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0. Introduction

Let {1 be a bounded domain in R" with n =3. We are concerned with the
problem of existence of a function u satisfying the nonlinear elliptic equation

-Au=u’"+f(x,u) on (I,
(0.1) u>0 on {1,
u=0 on af},

where p = (n +2)/(n ~2), f(x,0)=0 and f(x, u) is a lower-order perturbation of
4’ in the sense that lim, ... f(x, 4)/u” =0. A typical example is f(x, u) = Au,
where A is a real constant. The exponent p = (n +2)/(n - 2) is critical from the
viewpoint of Sobolev embedding. Indeed soluticns of (0.1) correspond 10 critical
points of the functional

1 +
¢{u)=%I IVulz-p—;_—II |} l—'[I"(Jr,u).

where F(x, u) = [3 f(x, 1) dt. Note that p +1=2r/(n ~2) is the limiting Sobolev
exponent for the embedding HH(Q)< L (). Since this embedding is not
compact, the functional @ does nor satisfy the (PS) condition. Hence there are
serious difficulties when trying to find critical points by standard variational
methods. In fact, there is a sharp contrast between the case p <{n +2}/(n —2)
for which the Soboiev embedding is compact, and the case p =(n +2)/{n - 2).
Many existence results for problem (0.1) are known when p <(n +2)/(n-2)
(see the review article by P. L. Lions [20] and the abundant list of references
in [20]). On the other hand, a well-known nonexistence result of Pohozaev [24]
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asserts that if (1 is starshaped there is no solution of the problem
(A+2)/(n-2}

~Au=u on 0,
u>0 cn 1,
u=0 on aM;

see {1.4). Blft, a§ we sh:.lll see, lower-order terms can reverse this situation

Our motivation for investigating (0.1) comes from the fact that it re;emb].;,
sclame vanan;r'llal problems in geometry and physics where lack of comp.
also occurs. The most notorious example is Ya i : i
s p mabe’s problem: find a function
(n-1)

RS- | n -2) Au=R'y [n+2)l(u—2)_R(x)u on M,

for some constant R'. Here M is an n dimensional Ri i i :
: . - emannia i
Laplacian, and R (x) is the scalar curvature. an manifold, & in
But there are many other examples:
(a) Existence of extremal functions for isoperi ic i iti
. ! . perimetric inequalities, Hard
Littlewood-Sobolev inequalities, trace inequaliti ; Jacobs W Lice
[19), P. L. Lions [21]. cqualities, ete.; see (147, Lieb

(b) Existence of non-minimal solutions f -Mi i
C. Touves b or Yang-Mills functionals; see
(c) Existence of non-minimal solutions for H-s 3 j jecture -
: . ystems™ {Rellich’s con
concerning the existence of “large” surfaces of constant prescribed mean cur-
vature spanned by a given curve in R%); see [5).
{(d) See K. K. Uhlenbeck [31] for still more.

Our paper is organized as follows. I i i ’
ot ws. In Section 1, we investigate the model

—du=u’+Au on Q, b
0.2) u>0 on {1, R

'
u=0 on af), )
where p=(n+2)/(n—2)and A is a real constant. Surprisi cases o
. risingly, t
n =(3)and n =4 turn out to be quite different: rPrsingly, the Whﬂ;?!
a) when n 2 4, problem (0.2) has a solution for cve N
), ) 1y A €(0,A,), where As ¢ -
denotes the first eigenvalue of —4; moreover it has no solution if A ¢ {0, A4) an&

(2 is starshaped (see Theorem 1.1), A
T
; - £
, 11;}:“ reference was brought to our attention by L. Carleson.
, This reference was brought to our antention by M. Atiyah. ok
This problem was mentioned to us by S. Hikdebrands, Wy




{(b) when n =3, problem (0.2) is much more delicate and we have a complete
solution only when (1 is a ball. In that case, problem (0.2) has a solution if and
only if A € Ga,, A4) (see Theorem 1.2).

This unexpected phenomenon can perhaps shed some light on Yamabe's
problem which was solved by Th. Aubin [3] in high dimensions, namely n =6,
in case the Weyl curvature tensor of the Riemannian metric is not identically
zero. (In case it is identically zero, and the manifold has finite Poincaré group,
the problem is also solved in [3].)

Our approach for proving the above results is the following. The solutions
of (0.2} correspond to nontrivial critical points of the functional

¢(u)=£I]Vu|2—p—:_-l-I |u|’”—%A! wl,

Another viewpoint—which we shall use—is to look for critical points of the
functional | {Vu[>~A [ u® on the sphere |lu)l,.; = 1. Such a critical point u satisfies
the equation

—Au—Au = pu’,

where i is a Lagrange multiplier. After “stretching” the Lagrange multiplier
we obtain a solution of {0.2). We prove indeed that for suitable A 's we have:

(0.3) uiﬁn}h “ [Vui-a J u?‘] is achieved.

fulpey=1

The major difficulty in proving (0.3) stems from the fact that the function
ursllullp+1 is not continuous under weak convergence in H((1). The decisive
device in order to overcome this lack of compactness is to establish that for
suitable A’s we have

inf, [Iqul’—AIu2]< Jnf, j|v;;|’=s,

i
u
Bulp o1 =1 Hoalp a1 =1

(0.4)

whelre § corresponds to the best constant for the Sobolev embedding H () c
L.

Our arguments are inspired by the work [3] of Aubin. The main point of
the proof consists in evaluating the ratio

[Vults ~ Allul
w2l — Alluilz

OA( =
u) Iluﬂp+l
for
0.5 =)
(0.5) ulx) W, >0,

where ¢ is a cut-off function. The functions (e +{x|*)™"~** play a natural roje
because they are extremal functions for the Sobolev inequality in R". This
approach has served as a source of inspiration in [5] where a similar method ig
used; in [5] it is not the Sobolev inequality but a certain isoperimetric inequality
that plays the key role,

Finally, for the nonexistence part of Theorem 1.2 (i.e., A S3A,) we use an
argument "2 la Pohozaev” with more complicated muitipliers.

In Section 2, we turn to the general form of problem (0.1). Once more there
is a difference between the cases n =3 and n =4. We summarize our result on
the following simple example:

-Au=u"+pu’ on 1,
(0.6) u>0 on [,
u=0 on M},

wherep =(n +2)/(n —2),1<q <p,and u >0isa constant. When n =4, problem
(0.6) has a solution for every u >0. When n = 3 (p =5), problem (0.6) is again
much more delicate:

(a) if 3<q <S5, problem (0.6) has a solution for every u >0;

(b} if 1 <q =3, it is only for large values of u that (0.6) possesses a solution,

The proofs invoive a combination of various ingredients. We start with a
geometrical result which is an expression of the Ambrosetti-Rabinowitz [1]
mountain pass theorem without the (PS) condition:

THEOREM 2.2. Let ® be a C' function on a Banach space E. Suppose
there exists a neighborhood U of 0 in E and a constant p

@7 such that ®(u) Z p for every u in the boundary of U,
(0.8) $(0)<p and Pv)<p for some ve U,
Set

€=l mapemize,
where P denotes the class of paths joining 0 to v,
Conclusion :

there is a sequence (u,) in E such that
P{u;)»cand Y'(u;)»0in E*.

When applying Theorem 2.2 to (0.6) we choose E = H () and

1 + M-J +1
=1 2_ P+l _ q
0t =4 17— [l - e



A T - T+ SR

Condition 10.7) is clearly satisfied (U being a small ball). The major difficulty
fies in using the conclusion of Theorem 2.2. For this purpose we prove (see
Theorem 2.1) thatif

_]; /2
(09) c< n S »

{hen one can pass (o the limit in the sequence (i;) and obtain a nontrivial critical
point of &. Thus we are left with the question: can one find a v such that the
corresponding ¢ satisfies (0.9)?° This last step is rather technical; it is achieved
by choosing some special v's, for example of the form (0.5). We believe that
this method can be useful in solving other problems where one is in a borderline
situation for the (PS) condition—so that the standard approach fails.

Our thanks to E. Lieb for his kind help {see Lemma 1.2), to F, Browder and
p. Rabinowitz for stimulating discussions, and to O. Bristeau (at INRIA) for
suggestive numerical computations at stages where we could not guess the answer.

1. Existence of Positive Solutions for
—Au =u” +Au on 2, u =0 on 30} with p = (r +2)/(n -2

Let © =R, n =3, be a bounded domain. We are concerned with the problem
of existence of a function u satisfying:

—Au=u’+Au on (i,
(1.1) u>0 on f),
u=0 on dfl,

where p=(n+2)/(n=2) and A is a real constant. As we have indicated, the
cases n = 3 and n =4 are different and will be treated separately.
In subsections 1.1 and 1.2 we consider the cases n = 4 and n = 3, respectively.
In subsection 1.3 we have collected a number of additional properties and
open problems. We denote by A, the first eigenvalue of —A with zero Dirichlet
condition on (1,

1.1. The case n 24. Our main result is the following:

THEOREM 1.1, Assume n Z4. Then foreveryA €(0, A1) there exists a solution
of (1.1).

Remark 1.1. There is no solution of (1.1) when A =4A,. Indeed, let ¢, be
the eigenfunction of —A corresponding to A4 with @; >0 on {1. Suppose u is a

4 Note that ¢ depends on u.
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solution of (1.1). We have

"I (Au)er= Ay I um=j u’¢1+.\ I u¢1>AIu¢1

and thus A <A,.

47

Remark 1.2, There is no solution of (1.1} when A i

_ ( . =0andflisa
smu:shaped domain. This follows from Pohozaev’s identity (see Pohoz:ser:rl?;:h )
which we now recail. Suppose u is a (smooth) function satisfying D

-Au=g(u) on Q,
u=90 on af}, '
where g is a continuous function on R. Then we have

(13) (1—%n)[ng(u)-u+n[na(u)=%j'm(x - v)(g—:)z,

where

(1.2)

G(u)=L gleydr

and » denotes the outward normai to 3). In particul .
deduce from (1.3) that particular, when g(u)=u® +Au we

(1.4) A Lu’r—%{m (x -y)(gf)z.

I 0 is starshaped about the origi

. i ; gin we have (x - »)>0 a.e. on 3[X. When A <
it follows immediately from (1.4) that & =0. When A =0 we deduce from (1 4(;
that du/av = 0 on a) and then by (1.1) we have -

0=_I Au=J. uP; i
n 1] "_

thus 4 =0.

The situation can be quite different when 0 is
. | not starshaped. For example
if {1 is an annulus, there exists a radial solution of (1.1) for every A € (-, Al:):

this fact was first pointed out by Kazdan and W ; bsection
13 (poin 3 betow, arner [16]; see also sul )
Set L

(1.5) S = “i‘n,;‘,' {IVuli-Aluid} with AcR,

‘l‘l"l =1

i -

3

gy b T
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, POSITIVE SOLUTIONS O NOMLINEA where ¢ € 9, (11) is a fixed function such that ¢ (x)= 1 for x in some neighborhood
. of 0. We claim that, as ¢ -+ 0, we have .
so that
_ . (w1 9,1 = b+ O(1),
(1) So=s= i, IVul} :
ulp, =1 K
' (1.12) .- S, :
corresponds to the best constant for the Sobolev embedding H Q) < L *(q), ltellp syt Ole), :
p+1=2n/(n—-2). We start with some remarks concerning the best Sobolev K
constant S: 13 = = +O(l) it nzs,
(a) § is independent of 12 and depends only on n. This follows from the fact {1.13) el =q €
that the ratio [Vull2/|lull,+, with p +1 =2n/(n —2) is invariant under scating; in Killoge|+0(1) if n=4,
other words, the ratio [[Vuyllz/|luxll,+1 is independent of k, where u,(x)=u(kx). . )
(b) The infimum in (1.6) is n:ver achieved when ) is a bounded domain. where K,, K; and K denote positive constants which depend only on n and
Indeed, suppose that S were attained by some function u € H(()). We may such that K, /K, = S.

= i Fi 1§¢] t
assume that u 20 on ) (otherwise replace u by |u|). Fix a ball {} >0} and se VERIFICATION OF (111): We have
a=[4 o % Volr)  (n—-2elx)
1o on A\ Vi, (x)= O g — @ X)X
n e (x) e+l 7 e F[yE

Thus § is also achieved on {} by & and i satisfies —Aif = uii® for some constant

u >0; this contradicts Pohozaev’s result. Since ¢ =1 near 0, it follows that

(c) When Q2 =R", the infimum in (1.6) is achieved by the function I v |2 n =2 I x dx o

.l = - " +

n Ulx)=C(1 +jef)=-272 o TS L ek oW
or (after scaling) by any of the functions =(n-2)? J; ( iil? Tx)" +0()
(1.8) Ue(x) = C.(e +|x]}y "2/, >0, e T
where C and C, are normalization constants; see Th. Aubin [2], G. Talenti [28] = Tlf.'mr'"o( 1),
(both are based on some earlier work of G. A. Bliss [4]) and also E. Lieb [19). £

Our first lemma plays a crucial role in the proof of Theorem 1.1; it is an where
adaptation of an original argument due to Th. Aubin [3] in the context of s x| dx ,
Yamabe's conjecture. Ki=(n-2) _L_ A+=pr - IPU;.

LEMMA 1.1. We have
(1.9) S, <S forall A>0.

VERIFICATION OF (1.12): We have
[laper-] e [ o)1 [
r a e+ "o (e +xP" o (e +x[)"

d K!
a =€7’5+0(1),

Proof: Without loss of generality we may assume that Oe(l. We shall
estimate the ratio

-om+|

Vulz — A3 (e +[x})"

OA (u) = Ilu H".‘ Where

with : _dx *
N K; = [ .(1+I:|z)u=HU“:+:'

1. = = elx

( 10) u(x) u-l(x) (E‘f"lli)in-ivi! E>0,
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Thus (1.12) follows with K= IUI2+1, and K /K2 =S.

VERIFICATION OF (1.13):  We have

| I2=I [¢3(.r)—1]dx+J‘ dx
L Bl T o e+l e+l

When n 25, we have

dx dx
J’n (€ +|x|2)"_2 B L,. (e +|x12)n-2+0(1)

- and (1.13) follows with

dx
K= L- A+

When n =4, we have, for some constants R, and R,

J‘ dx _:j’ dx <I dx
xisR, (&~ xI92 " Jate +|xP T Loiar, (e +ixl)

j‘ dx ]‘R rdr
=W

sk (€ +|X|2)2 o (& +ri)

where w is the area of $*; thus (1.13) follows with K3 =

(1.12) and (1.13), we obtain

S+0(E"" - 53; if n=5,
K,

and

= 1w jlog e|+ O(1),

Yw. Combining (1.11),

OA(uf)= K
S+0(e)~A—2¢ Jloge| it n=4.
K

In all cases we deduce that Q. (u, )} <$ provided ¢ >0 is small enough.

LeMMA 1.2. (E. Lieb) If S\ <S8, the infimum in (1.5) is achieved.
Proof: Let{u)cH ! be a minimizing sequence for (1.5), that is,

{1.14) leeillp 1 =1,

{L.15) ¥,

Since y; is bounded in Hj) we may extract a subsequence—still denoted by
u~such that

—Allz =5, +o(1) as j-rco.

u;—u weakly in H,
W+ u strongly in L%

yj~u ae.on fl,

dx
H+| ——T35=7-
O{ ) L(sﬂxlz)" 2 4
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o
with [lellp+1 = 1. Set v, = u; —u, so that o
AL
v;—0 weaklyin Hao -;f. _

v;»0 ae.on . ,fj}

By (l 6) and (1.14) we have |[Vuj,&S. From (1.15) it follows lhlt
Alluf3= S -8, >0 and therefore u#0. Using (1.15) we obtain 3
(1.16) IVul3+I9eii - Alufl = Sy +o() 3
i
since v, —0 weakly in A ;. On the other hand, we deduce from a result of Brem
and Lieb [8] that

s + w533 = lallgh +loillp 33 +0(1)
(which holds since v; is bounded in L”** and v; » 0 a.¢.). Thus (by (1.14)) we have

1={ulp=i +lolsi+o(1)

A cdyte

and therefore

1Sl +Hil3 1 +o(1) )

which leads to b
. 1 x

(.17 15fulb-1+3 IP,lz +0(1). :
.

We claim that Ea
(1.18) %13 ~ A ffellz = Saluell31: «
this will conclude the proof of Lemma 1.2 since u» 0. ‘;;_“
We distinguish two cases: -

(@) $,>0 (e, 0<A <Ay, b

(b) S. =0 (i.e. AZAy). _ L

In case (a) we deduce from (1.17) that e
(1.19) S, S SullulZ 1+ (S SV 3 +0 (1), "'.?g
ol

Combining (1.16) and (1.19) we obtain (1.18). i
In case (b) we have S, = S||ull2+1 since Jull,+1 5 1. We deduce, again, (1.183.-
from (1.16).
F. Browder has pointed out that this argument proves more: in fact, v,-'D
strongly in Hu, in other words, every minimizing sequence for (1.5) is relatlvr-!?
compact in H} for the strong Hj topology. ' “'&

»

Proof of Theorem 1.1 concluded: Let u € H§ be given by Lemma 1.2, that il-?".f

leallper=1 and {Vull—Alul=S..

Ta
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we may as well assume that u =0 on () (otherwise we replace u by |ul). Since
4 is a minimizer for (1.5) we obtain a Lagrange multiplier 1 €R such that

~Au—Au=uu” on Q.

In fact, p =5, and §, >0 since A <A,. It follows that ku satisfies (1.1) for some
appropriate constant k >0 (k =§,""7"); note that & >0 on 2 by the strong,

maximum principle.

Remark 1.3. Our first proof of Theorem 1.1 did not involve Lemma 1.2.
Instead, we considered, as in the works of N. Trudinger [30] and Th. Aubin [3]:

(1.20) o= inf, {Vuli-Afulz} for q<p.

ﬁuﬂ.. =1
It is easy to check that limg., ug = Si. Moreover since the embedding scL®!
is compact, the infimum in (1.20) is achieved by some u, € H such that i, =0
on 0, llugll.1=1and

{1.21) ~Altg = Alig = gl q.
It follows that
(1.22) Sttiahe1 = A loagll S 9l A sl = -

As q -+ p (through a subsequence), u, —~u weakly in H LN Passing to the limit in
{1.22) we obtain

S—AlulB =S,
and thus (by Lemma 1.1), uw 0. Finally, we deduce from (1.21) that u satisfies
—Au—Au=Su".
Stretching S, as above, we obtain a solution of (1.1).
1.2. Thecasen=3. Let Q<R’be a bounded domain. We are concerned
with the problem of existence of a function u satisfying
~Au=u’+Au on 0,
(1.23) u>0 on f},
u=0 on a0},

where A is a real constant. This problem turns out to be rather delicate and we
have a complete solution only when (1 is a ball (see subsection 1.3 for more
general domains). Our main result is the following:

THEOREM 1.2. Assume () is a ball. There exists a solution of (1.23) if and
only if A € (3A4, Ay).

448 H. BREZIS AND L. NIRENBERG

For simplicity we take '
Q={xeRx|<1} B
so that 4y = ? (the corresponding eigenfunction is |x) ™" sin (=|x|). .

We already know that (1.23) has no solution for A ZA, and f -
. : =4 O
subsection 1.1). As in subsection 1.1 we set 1 ra=o (’e"‘

(1.24) Si=inf (Vuli~AlulZ} with AeR,
Bulg=1

and § =§,.
The counterpart of Lemma 1.1 is

LEMMA 1.3. We have

(1.25) S5,<S forall A>i,.
Proof: We shall estimate the ratio

2
OA (u) - “Vullz — *"u "g

Jfee s
with
(1.26) u(x)=u,(r) = —24) 5
A TEYS r=[xl.e>0,"

where ¢ is a fixed smooth function such that e(0)=1, ¢'(0)=0 - :
We claim that, as ¢ » 0, we have » ¢’ (0)=0and o(1)=0.

1
(127 Ve = ;%',m j le’(r)l* dr + O(e /%),

{+]
. K,
{1.28) "H-"a=;171+0(8”1),
1 t
(1.20) uli=o [ o%dr+0(), |
o v

th;l;l: K and K are positive constants such that K,/K>=8 and w is the area
oy .

P

.

i
VERIFICATION OF (1.27): We have

@'(r) re(r)

u‘(’)=(€ +r)7 e +r!)3;!

.,

.‘éi @-:’-ﬁ-"ﬁ_‘ e
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and thus

2
Trletn ) 2reln)e’(r) | re’n) ] 2 gy
[IVu,I[% =w L ‘[(E +r2)— e +r) +(£ Ty

Integrating by parts we find 1 2 o
1 P 3r r
[ ey, | o) Jan
0

o (e+r7) e +r) (e+r)

and therefore

2 "ol 2dr+3m.t:‘|-1i'ilr—)ir'z’jdr.
(1.30) ﬂvu.||2=¢"L (t__H!)' o (£+77)

Using the fact that ¢(0)=1 and ¢'(0) = 0 we obtain

1 ] 2.2 1
le'inl°r -_-I " dr+O0(e),
(1.31) L war =l le'(r)
12,02 1 2 -

e (nr =I L dr+ 0™,
(1.32) ,[, (e +r)° dr o (e +r%) !
Also, we have , - )

1 r2 a-1/2 5 - 1 I 5 d3+0(1)-

0w | WF"’T”’L T © e @

Combining (1.30)-(1.32) and (1.33) we obtain (1.27) with
o 2

Kl=3wL md&'

21/2,
Finally we note that K, = [gs [VU 2 dx, where U(x)=1/(1+1x})""%; here we use
the fact that

o 4
o 2 Ly 3
s _ ds = 1em.
|, Gaopds=tom ond L GEUE
0

VERIFICATION OF (1.28): We have

2
1 6y 2 oS -1)r? o,
———5—5‘9 tryr = I L2 dr+ ——— dr
||u.|!g=w‘|-o (e +r7) dr = o (e+r) rre o (e +77)
=I|+Iz.
Since ¢(0) =1 and ¢'(0) = 0 we obtain
bt ~1/2
=0 ).
I[;léCL md" (e

450 H. BREZIS AND L. NIRENBERG

Next we have

w72 2 ao 2
w $ w s
IZ—FTIL (1+s!)jds_s_mj; (l+s§)3d’+o(l)'

Therefore we find

= [o [ i asvoie)]
"u."ﬁ"'eTji w Ay ds +0O(e)
and (1.28) follows with ‘
= 2 1 \
Ke=[w ] e B

VERIFICATION OF (1.29): We have

1 ¢2(f)f2

1
2= = 2 1/2
uellz = @ A mdf wL @ (r)dr+0(c'?,

Combining (1.27), (1.28) and (1.29) we ob1ain

112 @ ! 7N ! 2
(1.34)  Qilu)=S+e ;{—Z[L le'(r)] dr-AJ;w(r)dr]w(e).

Choosing ¢ (r) = cos (3a7) we have

1 1
J, loordr=in? [ gy
0

and thus

Q) =S +Gr’-A)Ce 2+ O(e)

for some positive constant C. The conclusion of Lemma 1.3 follows by choosin
& >0 small enough.

The next Lemma is a crucial step in the proof of Theorem 1.2:
LEMMA 1.4.  There is no solution of (1.23) for A SA;.
Proof: Suppose u is a solution of (1.23);

[13]) we know that u must be spherically
where r = x|, and thus & satisfies

by a result of Gidas-Ni-Nirenber;
symmetric. We write u(x)=u(r)

(1.35) -u"—%u'==u’+)m on (0,1),

(1.36) u'(0)=u(l)=0.

“t
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we claim that
1
(1.37) ]lu’(awho'")r’ dr=§j0 w(rp —r2¢'y dr + ' (1) (1)
0

for every smooth function ¢ such that (0) = 0.* Indeed, we first multiply (1.35)
by r*yu’ and obtain
1
[ Parter = dr - e
1]
1.38) 1 s ’
( =-} [ uQrg +riy) dr-3A L w2y +r3y") dr.
(1]
Next we multiply (1.35) by (4r*¢' — r¢)u and obtain

1 1
j PGy’ — ) dr—ij' wriy” dr
o 0
(1.39)

1
0

= r u®Griy' — ) dr+a I wW2Griy' —ng) dr.
0

ini i know that there is
mbining (1.38) and (1.39) we obtain (1.37). We already
f: solutiorgz of (1.23) for A =0; thus we may assume that 0<A Sir’ In (1.37)
we choose ¢(r) =sin ((41)'/%r) so that (1) 20,

Ay’ +ipm =0,

d
" g —riy' =rsin ((42)12r) - r2{41)"? cos ((4A ¥2)y>0 on (0,1)

(since sin 8 — @ cos # >0 for all 8 € (0, »]) and we obtain a contradiction.

: S (see Lemma
Proof of Theorem 1.2 concluded: IfA > 1A, weknowthat$, <

1.3). We may proceed exactly as in the proof of Theorem 1.1 (L.emma 1.2) anq
conclude that the infimum in (1.24) is achieved. Thus we obtain some ue Hy

with u 20 on 1, |lufls=1 and
—Au~Au=Su’.

If, in addition, A <A, then S, >0 and after stretching, we obtain a solution of

- {1.23).

1.3. Additional properties, miscellancous remarks and open problems.

(1). REGULARITY OF SOLUTIONS. The solutlion u of (1.1) given by
Theorem 1.1 (respectively Theorem 1.2) lies in Hg(f2). In fact, u belongs to

* Note that Pohozaev's identity corresponds to the case where (r)=r.
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L™(M)). This is proved by Trudinger {30] for Yamabe’s problem (on a manifolq
without boundary) but the same argument applies here. Alternatively, one could

also invoke the following Lemma which is essentially contained i

n Brezis-
Kato [7]:

LEMMA 1.5, Assume u € H)(Q)) satisfies
“du=au in P'(Q),
where a(x)e L"*(Q)) and n 23. Then u € L'(Q) for all 1 < co,

For our purpose we use Lemma 1.5 with a = A + 4" eL™? (since u e L™h,

Finally we note that u € C*()) (since & >0 in Q) and, up to the boundary,
u is as smooth as 3 and p permit.

(2). THE CASE p>(n+2)/(n~2) wrth n=3. It follows from general
bifurcation theory—see e.g. Rabinowitz [25]—that for any p>1 (even p>
(n +2)/(n —2)) problem (1.1) possesses a component € of solutions (A, u) which
meets (A, 0) and which is unbounded in R X L™(€1). Theorem 1.1 suggests that,
when p=(n+2)/(n -2) and n =4, the Projection of € on the A-axis containg
the interval (0, A,) (with the obvious modification when # =3 and p=5)

On the other hand when p>(n +2)/(n—2) and Q) is starshaped, problem
{1.1) has no solution if A SA*, where A * is some positive constant which depends
on {2 and p. This was pointed out by Rabinowitz [26]in the case n = 3 and p=1
but the same argument works in the general case: suppose u satisfies (1.1);
Pohozaev's identity leads to (assuming star-shapedness about the origin)

it easen] (2 ) ) o

and thus we find

IO WL P+l 2
(1.40) ( 1+3n p+l).[nu <ALu.

We deduce from (1.1) and ( 1.40) that

MJ’ uzsj' |V“IZ=J. u'”+AJ u?
1] [ 1 n

-1
<A(—1+%n——'1—) J. u2+AI u?,
p+l 0 n
that is,

A>a, 12 p=(1+D)/(n-2)
n p-1
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(3). UNIQUENESS-NONUNIQUENESS When {1 is a ball, every solution of
(1.1) is spherically symmetric (see [13]). Even in this case we do not know
whether (1.1) has a unique solution. Uniqueness results for some semilingar
clliptic equations in all of R" have been obtained by C;)ffman [9], L. A. Peletier
and J. Sermin [23], and K. McLeod and J. Serrin [22]." On the other hand, if
is an annulus, say 0={x eR"; 1<jx| <2} with n 24, theq, (1.1) admits both
radial and nonradial solutions for all A >0 sufficiently small.” Indeed, set

(4 o= inf VUl -Aludl),

bl o1 =1

where H, ={u € H3; u is radial}. Since the injection H, <L’"' is compact, the
infimum in (1.41) is achieved (for any A €R) by some w, € H, such that

uz0 on 0, fulba=1

and —Auy —Auy =Z,uf on Q. If A <Ay, then 2, > 0 and, after stretching X,, we
obtain a solution of (1.1). Next we consider S, defined by (1.5). It is easy to
check that the functions A—X, and A—S, are continuous (even Lipschitz
continucus). We have § =S,< %, (otherwise the best Sobolev constant would
be achieved—which is impossible; see subsection 1.1). Thus for A > 0 sufficiently
small, $, <Z., and the infimum in (1.5) is achieved (see Lemma 1.2) by some
nonradial function; in this way we obtain a nonradial solution of (1.1). We do
not know whether the nonradial solutions occur by secondary bifurcation from
the branch of radial solutions
A similar argument shows that the problem

—Au=u" on theannulus 1,
{1.42) u>0 on 1,
u=0 on 0,
admits both radial and nonradial solutions for all ¢ <(n +2)/{n —2) sufficiently
close to (n +2}/{n —2).

(4). EQUATIONS WITH VARIABLE COEFFICIENTS. Let QcR", n=4,bea
bounded domain. Assume a(x)e L™(§}) is given such that

(1.43) a(x)=8§ onsome open subset of (),

¢ Other uniqueness resuits have been obtained by W. M. Ni: Uniqueness of solutions of nonlinear
Dirichlet prablems, 1. Diff. Eqns., to appear, and in a paper by Ni and R. Nussbaum (in preparation).
Of course this fact does not contradict the result on spherical symmetry of (13] which holds
only on balls. Nonradial solutions for some semilinear equations on the annulus have also been
investigated by D. Schaeffer {27] and C. Coffman [10).




