y) dy dx
=0 y=0
We give four ways of estimating this integral by Monte Carlo.
1. The obvious way.

8) Choose a random number x| between zero and one.

b) Choose another random number y | between 2¢ro and x

c} Take the sum of g(x , y ) repeating sleps a and b.
A simple graphical representation of 1his method shows that it gives the wrong
answer. While it is true that this procedure would yield points only in the allowed
region (the lower triangle in figure 8.1), it would give the same expecled number of
points along cach vertical line in the figure, producing a much higher density of
poimts on the left—hand-side than on the right.

2. The rejection method.

a) Choose a random number x| between zero and one.

b) Choose another random number y , also between zero and one.

¢} Iy, >x,, reject the point and return to a.

d) Accumulate the sum of g(x , y ) for the remaining points.
This method, although correct, has the disadvantage of wsing only half the points
generaled. That is, it is equivalent to integrating over the whole square, but consid—
ering the function 10 be zero on the upper triangle.

3. The folding method (a trick).

a) Choose fwo independent random numbers r, and r,, ¢ach between zero
and one.

b) Set x, = larger of (r,, r,)

c) Set y, = smaller of {r,, r,)

d) Sum up g(x,, y,) as before.
This method is equivalent 1o choosing points r over the whole square, then folding
the square about the diagonal so that all points x.y fall in the lower triangle. It is

clear that this gives a constant point density without any rejection, and is therefore
correct and more efficient than the rejection method.
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4. The weighting method.
4) Choose a random number x | between zero and one.
b) Choose anothzr random number y , between zero and x
¢} Take the tum of 2x g(x,,y ), repeating the steps above.

In this method, the points are chosen ‘incorrectly’ as in the obvious method, but
the bias is corrected by applying the weighting function which happens to be just
2% in this case. This method may or may not be more efficient than folding.
depending on the function g In particular it will be more efficient whenever the
varisnce of xg is smalier than the variance of g. If nothing is known a priorf sbout
8. it is usual 10 avoid weighting if possible,

83 PROGRAMS FOR REAL-LIFE CALCULATIONS

At this point the reader should slready b convinced that the possibilities for unde—
tected gross errors in Monte Carlo celculations are numerous. OF course there is
nothing special aboww Monte Carlo in this respect; complex systems lead to com—
plex calculations and errors can be made on many levels, from the logical under—
standing of the problem and method all the way down o typing erfors in the pro~
grams and dawa. In fact, the Monte Carlo method offers unique opportunities to
verily the results of complicated calculations, #specially in the case of simulations.

The basic principle is 1o output not only the number you are interested in, but
also a3 many other intermediate and accessory results as possible, especially those
for which you know in sdvance what answer to expect, Even if you are only inter-
ested in the global average of some quantity, print out a histogram of the quantity
as a function of some other interesting quantity. This generally costs little or noth~
ing extra in a big calculstion, and may give considerable insight into the system
being studied (if the expecied distribution is not known in advance) or allow a pow—
erful check of the correctness of the computation (if the expected distribution is
known). 1 find it convenicrt to use a general histogramming package such as the
generally available HBOOK (CERN Program Libeary) which allows one to look at
an entire onc— or Lwo—dimensional empirical distribution in very readsble format
with only two or three simple lines of FORTRAN. The quantities which you
should Jook at will of course depend on the problem, but & general rule is 10 exa-
mine the quantity of interest in one more dimension than is required, if possible.

84 SPLITTING AND KILLING IN SEQUENTIAL SIMULATIONS

In this section we consider simulation calculations in which each ‘event’ (member of
the hypothetical populstion) consists of a sequence of clementary interactions.
Examples of such calculations would be:

1. Simulation of the iraffic flow in a city, where ¢lementary interactions would be
car turning left, turning right, parking, breaking down, having an accident,
ete.
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2. Simulation of mculrons or charged particles iraversing matter, where elemen—
tary intcractions would be scattering. decay, absorption, etc.

In these calcutations it may be necessary to mi,n 10 each elementary interaction a
weight proportional to the probability of that interaction. The weight of an entire
event is then the product of the weights of its component interactions, and the final
results of the simulation will be averages over these total weights. As we have seen,
the uncertainties of these aversges sre minimized when the weights sre equal. The
cfficiency of the calculation can therefore be improved by using the following tech-
niques for reducing the variance of the weight distribution:

1. Splitting ~ Afer each elementary interaction, compare the accumulated pro—
duct of weights with the average product at that poimi for the other events.
It it is significantly greater than the average. split the event into two for
more) events from that point on. each one having half (or less) of the
sbovementioned accumulated product. In practice this may be complicatet
to implement using programming languages which do not explicitly support
recursiveness,

2. Killing — Compare the accumulaied product as above, and if it is significamly
less than the average, either kill (reject) the whole event before finishing it,
or continue with the weight increased o the average. The probatslity of kil-
ling the event should be 1-r, where 7 is the ratio of the accumulated product
weight to the average accumulated product at that point.

it should be clear that it is of no use to apply the killing technique after the entire
cvent has been generated, bul only during intermediate steps to avoid the rest of
the calcutstion. Splitting may be performed afier the entire event has been generated
if this is more convenient, but the decision to split should be made on the basis of
the accumulsted product weight at the point st which the event is to be split.

835 MULTIPARTICLE PHASE SPACE

One of the richest areas of Monte Carlo calculations has been the imtegration of the
relativistic phase space of multiparticle reactions in high energy and nuclear physics.
For a reaction with k outgoing particles, the phase spuce volume element is basi-
cally the 3k—dimensional momentum spsce clement. but the true dimensionality is
reduced to 3k by a four—dimensional delta—function expressing the conservation
of energy and momentum. Whenever Kk is grester than four or five, the complexity
of these integrals becomes overwhelming and they can only be performed by num-
erical techniques, usually only by Monte Carlo. Unfortunately, this interesting prob—
lem is much too vast to be treated here, and we will merely point to the most
important references on the subject:

1. The classic work on the subject is the monograph of Hagedorn (1964),

2. A more recent and extensive treaiment, also much more oriented toward prac—
tical Monte Carlo calculations, is the book of Byckling and K ajantie (1973).

3. The most recent techniques for enriching the region of fow momentum—trans-
fer are summarized in the review article of Carey and Drijard (1978), which
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could be considered as an update to the book of Byckling and Kajantie.
The techniques reviewed in this paper are very imporlanl since one finds in
practice that in high—energy collisions only a small part of phase space is
actually populated, namely that corresponding 1o peripheral or low—momen-
lum—transfer events.

8.6 SAMPLING FROM A FINITE POPULATION

In many fields, particularly in astronomy, plasma physics, fluid dynamics, etc., it is
a common problem to simulate the behaviour of a large but finite number of
objects (stars, electrons, molecules, etc.) which interact with one another. A typical
step in such a simulation is the calculation of the force or potential at one object
by summing the contributions due to all the other objects. Although the number of
objects is finite it may be so large that it is not possible to perform the entire sum,
and some approximation must then be made using a smaller sample of objects.
Three possible approaches are:

1. A fixed-point rule. Based on some additiona! knowledge of the physics or the
geometry of Lhe problem, it may be possible to average over some fixed set
of points.  Such a formula would be highly problem—dependent, and the
uncertainty of the result would depend on the distributions involved, per-
haps in a very complicated way.

2. Random sampling with replacement. In this method, objects are chosen ran—
domly, and one does not ‘remember’ which abjects were already chosen, so
that some may be taken more than once. The population thus becomes
infinite, and the theory developed earlier applies just as if it were any other
Monte Carlo calculation: the uncertainty on the potential is the standard
deviation of the individual contributions, divided by the square root of the
sample size.

3. Sampling without replacemeni. This mcthod resembles 2), except thal one
explicitly avoids taking the contribution from any one object more than
once. The final convergence must be better than 2), since onc eventually
reaches zero error when all contributions have been 1aken, but since by
definition we cannot consider all contributions, it is the convergence rate in
the early part of the sequence that maners. This convergence rale starts oul
equal to that of 2), only improving slowly as the number of contributions
taken becomes a significant fraction of the total. The price paid for this
small improvement is having 1o remember which contributions were already
chosen. Also the improvement may not be usable if it is too hard 10 caleu—
late,

_SD_
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