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Abstract

These notes have their origin in a course of introductory nature given by the author
at the workshop on recent trends in nonlinear variational problems held at ICTP in april
2003. Scalar curvature type problems on compact Riemannian manifolds and related
problems are discussed, with a special emphasis on the I/Z-theory for blow-up.
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1 Basic PDE material

We briefly comment here on some constructions and results that we will use in the sequel.
This includes a brief discussion on Sobolev spaces, a brief discussion on the regularity and
the maximum principles for elliptic type equations, and basic examples of applications of the
variational method.

1.1 Sobolev spaces

Given (M, g) a smooth compact n-dimensional Riemannian manifold, one easily defines the
Sobolev spaces Hy (M), following what is done in the more traditionnal Euclidean context. For
instance, when k = 1, and p > 1, one may define the Sobolev space HY(M) as follows: for
u € C*(M), we let

[l e = [lull, + [[Vull,

where ||.||, is the LP-norm with respect to the Riemannian measure dvy. We then define HY (M)
as the completion of C*°(M) with respect to ||.||z». A similar definition holds for Hi (M), with

k
lullzg = >_11V7ull,
=0

Very usefull properties of HY are that Lipschitz functions on M do belong to the Sobolev spaces
HY(M) for all p, and that if u € HY (M) for some p, then |u| € HY(M) and |V|u|| = |Vu| almost
everywhere.



As for bounded open subsets of the Euclidean space, the Sobolev embedding theorem (con-
tinuous embeddings), and the Rellich-Kondrakov theorem (compact embeddings), do hold.
Given g € [1,n), let

* ng
q =
n—q

be the critical Sobolev exponent. One has in the particular case k = 1 that:

(1) For any q € [1,n), and any p € [1,¢*], Hi (M) C LP(M) and this embedding is continu-
ous, with the property that it is also compact if p < ¢*.

(2) For any ¢ > n, and any a € (0,1) such that (1 — a)g > n, H{ (M) C C%*(M) and this
embedding is continuous, with the property that it is also compact if (1 — a)g > n.

Similarly, one gets continuous embeddings H{(M) C HE(M)if1 < ¢ <p, 0 < m < k, and
1/p = 1/q — (k — m)/n, and continuous embeddings H}{(M) ¢ C™(M) if 0 < m < k and
(k —m)q > n. The same holds for the Rellich-Kondrakov theorem involving H}-spaces, k > 2.

1.2 Regularity and maximum principles

Let (M, g) be a smooth compact Riemannian manifold. The Laplacian with respect to g is the
second order operator whose expression in a chart is given by

Agu = —g" ((%ju — Ffj@ku)
where the I'¥

’s are the Christoffel symbols of the Levi-Civita connection in the chart. The
equations we will be interested in are basically of the form

Agu+a@)u = f(z)

where a, f are given functions on M. A function u € H?(M) is said to be a weak solution of
this equation if for all ¢ € HZ(M),

/M(Vu, V) dvg + /Ma(x)ugodvg = /Mf(x)godvg

Regularity results for this equation do hold. They are similar to the more traditional ones
expressed in the Euclidean context (regularity is a local notion, this is not very surprising. .. ).
The regularity result we will mostly use is the following: If a is smooth, and f € HL(M)
for some k € IN and p > 1, then a weak solution u to the above equation is in Hy o(M).
In particular, it follows from this result, and the Sobolev embedding theorem, that when f
is smooth, u is also smooth. Needless to say, the “bible” for such topics is the exhaustive
Gilbarg-Trudinger [19]. A simplier, but very nice reference, is the lecture notes [22] by Han
and Lin.

In parallel with regularity, the very useful maximum principles hold for the Laplacian on
Riemannian manifolds. A currently used form is as follows: If a nonnegative u € C*(M) is
such that for any r € M,

Agu(z) Z uz)f(z, u(z))



for some continuous function f: M x IR — IR, then either u is everywhere positive, or u is the
zero function. This easily follows from the Hopf maximum principle, as usually stated.

In order to illustrate in simple situations the variational approach we will use in the sequel,
we discuss three elementary problems in what follows. For the sake of clearness, we recall the
following result, that we refer to as the Lagrange multipliers theorem.

LMT: (Lagrange multipliers theorem) Let (E, || - ||) be a Banach space, Q be an open subset of
E, f:Q — IR be a differentiable function, and ® : Q — IR™ be of class C". Let also a € IR" be
such that H = ®1(a) is not empty. If xo € H is such that

(@) = min f(z)

zC€H

and if D®(xq) is surjective, then there exist \; € R, i = 1,...,n, such that

i=1

where the ®;’s are the components of .

The equation D f(zg) = Y7, A D®;(xo) is referred to as the Euler-Lagrange equation of
the minimization problem f(zy) = mingey f(z). The A/’s are referred to as the Lagrange
multipliers of the equation.

1.3 The Rayleigh characterisation of the first nonzero eigenvalue

We let (M, g) be a smooth compact Riemannian manifold. As is well known, A is an eigenvalue
for A, if there exists u € C°(M), u # 0, such that Aju = Au. Multiplying this equation by u
and integrating over M it is easily seen that if A is an eigenvalue for A, then A > 0. Similar
arguments give that Ao = 0 is an eigenvalue for A, and that u is an eigenfunction for Ay = 0 if
and only if u is constant. More generally, the set of eigenvalues of A, is a sequence

O=X <M <...< @ <...<+x

For instance, on the unit n-sphere (S™, go), Ax = k(n + k — 1), and on the projective space
(IP*(IR), go), Ax = 2k(n + 2k — 1). We discuss here the Rayleigh characterisation of the first
nonzero eigenvalue A\, and prove the following,.

Theorem 1.1 Let (M, g) be a smooth compact Riemannian manifold. If Ay is the first nonzero
eigenvalue of A,, then

2
weH [, uldy,

where H is the set consisting of the u € HZ(M)\{0} which are such that [y, udv, = 0.

Proof: It is easily seen that a similar statement is that

A o= inf [ |Vuldv,

ueEH J M



where ~
H= {u € H}(M)s.t. / u’dv, = 1 and / udvg = O}
M M
We let 1 be defined by
p = inf / |Vu|*dv,
M

ueH

and let (u;) in M be a minimizing sequence for u. Clearly, (u;) is bounded in H2(M). Since
HZ(M) is a reflexive space, and the embedding HZ(M) C L*(M) is compact by the Rellich-
Kondrakov theorem (even when n = 2, noting that Hf C HY for ¢ < 2), there exists u € H{(M)
and a subsequence (u;) of (u;), such that

(1) (u;) converges weakly to u in HZ(M)
(2) (u;) converges to w in L?(M)

By (2), v € H. Independently, it follows from (1) and a basic property of the weak limit (the
norm of a weak limit is less than or equal to the infimum limit of the norms of the sequence)
that

Jull < linint s
By (2) we then get that
[ Vultde, < g

In particular, u is a minimizer for u, and g > 0 since H does not possess constant functions. By
the above mentioned Lagrange multipliers theorem, this gives the existence of two constants «
and (3, the Lagrange multipliers, such that for any ¢ € HZ(M),

Vo). dv, = / d / d
/M(VU v‘P)g Ug = M‘P vy + 3 MUSO Vg

Taking ¢ = 1, we get that o« = 0. Taking ¢ = u, we get that 8 = p. Hence, u is a weak
solution of Aju = pu. By standard regularity theory, u is smooth. Hence, y is an eigenvalue
of A,. It is easily seen that p has to be the smallest nonzero eigenvalue of A,, so that p = A;.
This proves the theorem. O

1.4 The Laplace equation

We discuss here existence (and uniqueness) of a solution u to the Laplace equation
Agu=f

on a compact Riemannian manifold (M, g). Though not necessary, we assume for convenience
that f : M — IR is smooth. Integrating the Laplace equation, one sees that a necessary
condition for the existence of a solution is that

/M Jdvg =0

The elementary result we wish to briefly discuss here is the following:



Theorem 1.2 Let (M, g) be a smooth compact Riemannian manifold, and f a smooth function
on M. The Laplace equation Agu = f possesses a smooth solution if and only if [y, fdvy = 0.
Moreover, the solution is unique, up to the addition of a constant.

Proof: As already mentioned, the condition that f is of null average is a necessary condition.
We prove now that it is also a sufficient condition. Let

H= {u € HX(M) s.t. /M udv, = 0 and /M fudv, = 1}
and
p=inf /M |Vu|>du,
Clearly, H # (). Consider a minimizing sequence (u;) € H for u: u; € H for all 4, and
legloo y |Vus|*dvy = p

Thanks to the Rayleigh characterisation of A;, as discussed above, if v € H#(M) is of null

average, then
1
2 2
wdv, < —/ Vau|“dv
/ g = )\1 I | g

It easily follows that the u;’s are bounded in HZ(M). Since HZ(M) is a reflexive space, and the
embedding H#(M) C L?(M) is compact by the Rellich-Kondrakov theorem (even when n = 2,
noting that H? C H{ for ¢ < 2), there exists u € H2(M) and a subsequence (u;) of (u;), such
that

(1) (u;) converges weakly to u in H7 (M)
(2) (u;) converges to u in L*(M)

By (2), u € H. By (1), and a basic property of the weak limit (the norm of a weak limit is less
than or equal to the infimum limit of the norms of the sequence), we get that

[ \VuPdv, < p

Hence,
[ IVuPdv, =

and p is attained. In particular, i > 0 since H does not possess constant functions. By the
above mentioned Lagrange multipliers theorem, this gives the existence of two constants o and
8, the Lagrange multipliers, such that for any ¢ € HZ(M),

/M(Vu, V) gdv, = a/M wdvg + ﬁ/M Feodo,

Taking ¢ = 1, one gets that a = 0. Taking ¢ = u, one gets that § = u. Hence, u is a weak
solution of the equation

Agu=pf



By standard regularity results, u is smooth. The function p~'u is then the solution we were
looking for.

The proof of uniqueness is also very simple. If u and v are two solutions of the Laplace
equation, then Ay(v—wu) = 0. Multiplying this relation by v —u, and integrating over M, gives

that
/M V(v — u)’dvy = 0

Hence, v — u is constant, and this ends the proof of the theorem. O

1.5 Subcritical equations

We let (M, g) be a smooth compact Riemannian manifold of dimension n > 3, and let h be
a smooth function on M. Given ¢ € (2,2*), where 2* = 2n/(n — 2) is the critical Sobolev
exponent, we consider equations like

Agu+hu = "t in M
u>0inM

where \ € IR. We define
_ - 2 2
= dg.?f{ - (qu! + hu )dvg

where
H= {u € Hi(M) s.t. /M |ul?dv, = 1}

We prove the following theorem in what follows.

Theorem 1.3 Let (M, g) be a smooth compact Riemannian manifold of dimension n > 3, and
let h be a smooth function on M. Given g € (2,2*), there exists u € C®°(M), u > 0 in M, such
that

Agu+ hu = pu?"

and [y uldvg = 1, where p is as above.

Proof: (1) Existence. Here again, the idea is to prove that there exists a (positive) minimizer
for u. We let (u;) € H be a minimizing sequence for u. Since |V|u|| = |Vu| a.e., up to replacing
u; by |u;|, we can assume that u; > 0 for all 4. Since g > 2, (u;) is bounded in L?. In particular,
w is finite, and (u;) is bounded in HZ(M). Since H?(M) is a reflexive space, and the embedding
H?(M) C L%(M) is compact by the Rellich-Kondrakov theorem, there exists u € HZ(M) and
a subsequence (u;) of (u;), such that

(1) (u;) converges weakly to u in HZ(M)
(2) (u;) converges to u in LY(M)
(3) (u;) converges to u a.e.

By (3), v > 0, and by (2), u € H. Independently, it follows from (1) and a basic property of
the weak limit (the norm of a weak limit is less than or equal to the infimum limit of the norms
of the sequence) that

[l < T inf [jus| 2



By (2), and since LY(M) C L*(M), we then get that

p= /M (qu|2 + hu2) dv,

In particular, v is a minimizer for . By the above mentioned Lagrange multipliers theorem,
this gives the existence of @ € IR, the Lagrange multiplier, such that for any ¢ € H#(M),

/M(Vu, V) du, + /M hupdv, = a/M u?pdy,

Taking ¢ = u, we then get that o = u. It follows that there exists u € H, u > 0, a weak
solution of our equation.

(2) Regularity. There is still to prove that u is smooth and that u > 0. We use a standard
bootstrap argument. Let f = pu?™', and p; = 2*. Since u € H}(M), the Sobolev embedding
theorem gives that € L?*(M). Hence f € LP/@=Y(M), and it follows from standard regularity

that v € Hj !/ (q_])(M ). Using once again the Sobolev embedding theorem, we then get that

{ w € LP2(M) , where

b2 = n(q—nlz;l—%l
if n(g—1) > 2py, or uw € L¥(M) for all s if n(¢g — 1) < 2p;. Going on with such a process, we
get by finite induction that v € L*(M) for all s. In order to see this, we let py = n{q — 2)/2.
Then p; > pg. We define p; by induction letting

{ Pir1 = #ﬁf—%m ifn(g—1) > 2p;
Piv1 = +00 ifn(g—1) < 2p;

For any 4, p; > po. It follows that p;.q > p;. Moreover, u € LP+1 (M) if n(q — 1) > 2p;, and
u € L°(M) for all sif n(qg—1) < 2p;. Now, either there exists ¢ such that p; > n(q — 1)/2, or
pi < n{q—1)/2 for all 4. In the first case, p;;1 = 400 and we get that u € L°(M) for all s. In
the second case, (p;) is an increasing sequence bounded from above. Thus (p;) converges, and

if p is the limit of the p;’s, then
np

n(g—1)—2p

so that p = n(g — 2)/2, which is impossible. This proves that v € L°(M) for all s. By standard
regularity results we then get that u € H5(M) for all s. In particular, v € C'(M) thanks
to the Sobolev embedding theorem. Then, since ¢ > 2, u?! € C'(M), and, in particular,
u?™t € H}(M) for all s. Thanks to standard regularity results, it follows that v € H5(M)
for all s, and the Sobolev embedding theorem gives that © € C?*(M). We can now apply the
maximum principle. Since u # 0, we get that u > 0 everywhere. By standard regularity results,
it easily follows that u € C°°(M). This ends the proof of the theorem. O

p:

1.6 Regularity for the critical equation

We let (M, g) be a smooth compact Riemannian manifold of dimension n > 3, and let & be a
smooth function on M. We consider equations like

Agu+ hu = Au T



where A € R, u > 0, and 2* = 2n/(n — 2) is the critical Sobolev exponent. The existence
of a solution to this equation will be discussed in the following chapter. We assume here that
there exists u € H2(M), u > 0, a weak solution of the above equation. We prove that u is
then smooth and either the zero function or everywhere positive. An important remark here
is that the above bootstrap argument, as described for the subcritical equation, does not work
anymore when dealing with the critical equation. The following theorem is due to Triidinger
[46]. It was then extended by Brézis-Kato [6].

Theorem 1.4 Let (M, g) be a smooth compact Riemannian manifold of dimension n > 3, and
let h be a smooth function on M. Ifu € H¥(M), u > 0, is a weak solution of an equation like

Agu+ hu = !
where A € IR, then u is smooth and either u =0, or u > 0 everywhere.

Proof: As already mentionned, the regularity argument discussed for the subcritical equation
does not work anymore for the critical equation. However, as easily checked, the argument
works if we can prove that v € L*(M) for some s > 2*. Following Triidinger, we prove the
existence of such an s > 2* in what follows. Given L >0 welet Fr,: IR — IR and G : IR — IR
be the Lipschitz functions defined by

Fot)=t|*/? if|t| < L
2* (2*_2)/2 2* - 2 2*/2 .
Fu(t)= 5L [t — ==L it > L

and

Gr(t) =t Tif|t| < L

* x99 2* - 2 o* 1 .

It is easily checked that for ¢ > 0,
Fr(t) <t¥77, Gpt) < ¥, Fr(t)?* > tGr(t)
2*
and (Fi(t)* < S GL(t) whent # L
We let F; = Fr(u) and G = Gr(u). Since Fy, and Gy, are Lipschitz functions, E; and Gy, are

in H}(M). Now, since u is a weak solution of the equation Aju + hu = Mu? 7!, we can write
that

/M(VUVGL)dvg + /M huGrdv, = )\/M w? TG rdv,

Since G (u) < u¥ 1, and u € L¥ (M), it follows that there exist C;,Cs > 0, independent of L,
such that 3
| GL@)Vuldv, < €1+ G [ v 1Grdy,

and since (F(t))* < LG (t) and tGL(t) < Fi(t)?, we can write that

2 : s
. /]V Vv, < C1+ s /M w22y,



Given K > 0, let

K = {x s.t. u(z) < K} :
Kt = {93 s.t. u(z) > K}

Thanks to Holder’s inequalities, and thanks to the Sobolev inequality for the embedding
H(M) C L¥ (M),

P24, — / 2%-2 2 / 22 2
/Mu Tdvg u rdvg + Y T duy

2% -2 72 o, " oo VP
[ FLdvng(/mu dvg) (/I(+FLdvg>

2% 2 70 Fro* 2/
/K_ u” “Frdvg +e(K) (/M F; dvg)

< f ) u? 2 F2dv, + Cse(K) fM (lVﬁL|2 + ﬁf) dvg

A

VAN

where ¢(K) = (fK+ u2*dvg)2/n, and C3 > 0 does not depend on K and L. Since u € L (M),
lim ¢(K)=0

K—+4o0o

We fix K such that C>2Cs5¢(K) < 2. When L > K,
/ B uz*_215’fdvg < KQ(z*_l)Vg
where V, is the volume of M for g. Independently, since u € L?" (M), and since Fr(t) < #2"/2
Fidv, < C
/M L3 =

where Cy > 0 does not depend on L. It follows that there exist (5, Cg > 0, independent of L,
with Cg < 1, such that

/ IVFLPdUg S 05 + Cﬁ/ |VFL|2d’Ug
M M

Hence,

. Cs
Fr|2dv, <
/M |V L[ Ug - 1 —_ GG

and, thanks to the Sobolev inequality for the embedding HZ(M) C L? (M),
/ ﬁ%* dvg S 07
M
where C; > 0 does not depend on L. Letting L — +0o0, it follows that u € L&)*/2(M). Noting
that (2%)?/2 > 2* we get the existence of some s > 2* such that u € L*(M). As already

mentioned, together with the maximum principle, this proves that u is smooth and that either
u =0 or u > 0. The theorem is proved.

10



As an important remark, we claim that there are no a priori C%-uniform bound for solutions
of equations like Aju + hu = u?"~1. In order to prove this claim we consider the case of
the scalar curvature equation on the unit sphere. If (5™, go) is the unit n-sphere, the scalar

curvature equation reads as

-2 .
Agots + —n(n4 Jy =

Given 8 > 1 and zo € S”, we let Ufo be the function defined on S™ by

n(n — 2) n=2 1-2
Ub(a) = (= (8" = 1)) * (8~ cosdg (a0, 7))
Then the Ufo’s are solutions of the above equation. This follows from conformal invariance,
relating the scalar curvature equation on the sphere to the critical equation Au = u? ! on the
Euclidean space. Noting that

nin —2)(6+ 1))”7"2
48 - 1)

so that Ufo (xg) — +o00 as § — 1, this proves the above claim. On the other hand, thanks to the
De Giorgi-Nash-Moser iterative scheme, a C%uniform bound follows from LP-uniform bounds,
p > 2*. The De Giorgi-Nash-Moser iterative scheme is often referred to in the literature as the
Moser iterative scheme. The De Giorgi-Nash-Moser iterative scheme gives the following.

U, (o) = (

MIS: (De Giorgi-Nash-Moser iterative scheme) Let (M, g) be a smooth compact Riemannian
n-manifold, n > 3, h be a smooth function on M, and u € H2(M), u > 0, be such that for any
nonnegative o € HZ(M),

Vau, V)d /h d </ 21y
/M(u go)vg—i—Mugovg_ Mu pdu,

Then u € L*®(M). Moreover, for any z in M, any A > 0, any p > 0, any ¢ > 2*, and any
6 > 0, if u is some nonnegative function of H2(M) satisfying the above inequation and

/ uldy, <A
B (26)

then

sup u(y) < C’(/B( updvg)l/p

yEBg(8)

where C' > 0 does not depend on u.

A proof of this result can be found in the very nice reference Han-Lin [22]|. As stated here,
in its first part, the above theorem makes also use of the Triidinger arguments developed in
the proof of Theorem 1.4. As a remark, one passes from small §’s (given by Han-Lin [22]) to
arbitrary &’s by writing that

B.(9) < U By(dy)

Yy€Bx(8)

11



where §, < 6. Hence B;(0) C U1, n By (6y;) for some y; € By(d), i = 1,...,N. The
equations

sup u < CiHUHLP(Bz(?%))
By, (0y;

then give that
sup u < C|lul|te(z. 26)

T

since By, (20,,) C B;(26).

2 Existence theory for critical equations

The existence of solutions in the examples we discussed in the preceding section comes from
the compactness of the embeddings of HZ in LP, p < 2*. We discuss here existence results for
a critical equation for which compactness does not hold anymore. A particular case of this
equation is the Yamabe equation. The Yamabe equation that we discuss below, is perharps
the most important historical example where the Sobolev embedding we have to consider is
critical: continuous, but not anymore compact.

We let (M, g) be a smooth compact Riemannian manifold of dimension n > 3, and let h be
a smooth function on M. We consider equations like

Agu+hu= "1 in M
u>0inM

where A € IR, and 2* = 2n/(n — 2) is the critical Sobolev exponent. We define
_ 2 2
= dg.?f{ - (qu! + hu )dvg
where
H={ue H}(M)st. / ful? do, = 1}
M
Since L2 (M) C L*(M), p is finite. We distinguish here three cases. The negative case where

@ < 0, the null case where = 0, and the positive case where p > 0.

2.1 The negative case
Given g € (2,2%), we let
pe=inf [ (|Vul® + hu?) dv,

ucHq J M

where
Hy = {u € HI(M)st. /M Jul?dv, = 1)

Thanks to the preceding section, Theorem 1.3, there exists u, € C*°(M), u, > 0, such that

Aguig + hug = #qug—l

12



and [ uldvy, = 1. We assume from now on that ¢ < 0. Hence there exists u € H such that
I{u) < 0, where

I{u) = /M (IVu|2 + hu2) dvy

¢ <1 %
8 ((f u]?) /q)

and that [y, |u|9dv, < Vql_‘_%, where V is the volume of M with respect to g, we easily get that
there exists o > 0 such that y, < —gp for all ¢ € (2,2%). In a similar way, we easily get that
there exists K > 0 such that p, > —K for all ¢ € (2,2*). Hence, there exists g9 > 0 such that

Noting that

1
—— Sy < =&
€0

for all ¢ € (2,2*). We let z, be a point where u, is maximum. Then Aju,(z,) > 0. It follows
from the equation satisfied by u, that

h(zq)uq(z,) < ﬂqug—l(xq)
In particular, A(z4) < 0, and

1
q—'2 <
ug (zg) < - max ()|

so that the u,’s are uniformly bounded. By standard elliptic theory, the u,’s are then bounded
in HZ(M) for all p. In particular, a subsequence of the u,’s converge to some u in C*(M) as
g — 2*. Assuming that the p,’s converge to some A as ¢ — 2*, we get that u is a weak solution
of

Agu+ hu =

Moreover,  is nonzero since [y, uddv, =1 and u; — v uniformly as ¢ — 2%, so that

2*
u” dv, =1
/M g
Thanks to standard regularity theory, and the maximum principle, we then get that u is smooth

and everywhere positive. In particular, u is a strong solution of the above equation.

With similar arguments to the ones we discussed above, see also subsection 2.4, we easily
get that limsup,_,s. 1 < p. Independently, it is straightforward that p <1 (( f ug*)—1/2*uq) SO

that
" 2/2*
()<

for all g. Since vy, — u uniformly, we have that [ ug* — [u? = 1. Hence, we also have that
liminf, o g > p. It follows that p, — p as g — 2* so that A = p.

Summarizing, we proved that if p < 0, then there exists u € C®(M), u > 0, such that

Agu+ hu = pu? 1

and [y, uz*dvg = 1. In particular, v is a minimizing solution of the equation. Moreover, u is
obtained as the uniform limit of a subsequence of the u,’s.
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2.2 The null case
Everything here comes from Theorem 1.3. We assume that p = 0 where
_ 2 2

pw= Jgf{ . (IVUI + hu )dvg

and
= {ue HXM .t./ 2 gy, = 1
H {ue T(M)s M|u| Vg }

Given g € (2,2%), we let

pg = inf (|Vu|2 + hu2) dvg

ueHq J M

where

H, = {u e HI(M)st. /M Jul*dv, = 1)
Also, we let uy € C®(M), uq > 0, given by Theorem 1.3, be such that
Agtig + hug = pgud™

and [y uldv, = 1. First we claim that if 4 = 0, then p, = 0 for all g. Given € > 0, we let
ue € H be such that I(u.) < e. Thanks to the Sobolev inequality, there exists A > 0 such that
for any u € H} (M),

ull3 < A (IVullf + [[ull3)

Taking u = u. in this equation, we get that for any ¢ > 0,
1< A(e+ Bllucl3)

where B = 1 + max,ep |A(z)|. Hence, there exists C' > 0 such that ||u.|ls > C for all ¢ > 0
sufficiently small. In particular, for ¢ > 2, there exists C, > 0 such that

/M |ue|dvg > Cq
Independently, it is clear that p, < I <||u5||q_1u5), so that
luellghg < e
Fixing g > 2, and letting ¢ — 0, it follows that p, < 0. On the other hand,
fg = I (ug) = llugll3:1 (”uq”;*luq) > [fuugll3.se

so that p, > 0. This proves the above claim that if ;4 = 0, then y, = 0 for all g. Letting
u = ||uy||5u, for some g, we get that u is a smooth positive solution of
Agu+ hu = pu® ™!

such that [, u®" dvg = 1. In particular, u is a minimizing solution of the equation.
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2.3 Sharp constants for the Sobolev inequality

We start with a short discussion on the Euclidean space IR", n > 3. Thanks to Sobolev [42],
see also Gagliardo [18] and Nirenberg [33], there exists a positive constant K such that for any

u € Cy(R"), /
1/2%
(/ |u[2*d:13) <K / |Vu|?2dz
R" V /e

where C§°(IR") is the space of smooth functions with compact support in R". The value of
the sharp constant K in this inequality is known, thanks for instance to Aubin [2] and Talenti
[45]. If K, stands for the sharp constant,

4

Kp= | ———r
n(n — 2)w72/"

where w,, is the volume of the unit n-sphere. Taking K = K,, in the above inequality, we get
what is referred to as the sharp Euclidean Sobolev inequality.

The extremal functions for the sharp Fuclidean Sobolev inequality are known. We let
w: IR" — IR be the function defined by

n—2

1 2
|z}?
1+ n(n—2)

Then, u is an extremal function for the sharp Euclidean Sobolev inequality. Moreover, we
refer to Caffarelli-Gidas-Spruck [9], u is the unique positive solution of the critical Euclidean
equation

Ay = u* !
such that u(0) = 1 and such that u(0) = maxgze g~ u(z). Then, we refer once more to Caffarelli-
Gidas-Spruck [9], any positive solution @ of the eritical Euclidean equation Au = u?"~! is of

the form .

t(z) = )\n%u()\(:v - a))

where A > 0 and a € IR". In particular, the positive solutions of Au = u?"~! are extremal

functions for the sharp Euclidean Sobolev inequality. For such functions, [pa |Vul?dz = K™

and [pn u¥dr = K;". As a remark, similar arguments to the ones developed in the proof of
Theorem 1.4, see for instance Struwe [44], give that if w € H7 . (JR") is a weak nonnegative
solution of Au = »*"~1, then u is smooth and either u = 0 or u > 0.

We let now (M, g) be a smooth compact Riemannian manifold of dimension n > 3. We
know that H(M) C L*¥ (M). Hence, there exist positive constants A and B such that for any

u € HE(M), .
(/ |u|2*dvg) < A/ |Vul*dv, + B/ w?dv,
M M M

Then, easy claims are as follows:

(i) any constant A in this inequality has to be such that A > K2, and
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(ii) for any € > 0, there exists B, > 0 such that the inequality holds with A = K2 + ¢ and
B = B..

It follows that the sharp constant A in the inequality is K2. A long standing conjecture of
Aubin [2] was whether or not the above inequality holds with A = K?2. The conjecture was
proved in Hebey-Vaugon [27, 28]. It follows that for any smooth compact Riemannian manifold
(M, g) of dimension n > 3, there exists B > 0 such that for any u € HZ (M),

. 2/2*
(/ |ul|? dvg) < Kﬁ/ |Vu|2dvg+B/ u?dv,
M M M

and the inequality is sharp. We will use such a sharp inequality many times in the sequel. More
material on sharp Sobolev inequalities can be found in the monographs Druet-Hebey [13] and
Hebey [23]. We refer also to the notes Druet [11].

2.4 The positive case

We assume in what follows that i > 0. Recall that

p=inf [ (|Vuf+ hu?) du,

uEH JAF

where

H = {ue HA(M)s.t. /M ful” do, = 1}

Then, the operator A, + h is coercive in the sense that its energy controls the HZ-norm. More
precisely, if g > 0, then there exists A > 0 such that for any u € HZ (M),

/M (IVuf? + hu?) doy > A%

In order to see this, we note that by Holder’s inequalities, if ;z > 0 then there exists fi > 0 such
that for any v € HZ(M),

/M (|Vu|2 + hu2) dvg > ﬂ/M w?dv,
We let 0 < € < ji/2 be such that (1 — )i+ eh > ji/2. Then
2 2 2 2 ~ 2
L;Uvm +hu)d% > EAQOVM +hu)m@+(1~@ul;ud%
ii

s/M |Vu|?dv, + 5 /M u’dv,

> > +u?)d

> 5/M ([Vu| +u) Vg

In particular, if £ > 0, then the operator A, + h is coercive. We prove the following theorem
in this subsection.

[V

Theorem 2.1 Let (M, g) be a smooth compact Riemannian manifold of dimension n > 3, and
h be a smooth function on M. If

1
: 2 2
5161;; - (]Vu| + hu )dvg < i
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where K, is as in subsection 2.8, and H is as above, then there exists u € C*®(M), u > 0, such

that

Agu+ hu = pu®

and [y, uztdvg = 1. In particular, u is a minimizing solution of the critical equation.

There are several historical elementary proofs of this theorem. We prove here the theorem
using two distinct elementary approaches.

Proof 1: This is the historical approach, as initiated by Yamabe [49], and then developed
by Aubin [3] and Triidinger [46]. We prove that the solution u of Theorem 2.1 can be obtained
as the limit of the subcritical solutions given by Theorem 1.3. Given ¢ € (2,2*), we let

pe=inf [ (|Vul® + hu?) dv,

ucHqg JM

where

Hy = {u € H}(M)s.t. /M uldo, = 1)
Also, we let uy € C®(M), uq > 0, given by Theorem 1.3, be such that
Agtig + hug = pgud

and [y, uldv, = 1. An easy claim is that y, — p as ¢ — 2*. In order to prove this claim, we
proceed as follows. First, given € > 0, we let u € H be such that [(u) < p+ €. It is clear that
llull;, = llull2 as ¢ — 2*. Since u € H, so that ||u||» = 1, it follows that I (||u||;1u) — I(u) as
g — 2*. Noting that [|ul|;'u € H,, so that pu, < I ([|u|lq_1u), we then get that limsup p, < p+e
as ¢ — 2*. This holds for all € > 0. Hence,

limsup pg < p
q—2*

Conversely, it follows from Holder’s inequality that
q g 7713
1= [Jugllg < [lugll3- Vs

where V} is the volume of M with respect to g. Hence, liminf ||u,|l»« > 1 as ¢ — 2*. Noting
that

gl < pg = I(uq)
we then get that u, > 0 for all ¢, and that

< i
< llgégfuq

It follows that

D, py = p

and the above claim is proved. Since A, + h is coercive, the u,’s are bounded in H}(M).
Therefore, there exists u € H2(M) such that, up to a subsequence,

17



(1) g = u in H3(M),
(2) uy — u in L*(M), and
(3) uy — u a.e.

Thanks to (3), u is nonnegative. Thanks to (2), u, — w in L?(M). By standard integration
theory, if (f,) is a bounded sequence in LP(M) for some p > 1, and if (f,) converges a.e. to f,
then f € L?(M) and f; — f in LP(M). It is clear that the f;’s given by f, = ug™" are bounded
in L¥/=D(M). Since f, — u* ! a.e., it follows that for any ¢ € H} (M),

/M ug_lgodvg — /M uz*_lgodvg

as ¢ — 2*. Independently, we get with (1) and (2) that for any ¢ € HZ(M),

/M(Aguq + hug)pdv, — /M((Vu, V) g + hup)du,

as ¢ — 2*. Multiplying by ¢ the equation satisfied by u,, and integrating over M, we then get
that u is a weak solution of the equation

Agu+ hu = pu? 7t

By standard regularity results, as discussed above, and the maximum principle, we get that u
is smooth and that either v = 0 or u > 0 everywhere. In order to prove that u # 0, we use the
energy assumption of the theorem and the sharp Sobolev inequality. It follows from the sharp
Sobolev inequality that there exists B > 0 such that

lugllz < KallVugllz + Bllugll3
for all g. Thanks to Holder’s inequality and the equation satisfied by the u,’s we can write that

2(
1=lug]l? < Vg

2(
<V

—5) 2
”uq”2*

Y=Y

—3%) 12 2
K (H“q) + O||“q”2)

where V; is as above, and where

B
Letting ¢ — 2*, it follows that
1< K2 (pn+Clull3)

By assumption, 1 > puK2. Hence, ||ullz > 0, and u # 0. In particular, as already mentioned,
u is smooth and everywhere positive. Now, in order to end the proof of Theorem 2.1, there is
still to prove that ||ulsx = 1. Since u, — u in HZ(M), we also have that u, — u in L¥ (M).
Hence, ||u|l2>» < liminf ||uy||le+ as ¢ — 2*. It easily follows that ||ulj2x < 1 since ||ug|lq = 1 and
g < 2*. Conversely, multiplying by « the equation satisfied by u, and integrating over M, we
get that I(u) = uljul|%. Hence,

I (Jfullz'u) = pllul3?
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and since IS||U|2_*1’U,) > u, we also have that ||ul2» > 1. It follows that ||u|2» = 1, and Theorem
2.1 is proved.

Proof 2: We present a more direct and more elegant proof based on convergence arguments
as developed in Brézis-Lieb [7]. We let (u;) € H be a minimizing sequence for z. Up to replacing
u; by |u;|, we can assume that the u;’s are nonnegative. Clearly, (u;) is bounded in HZ(M).
After passing to a subsequence, we may thus assume that there exists v € HZ(M) such that
u; — u weakly in HZ(M), u; — u strongly in L*(M), and u; — u almost everywhere as
i — +o00. In particular, u is nonnegative. It easily follows from the weak convergence that

IVeuills = [V (w = w)l3 + IVull3 + o(1)
for all ¢, where o(1) — 0 as i — +o00. We also have, see for instance Brézis-Lieb [7], that
lallZ = lws = w3 + flull3: + o(1)

for all i, where, as above, o(1) — 0 as i — 4o00. Thanks to the sharp Sobolev inequality, there
exists B > 0 such that for any 1,

lus — ull3 < KRV (us = w3 + Bllus — ull3 -
Since u; € H, it follows that
(1= i) < K2 (1Vw)l2 — 1Vull3) + (1)
Since I(u;) — p, and since u; — u in L2(M), we also have that
K2 (Il = I1Val3) = Kiu-K2( [ [VuPde,+ [ hude, ) +o(1)
< Kop— Kjpllull3 +o(1).

Hence,
o\ 2/2*
(1= llull3?)™ < Kop (L = Jull3.) -
We assumed that zK2 < 1. Noting that
©\2/2*
L= [l < (1= ull3) ™
this implies that ||u||2+ = 1. Then, ||Vu;||2 — ||Vull2 as i — +oo, and since
IVl = IV (w; — w3 + | Vul3 +o(1)

we get that u; — u strongly in H?(M) as i — +oco. In particular, u is a minimizer for y, and
u is a weak nonnegative solution of the equation

Agu+ hu = pu? L

By standard regularity results, and thanks to the maximum principle,  is smooth and positive.
This proves Theorem 2.1.
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2.5 Sharpness of the condition in Theorem 2.1

An important remark about the condition in Theorem 2.1 is the following.

Proposition 2.1 For any smooth compact Riemannian manifold (M, g) of dimension n > 3,
and any smooth function h on M,

1
: 2 2
inf [, (IVul+ k) dvy < 25

where H is the set consisting of functions in H2(M) such that [ |Ju|* dv, = 1.

The proposition is a reformulation of the fact that for any (M, g), any B > 0, and any
constant A, if
lull < AllVullf + Bllul;

for all u € HZ(M), then A has to be such that A > K?2. A possible proof of this proposition,
there are others, is as follows. We let x5 be some point in M and let 6 > 0 small. For ¢ > 0,
we define u. by

ug(m)z(s-i—rz)l_z —(5—{—52)1_% ifr <4
u(z) =0 ifr>4¢

where 7 stands for the distance to xp. Thus we recognize the extremal functions of the sharp
Euclidean Sobolev inequality in the definition of the u.’s. The u.’s were introduced in Aubin
[3]. Noting that

Jar (Vue® + huZ)dv, 1

lim

=0 2n N K2
Sy ud2dv "
M Ue g

we then get the proposition. In particular, the condition in Theorem 2.1 is sharp. The case
of equality in Proposition 2.1, and the notions of weakly critical and critical functions are
discussed in Hebey-Vaugon [29].

3 The Yamabe problem

We discuss here the Yamabe problem, a problem that is often referred to in the literature on
elliptic type equations with critical Sobolev growth. The goal with the Yamabe problem is to
prove that, up to conformal changes of the metric, there always exists a metric of constant scalar
curvature. This was announced to be true by Yamabe [49] in 1960. Roughly eight years later,
Trudinger [46] discovered a serious difficulty in Yamabe’s proof. He repaired the proof when
the conformal class of the reference metric is nonpositive. Eight years later after Trudinger
[46], Aubin [3] improved Yamabe’s approach and reduced the problem to the proof of some
strict inequality on the Yamabe invariant of the manifold. Such an inequality was proved to be
true by Aubin [3] in some cases, and then by Schoen [35] in the remaining more difficult cases.
In particular, in his remarkable work, Schoen [35] discovered the unexpected relevance of the
positive mass theorem. The Yamabe problem, whose origin goes back to the beginning of the
1960’s, was solved something like twenty five years later.
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3.1 Introduction

Let (M, g) be a smooth compact n-dimensional Riemannian manifold. We assume in what
follows that n > 3. We denote by [g] the conformal class of the reference metric g. By
definition,

9] = {e*g / uec C®(M)}
A metric g of the form § = e“g is referred to as a conformal metric to g. We let Rm, be the

Riemann curvature tensor of g, and Rmgy be the Riemann curvature of §, where § = ¢™g. By
standard computations, one gets that

1
e ®Rmz=Rm, — g0 <V2u —Vu® Vu+ §|Vu|gg)

In this expression, Vu and V?u stand for the covariant derivatives of « with respect to g. In
local coordinates, (Vu); = d;u, while

(V%)U = &-ju - I’fjaku

where the T';’s are the Christoffel symbols of the Levi-Civita connection in the chart. The
symbol & stands for the tensorial product, and the symbol ® stands for the Kulkarni-Nomizu
product. It is defined on a vector space F, and for two symmetric bilinear forms A, k£ on E by

(hok)(X,Y,Z,T) = h(X,2)k(Y,T)+ kY, T)k(X, Z)
—hX, T)K(Y, Z) = (Y, 2)k(X,T)

Contracting twicely the transformation law that relates the Riemann curvatures of g and g,
and if S; and S5 are the scalar curvatures of g and g, one easily gets that

e?S; =S, +2(n— DAu— (n—1)(n— 2)|Vu|3

As above, Agu stands for the Laplacian of u with respect to g, that is minus the trace with
respect to g of V2u:

Agu = —g" (VQ’U,) = —g" <3iju - Pijaku)
in local coordinates.

Let us now write ¢ under the form § = = g, for v : M — IR some smooth positive
function. The above relation becomes

n— 2 n— 2 at2

A A =
JU + In— l)Sgu
This is easily checked.

As already mentioned in the very beginning of this section, the Yamabe problem consists of
proving that, up to conformal changes of the metric, there always exists a metric of constant
scalar curvature. According to what we just said, this problem also receives a PDE formulation.

The Yamabe problem: (1) Geometric formulation. For any smooth compact Rieman-
nian mantfold (M, g) of dimension n, n > 3, there exists § € [g] of constant scalar curvature.
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(2) PDE formulation. For any smooth compact Riemannian manifold (M, g) of dimension
n, n > 3, there exists u € C°(M), u > 0, and there exists A € IR such that

n—2

nt2
mSgu = Aun=2 (E)

Agu +
where A, is the Laplacian with respect to g, and Sy is the scalar curvature of g.

If u and A satisfy equation (E), and if § = = g, one gets by the transformation law that
relates the scalar curvatures of g and g that

4(n —1)

S, =
g n—2

A

In particular, this gives a conformal metric to g of constant scalar curvature.

The left hand side in this equation is referred to as the conformal Laplacian. More precisely,
the conformal Laplacian, denoted by Ly, is the operator defined by

n—2

Lyu=Agut "2
A Ty

Squ

It is important to note that L, is conformally invariant in the following sense: If g = goﬁg is
a conformal metric to g, then, for all u € C®(M),

n+2

Lg(u) = ¢~ =2 Ly(up)

This follows by computing the difference between the Laplacian with respect to g and the
Laplacian with respect to g.

3.2 The Yamabe invariant
We let 'H be defined by

H= {u e H(M) / [ |ul™dv, = 1}

and pg by

#g = inf I{u)

where the functional I is as in the statement of theorem 2.1. Our first claim is that p, is a
conformal invariant. This is the subject of the following lemma:

Lemma 3.1 If g and § are two conformal metrics, then pg = iq.

Proof: The proof of this claim goes in a very simple way, by direct computations. Write that
4
§ = @n-zg. Then, dv; = ¢* ™ 2dy,. Hence, for any u,

2n 2n
u|mn—2dv; =/ uw|—2dv,
) vy = [ fuplad,
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On the other hand, by conformal invariance of the conformal Laplacian,

Ig(u) = Iy(up)

where the indices g and § mean that the functional has to be considered with respect to § on
the left hand side of the relation, and with respect to g on the right hand side of the relation.
Clearly, this proves the lemma.

Regarding terminology, u, is referred to as the Yamabe invariant of (M, g). Its conformal
invariance can be seen from a more interesting point of view. What is referred to as the Hilbert
functional in Riemannian geometry, is just the integral of the scalar curvature:

= /M Sydu

An FEinstein metric g on M is characterized by the property that it is a critical point of this
functional when restricted to the set of metrics having the same volume than g. Restricting
instead the Hilbert functional to a conformal class, and fixing once more the volume, one gets
conformal metrics of constant scalar curvarture. The relation between the Hilbert functional
and the Yamabe invariant is expressed in the following lemma.

Lemma 3.2 Given (M, g) smooth compact of dimension n > 3,

n—2
b= g1y Y5 =, S
where piy is the Yamabe invariant of (M, g), and V; stands for the volume of M with respect to
g.
Proof: We just sketch the proof of this result. Let C°(M) be the set of smooth positive
functions on M. What we claim here, without any proof, is that

Lg = inf I(u)
{uGCf(M) , fMumdvgzl}

In other words, one can replace HZ(M) by C5°(M) in the definition of y,. This is not very

difficult to prove. Let now § be a conformal metric to g. Write g under the form g = unz g.
On the one hand,

2n
Vi = / un-2dv
g " g
This is very easy to check. On the other hand, multiplying by u the equation that relates the
scalar curvature of g to the scalar curvature of g, and then, integrating over M, give that

n—2
I(w) = =% / Sydv,
() 4n—1) "7 K
Clearly, this proves the lemma.

Before we go on with the study of the Yamabe problem, let us point out that the sign of
jg is basically the sign of the scalar curvature in a conformal class. This is the subject of the
following theorem:
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Theorem 3.1 Let (M, g) be a smooth compact Riemannian manifold of dimension n > 3.
Then the following holds:

pe >0 < 3gelg, S;>0

l

pe=0 & 3Fgelg, S;=0
pe<0 & 3g€efgl, S;<0

where by Sz > 0, respectively = 0 and < 0, we mean that the relation holds at any point in M.
In particular, one can not get two conformal metrics with scalar curvatures of distinct signs.

Proof: Let us just prove one of these implications, for instance that if x, > 0, then there
exists § conformal to g with the property that S; is positive. An easy claim here is that if pg
is positive, then, p, in Theorem 1.3, ¢ € (2, 2*), is also positive. Fix ¢, and set

4

g=ui’g
where u, is given by Theorem 1.3. Then, according to the equation satisfied by u,, here
h = 4(7;—__21)5'9, and to the transformation law that relates the scalar curvature of g and g, we
get that

4(77, — 1) q—2t2
S5 =———

g n— 2 b
In particular, S; is positive.

Note that according to this theorem, the sign of the scalar curvature is a conformal invariant.
In dimension n = 2, the sign of the scalar curvature is even a topological invariant according
to the Gauss-Bonnet theorem. One has indeed when n = 2 that the Euler characteristic x (M)
of M is related to the scalar curvature by the relation

1
x(M) = yo /M Sydvg

For n > 3, the sign of the scalar curvature is not anymore a global invariant. One may prove
that any compact Riemannian manifold of dimension n > 3 possesses a metric of negative
scalar curvature. This result extends to the Ricci curvature. On the contrary, according to
works by Gromov-Lawson [20, 21], Lichnerowicz [31], and also Schoen and Yau [38], there are
manifolds which do not possess metrics of positive scalar curvature. On the one hand, negative
scalar curvature, and even negative Ricci curvature, are given for free. On the other hand, the
question of the existence of a metric of positive scalar curvature on a given manifold carries
obstructions. An interesting case to keep in mind is that torii do not possess metrics of positive
scalar curvature.

3.3 Resolution of the problem

Given (M, g) compact, we assume that g, > 0. By proposition 2.1, p;, < K, 2. Moreover, we
can prove that u, = K2 when (M, g) is conformally diffeomorphic to the unit sphere. Thanks
to this remark, and thanks to Theorem 2.1, the Yamabe problem was historically reduced to
the following.
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RP: (Reduced problem) Prove that if (M, g) is not conformally diffeomorphic to the unit sphere
(8™, h) of same dimension, then p, < K 2.

In other words, the Yamabe problem was reduced to the proof that if (M, g) is not conformally
diffeomorphic to the unit sphere of same dimension, then there exists u € HZ(M), u 2 0, such

that
J(U) < ﬁ

where IV |2d [ S, 2
M | VU[gaUg + M PglU”dUg
J(U): g 4(n l) n_z
(Jar lul > g )

This approach leads to the following question.

Question: Given (M, g) compact with g > 0, find condition(s) that ensure that (M, g) is not
conformally diffeomorphic to the unit sphere.

Since conformal diffeomorphisms preserve conformal flatness, and (S™, 4) is conformally flat,
an easy condition is as follows:

C1 (Aubin, [3]): (M, g) is not conformally flat.

Under this condition, Aubin [3] was able to solve the problem when n > 6. We outline his
argument here. As test functions, we consider the extremals for the sharp Euclidean Sobolev
inequality

n—2

(/ |u|%daz)T < Kfl/ |Vu|?dz
R" R"

that we cut off to make them zero at the boundary of a small ball. In other words, given x € M,
0 > 0 small, and € > 0, we let u, . be given by

e = (5-1—7‘2)1_% - (5—{—52)1"% ifr<é
Uy = 0 if not

where r is the distance to z. For n > 4, the conformal flatness of (3, g) is characterized by
the nullity of the Weyl tensor W,. Assuming C1, there exists z in M such that |W,(z)| > 0.
We fix such an z. Up to a conformal change of the metric, we may assume that Rc,(x) = 0,
where Rc, is the Ricci curvature of g. This is an easy claim. By conformal invariance of the
Weyl tensor, the relation |Wy(z)| > 0 still holds. Standard computations, see [3], then give the
following:

1
J (Uge) = w2 (1+01|W( )|2521n€+0(821n5>) ifn==6
1
J (Uze) = el (1 — Co|W,(x)]?e* + 0 (62)) ifn>6
where C7 > 0 and (5 > 0 depend only on n. Hence, for € > 0 small,

1
K2

n

I (tge) <
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Summarizing, u, < K, if (M, g) is not conformally flat and n > 6. This solves the Yamabe
problem for such manifolds.

When (M, g) is conformally flat, the global geometry has to be taken into consideration and
we need to be more subtle. This case, together with the case of manifolds of dimensions 3, 4,
or 5, was solved by Schoen [35] in a remarkable paper. We outline here his approach when the
manifold is conformally flat. We therefore assume in what follows that (M, g) is conformally flat
with p, > 0. Given z € M, we let G, be the Green function at z of the conformal Laplacian.
If the metric g is chosen such that it is flat around z, then, for ¢ close to =,

Guly) = !

(n — 2)wp_1r"2

+ 0, (y)

where 7 is the distance from z to y, and «, is a smooth function. This is easy to check. Much
more subtle is the observation, due to Schoen [35], that a,(z) is, up to a positive scale factor,
the mass of the asymptotically flat manifold

(Morr9o) = (M\{2},GT7g)

A long standing conjecture in the Physics litterature, going back to works by Arnowitt, Deser,
Gibbons, Hawking, Misner, and Perry, is that, roughly speaking, the mass of an asymptotically
flat manifold is nonnegative, and null if and only if the manifold is isometric to the Euclidean
space of same dimension. This conjecture was solved, at least when n is not too large, by
Schoen and Yau, see [39, 40], but also Schoen [36]. We refer also to Witten [48] for the proof
of this conjecture in the spinorial case. Coming back to our initial situation, one then gets the
following statement:

PMT: (Positive mass theorem - Weak form) The quantity o, (z), usually referred to as the
energy of g at x, is nonnegative, and null if and only if (M, g) is conformally diffeomorphic to
the unit sphere.

A very nice direct proof of this weak form of the positive mass theorem is in Schoen and Yau
[41]. With respect to the Yamabe problem, one gets here the desired condition that ensures
that a conformally flat manifold is not conformally diffeomorphic to the unit sphere:

C2 (Schoen, [35]): (M, g) is conformally flat, but has positive energy.

In such a case, the argument of Schoen [35] goes as follows: Given z € M, we choose g such
that it is flat around z, and, for € > 0, we let the u,.’s be defined by

12
Upe = (5—1—7"2) P ifr<é
Uze = A(Gy —Méy) S <r <26
Upe = AG, ifr > 26

Here, r is the distance to z, &, = a, — a,(x), 1 is a cut-ofl function between ¢, 26 with suitable

properties, and A is chosen such that the u, . are continuous across 8B,(6). Following Schoen
[35], one then find that for § > 0 small enough,

n—2

1 2n . N .
Tuae) < K2 (/M uge’ dvg) — Ciap(z)e? 4o (55'1)

n




where C; > 0 does not depend on ¢. Here again, this gives that for ¢ small, J (u,e) < K2,
Hence, pu, < K;? if (M,g) is conformally flat. This solves the Yamabe problem for such
manifolds. When n = 3, 4, or 5, though more tricky, the argument basically goes in the same
way. We refer to Schoen [35] for details.

Depending on whether the manifold is not conformally flat of dimension n > 6, conformally
flat, or of dimension n = 3, 4, or 5, distinct arguments have to be used. This is clearly not
a satisfactory situation, and we are left with the problem of finding an argument that unifies
those of Aubin and Schoen. This was first done by Lee and Parker in their very nice survey
paper [30]. The unified argument that we present here is due to Hebey and Vaugon [26].

Theorem 3.2 Let (M, g) be a smooth compact n-dimensional Riemannian manifold, n > 3,
that we assume not to be conformally diffeomorphic to the unit sphere. Given x € M, and
& > 0 small, the functions ug., € > 0, defined by

1-n
= (e—I—rQ) P ifr<é
1—n
Uy e = (5+52) P ifr >4
give the inequality p, < K 2. In particular, the Yamabe problem is affirmatively solved.

Proof: We discuss the proof of this theorem when the manifold is either not conformally flat
and of dimension n > 6, or conformally flat. When n = 3, 4, or 5, the argument basically goes
in the same way.

We suppose first that (M, g) is not conformally flat and of dimension n > 6. We fix as
above z such that |Wy(x)| > 0, and choose the metric ¢ such that Rey(z) = 0. The same
computations as those made in Aubin [3] then lead to similar expansions. In particular, for

€ > 0 small,
1

K

and the theorem is proved when (M, g) is not conformally flat of dimension n > 6.

I (Uge) <

Suppose now that g is conformally flat. Given z € M, choose g such that it is flat around
x. Easy computations then give that

1 n__1 )wn 15 n_1
ﬁ"’@é‘? ( _1 /deg W)'FO(&O )

n

J (ux,s) <

The argument then follows from the equation

n=2 1 1
4(n — l)Oém T/ = PP JuSgdvg  4(n — L)w,_1p72

where, for § such that g is flat on B,(§), the supremum is taken over p € (0,d) and § € [g] such
that § = g in B,(p). (See [26] for the proof of this equation). Since a,(z) > 0 if (M, g) is not
conformally diffeomorphic to the unit sphere, we may choose g and é such that

n—2 — 2wp-10"
d W= 2)%n-10
n—l)/s Vg — oy <0
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Hence, for € > 0 small,

and the theorem is proved when (M, g) is conformally flat, but not conformally diffeomorphic
to the unit sphere. As already mentioned, the argument basically goes in the same way for
manifolds of dimension n = 3, 4, or 5.

Other proofs of the Yamabe problem have appeared recently. This includes a “topological”
proof by Bahri [4] when the manifold is conformally flat. This includes also in the same spirit
a proof by Bahri and Brezis [5] for manifolds of dimension n = 3, 4, and 5. A remarkable
approach was presented by Schoen [36, 37]. In particular, it follows from Schoen [36, 37] that
solutions of the Yamabe equation are compact in the C?-topology. This result was first proved
for conformally flat manifolds in [36] under the additional assumption that the energy of the
solutions is bounded. The bound on the energy was removed, and a more direct and elegant
proof was presented in [37], however still in the case of conformally flat manifolds. A proof of
this result of Schoen for arbitrary manifolds of dimensions 3, 4, and 5 was recently obtained
by Druet [12]. The argument in Druet [12] is based on the C°-theory for blow-up developed by
Druet-Hebey-Robert [15, 16].

4 Palais-Smale sequences

As above, we let (M, g) be a smooth compact Riemannian manifold of dimension n > 3. We

consider equations like

Agu+hu=u>"

and u > 0, where h is a smooth function on M. We assume in what follows that the operator
A, + h is coercive so that there exists A > 0 such that for any u € HZ (M),

/M (IVuf? + hu?) dvg > Mul%

This is necessarily the case if h is a positive function.

4.1 Definition and the mountain pass lemma
We let J be the free functional defined on HZ(M) by

J(u =3 / |Vu[2 + hu dvg / lu|* du,
By definition, a sequence (u;) of functions in H:(M) is said to be a Palais-Smale sequence for
J if:
(i) J(u;) is bounded with respect to ¢, and
(i) DJ(u;) — 0 in HZ (MY

as ¢ — +00. A basic tool to construct Palais-Smale sequences is the mountain pass lemma of
Ambrosetti-Rabinowitz [1]. We use the mountain pass lemma under the following form:
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MPL: (Ambrosetti-Rabinowitz) Let ® be a C! function on a Banach space E. Suppose that
there exist a neighbourhood U of 0 in E, ug € E\U, and a constant p such that

®(0) <p, Plug) <p, andP(u) > p

for allu € OU. Let

¢ = inf max ®(u)
yel' uey

where I' stands for the class of continuous paths joining 0 to ug. Then there exists a sequence
(u;) in E such that ®(u;) — ¢ and D®(u;) — 0 in E' as i — +oo.

In our case, E = HZ(M), and ® = J. We let U = By(r) be the ball of center 0 and radius
rin HE(M). Since A, + h is coercive, and thanks to the Sobolev inequality corresponding
to the embedding of H? in L?, there exists positive constants Cy,Cy > 0 such that for any
u € HE (M),

J(w) > Cylullfs — Collull?
Taking r > 0 sufficiently small, it follows that there exists p > 0 such that for any u € 9By(r),
J(u) > p. Independently, J(0) = 0, while, for vy € HZ(M), vp # 0,

tEHloo J(tvg) = —o0

It follows that there exists r > 0, p > 0, and ug = tvy such that J(0) < p, J(uo) < p,
up € HE(M)\By(r), and J(u) > p for all u € By(r). The mountain pass lemma then gives
the existence of a Palais-Smale sequence for J. A slightly more subtle argument allows one to
construct Palais-Smale sequences of positive functions.

4.2 The existence part of Theorem 2.1

As a remark, we prove here that this notion of a Palais-Smale sequence allows one to recover
the existence part in Theorem 2.1, namely that there exists u > 0 smooth, a solution of

Agu+hu=u>"

This was first noticed by Brézis and Nirenberg [8]. We follow their approach. In order to get
positive solutions, we slightly change J into J* defined by

1 1 *
+ _ 2 2 +42
J(u) = 3 /M <|Vu| + hu )dvg ~ o /M(u )< dv,
where v = max(0,u). As in Theorem 2.1, we assume that
b 10w) < =

where H is the set of functions in H7(M) which are such that |julj» = 1, and where I is the
functional defined by

I(w) = /A (VU + hu)dv,
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Then there exists vg € H, vg > 0, such that I(vg) < K, 2. Noting that

I(Uo) 2 1

Ftwg) = a—
T (o) = =5 o
we then get that
+ .
r?zabe (t’UO) = J (to’Uo)
1
= ﬁ](’l)o)n/Q

where g = I{vy)% ™= 2. Hence,

+
nt'xggcJ (tvg) < e
Let r > 0 be small, and ¢ > 0 be large. Using the MPL as above, with U = By(r) and uq = tvy,
we then get the existence of a Palais-Smale sequence (w;) for J™ such that J*™(u;) — c as
i — 400, where
¢ = inf max J¥(u)
yeT ucy

+
< ntlzagcJ (tup)

1
nk?n

<

where I' stands for the class of continuous paths joining 0 to up. In particular, we can write

that
1 1 *
5 /M (IVU¢|2 + huf) dvg = 5 /M(u;L)2 dv, + ¢+ o(1) (4.1)

and writing that DJ™* (u;).%; — 0 as ¢ — +00, where %; = ||ui|]1;12ui, we can write that

[ 1Vl + ) doy = [ () oy + of sl ) (4.2)

Considering (4.1) — %(4.2), and since Ay + h is coercive, we get that the u;’s are bounded in
H?(M). It follows that there exists u € HZ(M) such that, up to a subsequence,

(i) u; — u in H3(M),
ii) u; — v and uf — u* in L?(M), and

(
(i

iil) u; — u a.e.

as ¢ — +00. Since DJ*(u;) — 0 as ¢ — 400, we have that for any ¢ € HZ(M),

/ (Vu; V)du, + / hu;pdvg, = / (uf)* edo,
M M M
Passing to the limit as i — +o0¢, it follows that u is a weak solution of

Agu+ hu = (ut)¥ !
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In particular,

/M(VuVu_)dvg + /M uw dvg =0

so that
/M (VP + h(u)?) du, = 0
and since A, + h is coercive, it follows that u~ = 0. Hence, « > 0, and u is a weak solution of
Agu+ hu = u? 1

Now there is still to prove that u # 0. Let us assume that v = 0. Without loss of generality,
we can also assume that
/ \Vug|*dvy, — S
M

as ¢ — +oo for some S > 0. Passing to the limit in (4.1) and (4.2), noting that

2
uidv, — 0
/M 1g

as ¢ — 400, we then get that

+y2*

w ) dv, — S
| @) v,

as ¢ — o0, and that S = nc, where c¢ is as above. By the sharp Sobolev inequality,

15 < sl

<

< K2Vuwls + Blluglls

for some B > 0 and all i. Passing to the limit as ¢ — +o00, it follows that
57 < K28

so that
K,8Y" >1

Noting that this is in contradiction with the equations
S=ncand ¢ < K;"/n
we get that v #£ 0. Thus, there exists u > 0 smooth, a solution of the equation
Agu+hu=u?

When dealing with Palais-Smale sequences we loose a priori the minimality of the solution. On
the other hand, approaches based on Palais-Smale sequences avoid the use of Euler-Lagrange
multipliers. Thus we can deal with more general equations. As in Brézis-Nirenberg [8], this
includes the case of equations like Ayju + hu = ¥ ~! + fu? where f is a smooth function and
l<qg<2=1.

31



5 Blow-up theory in the H2-Sobolev space

The very first arguments we developed were based on the compactness of the embeddings of
the Sobolev space H: into Lebesgue spaces LP. Then we discussed arguments where the critical
exponent arises, but the energy is low. There is still to explain what happens when we do face
a critical exponent problem and the energy is arbitrary. An important notion here is the notion
of blow-up points, sometimes referred to as concentration points. A setting where this notion
appears naturally is when discussing Palais-Smale sequences associated to equations like

Agu+ hu = u¥ (E)

where h is a smooth function on M, not necessarily such that A, + % is coercive. As in the
preceding section, we let J be the functional defined on HZ(M) by

1 1 "
J(u) = 5 /M (|Vu[2 + th) dvg — > /M [ul* dv,

By definition, as above, a sequence (u;) of functions in HZ(M) is said to be a Palais-Smale
sequence for J if:

(i) J(u;) is bounded with respect to ¢, and
(i) DJ(u;) — 0 in HZ(M)

as ¢ — +o0. The very general question we are concerned with in this section is to characterize
the asymptotic behaviour of Palais-Smale sequences as ¢ — +oc0. For the sake of clearness we
restrict ourselves to Palais-Smale sequences of nonnegative functions. A similar result exists
when no sign assumption is made on the u;’s.

The answer to the question we are concerned with in this section involves several contribu-
tions. Among others, we quote Lions [32], Sacks-Uhlenbeck [34], Wente [47], and various works
by Schoen. However, the final result, as we state it below, is due to Struwe [43]. Struwe was
concerned with the Euclidean equation Au = »?"~! on bounded domains with a zero Dirichlet
condition on the boundary. As noticed by several authors, his result extends with basically no
changes in the proof to the Riemannian setting and equations like the ones we consider. The
Struwe result is then what we refer to as the HZ-theory for blow-up. The stronger C°-theory
was recently developed by Druet-Hebey-Robert [15, 16].

In order to state the Struwe result, we need the important notion of a bubble. We define

the notion of a bubble as follows.

Definition 5.1 Given a sequence (x;) of points in M, and a sequence (u;) of positive real
numbers, such that p; — 0 as i — +oo, we define a bubble as a sequence (B;) of functions
gien by the following equations:

n—2

2
i
Bz(x) - 7 x)2 )
(Mlz + dnénz—,2))

where dy 1s the distance with respect to g. We refer to the x;’s as the centers of the bubble, and
to the p;’s as the weights of the bubble.
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It is easily seen that a bubble converges strongly to 0 outside the x;’s, while B;(x;) — 400 as
i — 4o00. Note that in the above definition we recover the expression of the extremal functions
of the sharp Euclidean Sobolev inequality

2
(/ |u|2*da:) Y < KEL/ |Vu|?dx
i R"

Bubbles are, in some sense, rescalings of fundamental solutions of the Fuclidean equation
Au = 4?71, The Struwe result can then be stated as follows.

Theorem 5.1 Let (M, g) be a smooth compact Riemannian manifold of dimension n > 3, and
h be a smooth function on M. Let also (u;) be a Palais-Smale sequence of nonnegative functions
for J. Then there exists k € IN, there exists u® > 0 a solution of equation (E), and there exist
k bubbles (B*), m =1,...,k, such that, up to a subsequence,

k

m==1

where (R;) is a sequence in HZ(M) such that B; — 0 in H:(M) as i — +oo.

When % = 0 in this theorem, the u;’s converge in H? to u®. When &k > 1, we face a blow-up
situation. Up to a subsequence, we may assume that the centers zi" of the bubbles converge as
i — +00. Let § be the set of these limits. Then § is finite, possibly reduced to one point, and

S = {:p € Mst.dm, x ZZLI_IFOOx:n}

The points in § are referred to as the geometric blow-up points of (u;). Then, it follows from
the decomposition in the theorem that u; — u® in H7 . (M\S).

A very important remark on this theorem is that the energy respects the decomposition.
We then have that .
sl = 11l + D2 1B 17 +ol1)
m=1

where o(1) — 0 as i — +o00. It is easily checked that if (B;) is a bubble as defined above, then
1Billzz = K™ + o(1)

Hence,
luille = lu’llFe + kK" + o(1)

for all ¢, where o(1) — 0 as i — +00. We then get a classification of the energy levels for
which compactness does not hold. In particular, non-compact energies are quantified, and K"
is the minimal energy under which compactness holds. This provides another interpretation of
results like Theorem 2.1. The assumption in this theorem guarantees that the sequences under
consideration have an energy which is below the minimal energy for which blow-up may occur.
Thus compactness holds.
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5.1 Proof of Theorem 5.1

We sketch the proof of Theorem 5.1, following the original reference Struwe [43]. For more
details we refer to Struwe [43, 44]. Among other possible references, we refer also to Druet-
Hebey-Robert [15] and Hebey-Robert [25] for proofs in the Riemannian case and extensions to
other types of operators. We divide the proof into several steps. Step 1 is as follows.

Step 1: We claim that Palais-Smale sequences for J are bounded in H?(M). We let (u;)
be a Palais-Smale sequence for J. Since DJ(u;).u; = o||uil|52),

1 "
Iw) =~ [l dvy +o (|l )

and since (J(u;)) is a bounded sequence, we also have that

J i dvy < € 4o (|l )

for some C' > 0. By Holder’s inequalities, this implies in turn that
2/2
/M ufdvy < C + o (|lwill 33

Similarly, we can write that

/M (IVul? + huf) dv, = 27 (u;) + 23 /M |us|? du,
so that
/M (IVusl? + ha?) dvy < O + o (|l z)
Noting that
iz < [ (Il + hu?) doy + Ol

it follows that
2/2*
lwalle < €+ o (lusllaz) + o (il 23

In particular, ||u;||gz < C for some C' > 0. This proves the claim in step 1.

From now on, we let J be the functional defined on H2(M) by

A 1 1 *
J(u) = §/M Vul2d, — §/M ul? dv,

Then, J = J when h = 0. A Palais-Smale sequence for J is a sequence (4;) in HZ(M) such
that:

(i) J(@;) is bounded with respect to ¢, and
(ii) DJ(4;) — 0 in HX(M)
as i — 4o00. Step 2 is as follows.

Step 2: Let (u;) be a Palais-Smale sequence of nonnegative functions for J. Thanks to
step 1 we may assume that, up to a subsequence, u; — u® in HZ(M) as i — +o0o0. We may also
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0 0

assume that u; — «° in L2(M) and that u; — u® a.e. In particular, ©® > 0. We let 4; = u; —u®.
Then we claim that (@;) is a Palais-Smale sequence for J with the property that

J(4) = J(u;) — J(w®) + o(1)

where o(1) — 0 as 4 — +00. Moreover, we claim that «? is a solution of equation (E). In order
to prove these two claims, we first observe that for any ¢ € H{(M),

DJ(w).p = /M(Vungo)dvg—i— /M hu;pdvg — /M ui " pdu,
= o(1)

where 0(1) — 0 as ¢ — +00. Passing to the limit as ¢ — +o00, it easily follows that

[ (Tue)du, + [ huedv, = [ (W) oy,

In particular, ©® is a solution of equation (E). This proves the second claim in step 2. Now we
compute the energy J(4;). Clearly,

/ huZdo, :/ h(u®)2dv, + o(1)
M M

Then, since u; = u° + 1;, we can write that
J(w) = T() + J(@) ~ [ Didvy +o(1)
M

where

1
@ = o (a4l — [ — )

Thanks to Brézis-Lieb [7], noting that 4; — 0 a.e. and that the 4;’s are bounded in L?" thanks
to step 1, we can write that
/M ®;dvy = o(1)
It follows that A
() = J(u;) — J(u®) + o(1)
where 0(1) — 0 as ¢ — +o0o. Let ¢ € H?(M). Thanks to Holder’s inequalities, and to the
Sobolev inequality,

_ 0
| huipdvy = [ huidvg+o(llellg)

Since u® is a solution of (E), and thanks to arguments like the ones used in Brézis-Lieb [7], we
can write that

0

DJ(u;)p = DJ(a).0 — /M Wipdvg + o0 (|19l 2 )

where ¥; € L2/ V(M) is such that ¥; — 0 in L¥/@""D(M) as i — +oco. By Holder’s
inequality and the Sobolev embedding theorem,

/Mlklligo]dvg < | Wllax =) ol 2+
< COl¥illerj@e—nll@ll e
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It follows that
], waedvy = o (llella)
and we thus get that .
DJ (i) = DJ ()0 + 0 ([lell2)

In particular, (4;) is a Palais-Smale sequence of J , and this proves the first claim in step 2.
Step 2 is proved.

We let 5~ = %K,; 7, If u is a fundamental positive solution of the critical Euclidean equation
Au = u? "1, as discussed in subsection 2.3, then

1 ) 1 g, 1
5/111" |Vul|*dz — §/1Rnu dx = nK”

A third step in the proof of Theorem 5.1 is as follows.

Step 3: Let (i;) be a Palais-Smale sequence for J such that @; — 0 weakly in HZ(M) as
i — 00, and such that j(@,) — 3 < B* as i — +o0. Then we claim that 4; — 0 strongly in
H2(M) as i — +oo. In order to prove this claim we note that, thanks to step 1 with h = 0,
the 4;’s are bounded in HZ(M). Hence,

.Dj Ai .Ai - / VAi 2d —/ Ai Q*d
(@) = [ |Viu*dvg — [ il do,
= ofl)

and it follows that
T/ A 1 ~ 2%
J(4;) n/zﬁlul dv, + o(1)

1
- E/M|Vﬁi|2dvg+0(l)
= B+o(1)

where 0(1) — 0 as ¢ — +oc0. In particular, 5 > 0. Independently, thanks to the sharp Sobolev
inequality, there exists B > 0 such that

laill2 < KlIVaal; + Bllallz

for all 7. Moreover, the embedding HZ C L? being compact, we necessarily have that 4; — 0
in L*(M). It follows that

(n®)** < Kinp
Since [ < /3%, this implies that 3 = 0. Then @; — 0 in H(M) as i — +o0. Step 3 is proved.
Palais-Smale sequences for J , typically 4; = u; — u°, do not necessarily have a sign. We
thus need to modify slightly the notion of a bubble in order to get bubbles which may change
sign. Given § > 0, we let 75 be a smooth cut-off function in /R™ such that n; = 1 in By(4) and
ns = 0 in IR"\By(20). For o € M, and d < 4,/2, where i, is the injectivity radius, we let 7 4,
be the smooth cut-off function in M given by

Mo (%) = 15 (exp;, ()
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where exp,, is the exponential map at zy. We let D%(IR™) be the homogeneous Sobolev space
defined as the completion of C§°(IR") for the norm ||u|| = || Vulls. If u € D?(IR") is a nontrivial
solution of the equation

Au = |u|” "%

in IR", we define a bubble (B;) by

n—2

Bio) = @) ()l ezt 0)

pi i

where (z;) is a converging sequence of points in M, and (u;) is a sequence of positive real
numbers such that u; — 0 as i — +oo. If (B;) is such a bubble, we then define the energy
E(B;) of (B;) by

1 1 .
E(B;) = E/JR" \Vu|*dz — > /]Rn lu* dz
As an important remark, if v in the above definition is nonnegative, then there exist sequences
(&;) in M and (j1;) of positive real numbers, with fi; — 0 as ¢ — 400, such that

Bi(x) = (L) 4 R)
pi +

dg(&;,x)?
n{n—2)

for almost all z, where the R;’s are functions in H7(M) such that R; — 0in H(M) asi — +oo0.
We thus recover our original definition of a bubble. In order to prove this, we proceed as follows.
If u is nonnegative, then, see subsection 2.3,

n—2

A 2
we) =\ 5 e
A+ n(n—2)

for some A > 0 and a € IR". We define Z; and [; by

7 = exp,, (pi0)
fii = Ak

Let (B;) be the bubble as in Definition 5.1, defined with respect to the Z;’s and f;’s. Easy
computations give that

. N. — 2
/]V (VB B))dy, /m |Vuf*de + o(1)

where 0(1) — 0 as ¢ — +oo. It follows that

/. |[v(B:~B)

and since we also have that [,; BZdv, = o(1) and [y, B2dv, = o(1), we get that

? dvg = o(1)

B; — B; — 0 in H*(M)

as ¢ — +o00. In other words, B; = Bi + R; where the R;’s are functions in HZ(M) such that
R; — 0in H(M) as i — +oo.
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The following step is the main argument in the proof of Theorem 5.1. We refer to Struwe
[43, 44] for its proof. See also Druet-Hebey-Robert [15] for the proof in the Riemannian context,
and Hebey-Robert [25] for the proof in the case of other types of operators.

Step 4: Let (4;) be a Palais-Smale sequence for J such that 4; — 0 weakly in H2(M) but
not strongly as ¢ — 4o00. Then we claim that there exists a bubble (B;) such that, up to a
subsequence, the sequence consisting of the @;’s given by

is such that (#%;) is a Palais-Smale sequence for J, @ — 0 in H2(M) as i — 400, and
J(@) = J(%) — E(B;) + o(1)

where 0(1) — 0 as i — +c0.

The following step concerns the energy of a bubble. For nonnegative bubbles, the energy is
precisely 5*. See subsection 2.3.

Step 5: Let (B;) be a bubble as above. Then we claim that E(B;) > 8*. Indeed, if u is a
nontrivial solution of the equation Au = |u|* =2, then

f qu'zdx-—*/ lu|? dz
R" R"

while, thanks to the sharp Euclidean Sobolev inequality,

LN/
(/ || dx) < Kg/ |Vu|?dz
R" Rr

1

n
n

In particular,

/ |Vu|*dz >
RTL

and

1 1 « 1
—/ |Vu|?dz — —/ lu|* dx = ——/ |Vul*dz
2/mn 2x Jpn n Jmr

so that E(B;) > (3*. This proves step 5.

Now we are in position to prove Theorem 5.1. The proof proceeds as follows, using steps 1
to 5. To some extent, k£ in the theorem is the number of bubbles we have to substract in order
to get a Palais-Smale sequence of small energy for which we do have compactness.

Proof of Theorem 5.1: Let (u;) be a Palais-Smale sequence of nonnegative functions for
J. According to step 1, (u;) is bounded in HZ(M). Up to a subsequence, we may therefore
assume that for some u® € Hi (M), u; — u® weakly in Hf (M), u; — u® strongly in L*(M), and
u; — u® almost everywhere as i — +00. We may also assume that J(u;) — ¢ as i — +o00. By
step 2, uY is a nonnegative solution of equation (E) and 4; = u; — u® is a Palais-Smale sequence
for J such that

A

J(@) = J(u;) — J(WP) + o(1)
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If @; — 0 strongly in HZ(M), then u; = u® + 0(1), and the theorem is proved. If not, we apply
step 4, and thanks to step 5 we get a new Palais-Smale sequence (%) such that

J(a}) < J(@) — B+ o(1)

Here again, either 47 — 0 strongly in HZ(M), in which case the theorem is proved, or 4} — 0
weakly but not strongly in HZ(M), in which case we apply again step 4. By induction, at
some point, either we do have compactness, or the Palais-Smale sequence (i¥) we get with this
process has an energy which converges to some 3 < 3*. Then, by step 3, 4¥ — 0 strongly in
HZ(M). Tt follows that

k
m=1
where the (B;)’s are bubbles as in step 4, and B; — 0 in H?(M) as ¢ — +oo. Up to the
positivity of the bubbles, see below, this proves Theorem 5.1.

In order to get the complete Theorem 5.1, we need to prove that the the bubbles we got in
the above process come from positive fundamental solutions of the critical Euclidean equation
Au = u?""1. A complete proof of this fact can be found in Druet-Hebey-Robert [15]. We refer
also to Hebey-Robert [25]. If the bubbles (B]") in Theorem 5.1 are defined with respect to
sequences (z") and (ul"), representing their centers and weights, we get in the process that for

any 1mq Mo
Y % ’ mg m1 d (xml mmz)Z
Hy Hy g\Ly "5 Ly
mi,,msa

A 1 g
as ¢ — 4o0o. This equation is discussed in the following subsection.

— 400

Concerning the energy, the proof of Theorem 5.1 gives that

J(w;) = J(u®) + Y. E(B") +o(1)

m=1

where the energy F(B;) of a bubble is as defined above, and where o(1) — 0 as i — +o00. Since
(u;) is a Palais-Smale sequence for J, and (u;) is bounded in HZ(M),

/M |Vu|2dv, = /M |ug| ¥ dv, + 0(1)

It follows that 1
J i) = —/ V N 2d 1
(u ) o I U | vy + o( )

Noting that for a bubble (B;) as in Definition 5.1,
1
E(B;) = EHVBng +o(1)

that B; — 0 in L?(M) as ¢ — +oo, and that u; — «° in L2(M) as i — +o0, we get that

k
luillzee = W17z + 3 1B I3z + o(1)

m=1

where o(1) — 0 as i — +o00. This proves the remark after Theorem 5.1.
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5.2 Uniqueness of the Struwe decomposition

We discuss uniqueness of the Struwe decomposition. As far as we know, the material in this
subsection, as well as in the following subsection, has never appeared before in the literature.
First we need to define what we mean when we speak of a Struwe decomposition. Given a
Palais-Smale sequence (u;) of nonnegative functions for J, we define a Struwe decomposition
of (u;) by the equations

k
ui=u°+ZB;-’”“+R¢, and

m=1

k
luslle = w17z + 22 1B 117 +o(1)

m=1

where the (B™)’s are bubbles as in Definition 5.1, so that

n—2
/ﬂn
Bm(x) = Zd Ty,
()2 - ekl

where the R;’s are functions in HZ(M) such that R; — 0 in Hf(M) as i — +00, and where
o(1) — 0 as ¢ — +oo. Then, of course, u; — u° a.e., and both u® and k are invariants of such
decompositions.

Now we discuss the equation
ma my mi ,.ma\2
H H dg(x@ y Ly )

mi mz my, ma
s s i ™ g

— +00

of the preceding section. If (B;) and (B;) are two bubbles, of respective centers z; and Z;, and
respective weights u; and fi;, we let F(B;, B;) be given by

>, [ ; d 22
F(Bi’Bi)=&+@+g(ml—v~x%)
Hi o Hi ifl;

We claim here that F(B;, B;) — +00 as i — +oo if and only if (B;) and (B;) do not interact
one with the other at the H2-level. In other words, we claim that F(B;, B;) — +00 asi — 400
if and only if

/ ((VBVB,) + B,B.) dv, — 0
M
as i — +o00. Given A > 0 and a € IR" we let U, , : IR" — IR be the function defined by

n—2

)\ 2
o) = (A2+ '?*“';))

Then, see subsection 2.3, U, is a positive fondamental solution of the critical Euclidean equa-
tion Au = u? L. If the F(B;, B;)’s are bounded, we let Ay > 0 and zo € IR™ be such that, up
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to a subsequence,

Hi_, Ao, and
3
1 -1

—. expwi (fl‘f@) — Ig
i

as i — +00, where exp,, is the exponential map at z;. Then, easy claims are as follows:

(i) for any R > 0,
/ (VB,VI;)dv, — 0
Bmz(Rﬂz)
as i — +o0o when F(B;, B;) — 400 as i — +00,
(ii) for any R > 0,
lim sup |VB¢|2dvg =¢€R
i—+oo JM\Bg, (Rus)
where eg — 0 as R — o0,

(iii) for any R > 0,

VB,VB;)d YUy VU, 2 )d
/Bw (Rm)( Jdvg = BO(R)( 01 VU0 )d

as i — +0o when the F(B;, B;)’s are bounded.

Integrating by parts we also have that

/ (VUp 1V Uy, 2, ) = / U2, 0 + 25
BoR) Bo(m) Ot

where e — 0 as R — +o00. Independently, it is easily checked that
/ B?dv, — 0 and / Bidv, — 0
M M

as ¢ — +o0. In particular,
/ Biéid’l)g — 0
M

as i — +o0o. We know that bubbles are bounded in H2. We can then write that

VB,V B,)dv, = / VB,V E,)d / VB,VE,)d
J, (VBN B, (VBB + [ (VBN By,

Bz, (Rus)

and that
‘ (VB,VB;)

/ dv, < C / IV B, |2dv,
M\ Bz, (Ry) M\Bgz, (Rus)

for some C' > 0. By (i) and (ii), letting ¢ — +o00, and then R — +o0, it follows that

/A VBV Bi)du, — 0
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as ¢ — oo if F(B@-,E’i) — +00 as i — +0o. Conversely, if the F(BZ',E,-)’S are bounded, we
can write with (i) and (iii) that

BVE)dv, — / VB,VE,)d VB,VE,)d
'/M(V v ) Ug BmZ(R/‘z)( ) vg+ M\BEZ(RF”L)( ) Ug

= U2 W, aodx + &5
/BO(R) 0,1 0,20 R

where
lim lim gr=0
R—400 i—+00
In particular,
lim [ (VBB = [ USUida
M o

i——400

> 0

if the F(B;, B;)’s are bounded. It follows that if
/ (VBVB,)dv, — 0
M

as i — +oo, then F(B;, Bi) — 400 as ¢ — +00. The above claim is proved.

We know from subsection 5.1 that, given a Palais-Smale sequence (u;) of nonnegative func-
tions for J, there exists a Struwe decomposition of (u;) with the property that the centers and
weights of the bubbles in this decomposition satisfy that

me mi mi . M2\2
M H dg(z;", 2;*%)

m mgy my,,ma
1 1 iy

— +00

as i — +oo for all m; # ms. Since

lim [ (VB,VB;)dv, >0
i+ J M

if the F'(B;, E’i)’s are bounded, a consequence of what we just said is that the above equation
holds for all the Struwe decompositions of (u;). In other words, the condition

k
luillze = el + 32 1B g + o(1)

m=1
is equivalent to the condition

mo my mi ma\2
My M dg(z7", ")
mi,,msa

VA T A

— 400
as i — +oo for all m; # my. Note here that for «° € HZ(M),

/M((VuOVB@-) +u°B;)dv, = of1)
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if (B;) is a bubble as in Definition 5.1.

Another consequence of what we just said is as follows. We let (B*), m = 1,2, 3, be three
bubbles. We assume that F(B}, B?) — +0c asi — +00, and that the F(B}, B?)’s are bounded.
Then, as easily checked from the definition of F', F(B?, B}) — 400 as 1 — +00. In other words

F(B},B?) — +oo and F(B},B})<C
= F(BZ??B?) — 400

and it follows that if (B}) and (B?) do not interact at the H?-level, while (B}) and (B?) interact
at the H2-level, then (B?) and (B?) do not interact at the H3-level.

Now we discuss uniqueness in a Struwe decomposition. Let us assume that we have two
sets (BI") and (BI") of bubbles, m = 1,...,k, corresponding to two Struwe’s decompositions
of (u;). We denote by zI* and Z* the respective centers of these bubbles, and by uf* and g
their respective weights. Since bubbles in a given decomposition do not interact one with each
other, we can write that for any m,

k
K." =3 (B B")uz +o(1)

m=1

It follows, thanks to the above remark, that for any m, there exists m such that
K" = (B, B2 + o(1)

or equivalently such that .
lim [[B" — B =0

i——+00
Thanks to (i)-(iii) above, and since (z,y) = ||z||.||y|| if and only if z and y are colinear, we
easily get that .
K" =(B", B")uz + o(1)

1

if and only if

Hence, we proved that if we have two sets (B™) and (B?*) of bubbles, m = 1,...,k, corre-
sponding to two Struwe’s decompositions of (u;), then, up to renumbering,

i
lim == =1, and

i—+oo "

=+ iy

where the z7*’s and Z7"’s are respectively the centers of (B}") and (B™), and the yf* and ji" are
respectively the weights of (B™) and (B™). In other words, a Struwe decomposition is unique
up to the above equations.
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5.3 A remark on the definition of a Struwe’s decomposition

Let (u;) be a Palais-Smale sequence of nonnegative functions for J. We defined a Struwe’s
decomposition of (u;) by the equations

k

m=1

and .
2 02 m)|2
luillfe = 1e’llzz + > 118" [z + o(1)
m=1

where the (B™)’s are bubbles as in Definition 5.1, the R;’s are functions in HZ(M) such that
R; — 0 in H*(M) as i — +oo, and o(1) — 0 as § — +o0o. We claim here that the second
equation is actually a consequence of the first one, so that we can restrict the definition of a
Struwe’s decomposition of (u;) to the equation

k
w=u"+> BI'+R;

m=1
where the (B™)’s are bubbles as in Definition 5.1, and the R;’s are functions in HZ(M) such
that R; — 0 in H?(M) as i — ~+oo.

In order to prove the claim, we let (u;) be a Palais-Smale sequence for J, and assume that

k
wu=u"+> BI'+R
m=1
for some k € IN\{0}, where the (B!")’s are bubbles as in Definition 5.1, and the R;'s are
functions in H?(M) such that R; — 0 in HZ(M) as i — +o0o. We let the z’s be the centers
of (BI"), and the u™’s be the weights of (B™). Given ¢ € C§°([R™), and m € {1,...,k}, we let
o7 be defined on M by

n—2

G (@) = T o (1) expp (=)
We let also I,,, be defined by
I, = {ﬁz s.t. the F(B™, B)’s are bounded}

where F is as in the preceding section. In particular, m € I,,. If m € I,,,, we let Az > 0 and
z7 € IR™ be such that, up to a subsequence,

— — An, and
i
1 —1/.m
— eXPym (") — zg

as i — +oo. We let also Uy, : IR"® — IR be defined by

n—2
A, :
m n{n—2
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Then, easy claims, similar to the ones we used in the preceding section, are as follows:
() [ 1Vepitd, = [ | [Velde +o(1),
M R"
. m 2*d :/ Q*d 1 :
() [ i duy = [ 1ol do+ o)
(iid) / (V"V B dv, = /R (AUs)dz + o(1) for all i € L,
M i3
(iv) / (VgV B dv, = o(1) for all m & I,
M
(v) / (Vu’Vp™)dv, = o(1) and /M(VRZ-V@?’)CZ?JQ = o(1),
M
(vi) / (BM?' ~1gdu, = o(1) for all i & I,
M
(vil) [ @) ey = o(1) and [ R dug = o(1),
M M
where o(1) — 0 as i — +oo. Let

d;, = Z B, and

melm
U, =u'+ ) B+ R
Mgl

so that u; = ®; + ¥;. Thanks to Holder’s inequalities, and thanks to the above equations,
[ eF el

= [ @& A D Dy,

211 m (27-2)/(2*-1) o 11 m 1/(2*-1)
< ([ @Ferldy, ) ([ 1w =teride,

while
- o\ @D/ .\
/M(I)i i [duy < </M(I)z' dvg) (/M"Pﬂ dvg)
< C

and

[ W gl = o(1)
It follows that

/. @ 2wl lde, = o(1)
Similarly, we get that

/M ;| W7 2 duy = o(1)
Writing that

1@ + "7 = BF 7Y < W7+ O (@F 2|0 + &[0 2)
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we get that
/M U?*_lw?’“dvg = /M q)?*_lwgndvg +0(1)
Independently we can prove that
[ ¥ e = [ (3 Un)* eds+ o(1)
M B el

Since (u;) is a Palais-Smale sequence for J, and thanks to (i)-(ii),

DI(w)¢? = [ (VuiVel)dv, = [ uF ~edu,+o(1)
= o(1)

Plugging
k

m=1

into this equation, letting ¢ — +o0, and thanks to the above equations, we get that

/n ( > U =Y Um)2*—1) pdz =0

meln melny

Note here that AUy = U2 ~. Since ¢ is any function in C$°(IR"), it follows that

Z Urgn*_l — ( Z Um)2*—1

melm MELm,

and thus that I,, = {m}. In other words, we proved that if (u;) is a Palais-Smale sequence of
nonnegative functions for J, and if

k

m=1

where the (B™)’s are bubbles as in Definition 5.1, of centers z]* and weights p!*, and the R;’s
are functions in HZ(M) such that B; — 0 in H3(M) as i — +oo, then, for any m; # ms in

(1,....k},

e dg(z )
/j.”l + ,umz 'uml’u,mz — 10

as ¢ — +00 According to what was said in the preceding section, this proves that for any
my #mgin {1,..., k},

/M((VB;”WB;”Q) + B B™)dv, = o(1)

and thus that )
luliZe = 102 + 3 1B + o(1)
m=1

This proves the claim we made at the beginning of this subsection.
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6 The dynamical viewpoint

We let (M, g) be a smooth compact Riemannian manifold of dimension n > 3, and let o > 0.
We consider the equation
Agu+au = u¥t (Ea)

where u is required to be positive. As a very basic remark, it is easily seen that the constant
function @, = "2/ satisfies (E,).

The type of questions we considered in the preceding sections were whether or not such
nonlinear elliptic equations of critical Sobolev growth possess one (or several) solution. Such
studies are concerned with equation (E,) when the parameter « is fixed. Almost no studies are
concerned with the equation as part of a whole family or, equivalently, with these equations
when « is considered as a free parameter. Emphasizing the opposition between what we could
refer to as a statical approach, and what we could refer to as a dynamical approach (with
respect to the parameter o), the very general question we ask, following Hebey [24], is to
understand the structure of (E,) when o varies. This question requires a deep understanding
of the blow-up behaviour of sequences of solutions of equations like (E,).

6.1 The energy function

Given a function u € HZ, we define the energy E(u) of u as the L*"-norm of u. In other words,

E(u) = ( | |u|2*dvg>71; .

If u is a solution of (E,) we recover the classical energy associated to such types of equations.
The minimum energy A, is then given by Ay = K, (n=2)/2 where K, is the sharp constant
K in the Euclidean Sobolev inequality ||u||a« < K||Vu|ls. The minimum energy is characterized
by the property that blowing up sequences of solutions of (F,) have an energy which is greater
than or equal to A,,;,, as described in Struwe’s decomposition. Another energy we define is the
following:

Definition 6.1 Let o > 0. We define the energy function E,, associated to equation (Ey) by

En(a) = inf E(u)

uESy

where S, consists of the solutions of (E,).

Basic arguments, as developed in the preceding sections, show that for any o > 0, F,,(a) >
0. As already mentioned, the question of understanding the structure of equation (F,) can
be interpreted in two ways. On the one hand, we may want to understand the structure
for a given linear term. We refer to this approach as the statical viewpoint. On the other
hand, we may want to understand the structure as « varies. We refer to this approach as the
dynamical viewpoint, where, needless to say, the dynamic has to be understood with respect
to the parameter a. Several questions can be asked when studying the dynamical viewpoint.
They constitute a program of research on such equations. We refer to Hebey [24] for the
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precise statement of this program, and concentrate in these notes on one of the questions of
this program:

Question: is E,, a continuous function 7

This question is still open. However, we can prove that E,, is lower semi-continuous. We
prove such a result here when the manifold we consider is conformally flat. The round sphere
and real projective space are examples of conformally flat manifolds. The assumption that the
manifold is conformally flat makes the argument simple. The non conformally flat case is much
more difficult and requires the C°-theory developed in Druet-Hebey-Robert [15, 16]. In this
case, the local geometry acts as a barrier in the Pohozaev identity. We refer to Druet [10, 12],
and Druet-Hebey-Robert [15, 16], for the deep analysis involved in the non conformally flat
case. See also Druet-Hebey [14] for nontrivial examples of blowing-up sequences of solutions of
equations like (E,). If S, stands for the scalar curvature of g, we let

n_2 max Sy ()

@ = 4(n — 1) zeM

and prove the following theorem of Druet-Hebey-Vaugon [17].

Theorem 6.1 Let (M, g) be a smooth compact conformally flat manifold of dimension n > 4.
The energy function E,, is lower semi-continuous on (ag, +00).

In such a result, the energy is minimal in some sense, but not in the sense of Theorem 2.1.
For instance, see Druet-Hebey-Vaugon [17], we can prove that E,, (o) — 400 as a — +o00. In
particular, multi-bubbles are involved in this result. Examples of manifolds for which we have
that E,,(a) < E(a2/%) are in Druet-Hebey-Vaugon [17].

6.2 Proof of Theorem 6.1
We prove Theorem 6.1 using the Struwe decomposition. The case & — 400 is also treated in
Druet-Hebey-Vaugon [17]. Different technics are required when a — +o0.

Let o > o and let (o;) be a sequence of real numbers such that a; — « as i — +o0. We
want to prove that
liminf B, (a;) > Ep(a)

t—+00

Let (g;) be a sequence of positive real numbers such that &; — 0 as ¢ — +o00. By the definition
of E,,, for any i, there exists u; € S,, such that

Em(Oéi) S E(ul) S Em(az) -+ &;

In particular, (u;) is a bounded sequence in HZ(M). Moreover, since u; € S,,, the sequence
(u;) is a Palais-Smale sequence for the functional

Ji(u 2/ |Vu'2+oz1 dvg / |u|2*dvg

Note that E,,(a;) < E(o; (n—2)/ 4). With respect to section 5, A is replaced by the sequence (o).
However, since o; — a, and a € IR, it is easily checked that the Struwe result is still valid.

48



Almost no changes in the proof we presented are required. In particular, there exist k£ € IN,
u® € S, U {0}, and k bubbles (B™), m =1,...,k, such that

k
w=u’+ > B'+ R,
m=1
where R; — 0 in H2(M) as i — +00, and such that
E(uw;)” = E@®)* + kK" + o(1)

where 0(1) — 0 as ¢ — +o0o. Therefore, E(u;) > E(u®) + o(1), and if u® # 0, so that «° € S,,
then

liminf B, (c;) > E(uP)
i——+00

> En(q)

and I, is lower semi-continuous at . The proof of the theorem then reduces to the proof that
if (o;) is a sequence of real numbers such that o; — a as i — +o0, and if u; € S, is such that
E(u;) = Ep(oy) + o(1), then [, uZdv, > C for all 4 and some C' > 0 independent of 4.

We proceed by contradiction and assume that, up to a subsequence, u; — 0 in L?(M) as
i — +400. Then

k
m=1

where the (B")’s are bubbles as in Definition 5.1, and R; — 0 in H2(M) as i — +oo. We let
the z[’s and u7*’s be the respective centers and weights of the (B™)’s. We let also .S be the
set of geometrical blow-up points defined, up to a subsequence, by

S=3 lim z*, mzl,...,k}

i—+00

It is easily seen that & > 1, so that S is not empty. Indeed, since u; € S,,,

/M |Vui|2dvg + oy /M ufdvg = /M u?*dvg

and thanks to the Sobolev inequality we can write that

o\ 2, 2
(/M u; dvg) < A/M ([Vui| + uz) dvg
" 1
< A/ u?dvg—l—A(——i—l)ozi/ udv,
M y M

1 "
< A(—+2)/ufdvg
(07 M

where A > 0 is independent of 4. It follows that there exists ¢ > 0, independent of 4, such that
|lusllox > ¢ for all 4. This implies k¥ > 1. We let then S = {zg,...,2,}, p+ 1 < k, and divide
the proof of Theorem 6.1 in three steps.
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Step 1: We claim that
u; — 0 in C (M\S)

as i — 4oo. In order to prove the claim, we let x € M\S, and let 4, > 0 be such that

By(26,) NS = 0. We let also  be a smooth nonnegative cut-off function such that n = 1 in
B.(6:/2), and n = 0 in M\B,(,). Since u; € S,,,

Agu; + oyu; = u?*_l (Es)

We multiply (E;) by 772u§*_1, and integrate over M. Easy computations give that

(22 —2)/2*

* 2 " _ox 2
/ 'V(m)? /2)’ dv, < Cy (/ i dvg) / |V(nu? /2)‘ dvg + Cy
M Bg(8a) M

where C1,Cy > 0 do not depend on i. Since B.(26,) NS = @, it follows from the Struwe
decomposition of (u;) that

. *
lim u? dvg =0
i—+00 Bw(éz)

Therefore,
* 2
/M 'V(nﬂ? /2)’ dvg < Cs

where C; > 0 does not depend on ¢. In particular, thanks to the Sobolev embedding theorem,
(i;) is bounded in L#)*/2(B,(6,/2)). Since (2*)2/2 > 2*, noting that

21
Agu; < ug

we can apply the De Giorgi-Nash-Moser iterative scheme as stated in subsection 1.6. We then
get that u; — 0 in C°(B,(d,/4)). Since z is arbitrary in M\S, this proves step 1.

Going on with the proof of Theorem 6.1, we claim now that global L2-concentration holds
for the u;’s. We let § > 0 be such that B,,(6) N B,,(6) = 0 for all i # j in {0,...,p}, where
S = {xo,...,2,}, and set
fM\Bé azQ dvg

e Gidvg
where B; is the union of the B,,(8)’s, i = 0,...,p. Then we say that global L?-concentration
holds for the u;’s if Rs(i) — 0 as i — oo for all § as above. Another formulation is that the
L?-mass of the i;’s concentrate around the points in S. As noticed by Druet and Robert, see

[13], such a concentration does not hold when n = 3. We prove here that the concentration
holds when n > 4. The case n > 5 is very easy. The case n = 4 is more tricky.

Step 2: We claim that when n > 4, for any 6 > 0 such that By, () N By, (6) = 0 for all
i # 7,

Rs(2) =

i R =0

Thanks to the De Giorgi-Nash-Moser iterative scheme, see subsection 1.6, we can write that
2
u;dv, < max u; / u;dv
/M\35 e — <w€M\Bs Z) Mmoo

< o[ ud / 4
< | uidvg [ uidvg
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where C' > 0 does not depend on 7. Thanks to (E;) we then get that

2 2% -1
/M\35 u;dvg < Cllusll2 /M u; dyg

It follows that .
S %2 —1d1’g

V Ju widv,

where C' > 0 does not depend on 7. If n > 6, 2* — 1 < 2, and, thanks to Holder’s inequalities,

Rs(i) < C

2% 1
3—2* 5
2% 1 2
us duy, < Vg 2 (/ u-dv)
/]\/[ t g="4 mo

where V; is the volume of M with respect to g. Since 2* > 2, and u; — 0 in L?, it follows
that Rs(i) — 0asi — +oo whenn > 6. If n =5, 2 <2 -1 < 2* and we get by Holder’s

inequalities that
1 a l—o
o* 1 -1 (/ 2 )5(/ o )2
u; dv < usdv u; dv
(/]\/[ % 9) — M R’} M i g9

Since ||u;||2« < C, for some C > 0 independent of ¢, we get that

3
/M u? "tdo, < C (/M u?dvg> )

Noting that 2 > 7, and since u; — 0 in L?, it follows here again that Rs(i) — 0 as ¢ — +o0.
Now we assume that n = 4. We write that

*_ K *
/ u? ‘du, = / ui tdu, + / u? du,
M M\Bs Bs

* * __
max u; / u? “*dv, + / uy ~dv,
M\ Bs M Bs

2% 1 2*—1
U: dv U; dv
T dvs < (max ul) f uidv, + —f35 - g
M

\/fM u?dvg

since 2* = 4. By step 1, u; — 0 in C°(M\B;), and we also have that u; — 0 in L2(M). It

follows that
lim (max ﬂl) ‘// widv, =0
i—+oo \ M\B;s M

m=1

3
where o = SR

(A

so that

Given R > 0, we let

where k, the z[™’s and the u["’s are given by the Struwe decomposition of (u;). Since 2* = 4,
we write, thanks to Holder’s inequalities, that

/ u? Lo, S/ u? " dy, + \// u?*dvg\// uZdvg
B;s Q(R) Bs\Q4(R) M

ol




Then,

fB,; 1dug / a2 do, + Jo, (R)u “Ldu,
Bs\ (R

VfMUr;dUg v Jag uidug

If o € CP(R"), where C§°(IR") is the set of smooth functions with compact support in R",
we let ¢ be, as in subsection 5.3, the function on M defined by the equation

o (@) = ()T o ()" expih ()

Similar computations to the ones developed in section 5 give that for any m # m,

() [ (B elduy = ofL),

where o(1) — 0 as i — 4o00. Similarly, for any R > 0,

. B™ g*d _ .
) [y B 00 = (),
aen Bm 2*71 md :/ 2*71 d + 1 :
(i) /BET(RM P vy = [ o Redn 4o(1)

. BM™?2(,m)2* -2 =/ 2 ,2"=2 1
() [,y BV oty = [+ o)

where u is the fundamental positive solution

n—2

1 2
o (ot
1+ n(n—2)

, where eg(7) is such that

of the Euclidean equation Au = 42"~

R, P enld) =0

and where o(1) — 0 as 1 — 4o0. It easily follows from (ii) that

2* :
dy, =
/Ba\ﬂi(R) U; GUg 8R(7’)

where
lim limsupeg(i) =0

R—400 4,400

Now, we choose € C§°(IR") such that ¢ =1 in By(R). Then,

k
o* 1 n—2 o*_1
P, < 3 () / 71 m
-/Q,-(R) uz ’Ug — — (:uz ) BwlT”(R#;n) uz ‘“pz Ug
while, thanks to (i) and (iii),
/ UE ~lop dvy < C (B;n)z*—lﬁndvg +0o(1)
Bym (Ru7™) Bgm (Ru")

< C u? Ldz 4+ o(1)
Bo(R)
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Independently, for any m,

2 2
usdv, > / urdv
/M T Bmey Y

> (" n—2/ w2 (@) ~2d
> (1) B () (#") g
Here, 2 — 2 = 2. As easily checked, we can write that

2 m2*—2d — / Bm 2d
Jyp T R = }: v, +o(1)

/B BV g 4 0(1)

Y

and thanks to (iv) we get that

w2 (0™ 2dy, > / wldx + o1
~/BmIn(RM:n) z(goz ) g — Bo(R) ( )
2 2
2 / dz + o(1
o> Gy (o)
and we can write that

n—2
2dv, > ( ) 2
/M u; dvg > X L (/BO(R) udzx + 0(1))

Then, thanks to the above equations, we get that for any R > 0,

Hence, for any m,

u? ~tdx
limsup Rs(¢) < er + C—f-@@m~

i—400 \ /IBO(R) u?dx

where eg — 0 as B — 400, and C' > 0 does not depend on R. It is easily seen that

lim w e = / uw? " ldzx
R—+t00 JBo(R) "
< 400
On the other hand, when n =4,
lim uldr = +o0

R—+00 JBy(R)

Hence, Rs(i) — 0 as ¢ — +00, and global L2-concentration holds also when n = 4. This proves
step 2.

With steps 1 and 2 we are now in position to prove Theorem 6.1. The final argument
consists in plugging the u;’s into the Euclidean Pohozaev identity.
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Step 3: We let 2y € S be a geometrical blow-up point of (u;). Since g is assumed to be
conformally flat, there exists dy > 0 and ¢ € C®(M), ¢ > 0, such that § = %™ 3g is flat
in Q = B,,(dp). Let £ be the Euclidean metric. By conformal invariance of the conformal
Laplacian,

Us; 1 n—2
A== —— [ Aju; + ——S,u;
Yo B ( AT 1)Sgu)

where S, is the scalar curvature of g. We let ii; = ¢ 'u;. Then,
Agit; + hyit; = 02" (E:)

in €2, where
ay — 4(7; 21 S

P2
Without loss of generality, we may assume that 2o = 0. We choose § > 0 such that By(49) C
and 0 is the only geometrical blow-up point of (@;) in By(49), the Euclidean ball of center 0
and radius 4. We let also 0 < 7 < 1 be a smooth radially symmetrical nonincreasing function
such that n = 1 in By(d) and n = 0 in IR"\By(26). For convenience, we let A = A; be the
Euclidean Laplacian, and B = By(2d) be the Euclidean ball of center 0 and radius 2§. By the
Pohozaev identity,

2 [ (#*0u(ne)) Alyis)dz + (n —2) [ niuA(ris)dz < 0

hi =

As easily checked,
/B (mk(?k(nﬁi)) Alniy)dz = /B (x’“@kn) W A(nt;)dx
+/ z’“akai) U Ands — 2 /B (a:kakﬁi) n(VnViy,) dx

+ / kﬁkuz Al;dz

where (VnVii;) = ¥, 0;11;0;n. Similarly,

/ NG / ni2 Andz — 2 / i (Vi) de + / i Adide
B B B B

Set
Ra(n, @) = [ (c“0wn) a:ldOris)dz + [ n (v*0as) snde
2 /B (c*04ts) n (VA Vi) de
and
Ra(n, 1) :/ ni; Andz — 2/ ni; (Va; V) do
B B
Then,

2 /B 7 (c*Ohti) Adudz + (n — 2) /B i Adudz + R(n, ;) <0
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where
R(n, @) = 2R1(n, W) + (n — 2)Ra(n, ;)

In particular, we have that

2/ kakuz “ldr + (n— / ol dx + R(n, ;)

< 2/ ’“8kuz hiti;dz + (n — / nzh u2dx
Integrating by parts,

/ 7°h :c 8kuZ i;dr = —/ n°h; (xkakﬁi> ;dx
B
—n/ 772hi’&?d$—/ (a:kak(n?‘hi)) a7dzx
B B

so that
2/ kaku@ huzd:v—l— n—2 /nzh A dx
= —n/ 772h~u2da:—/ (mkak(thi)) azdx + ( n—~2)/ n*hitizdx
B
= —2/ n°h; uzda:—/ ( kO (n*h; )) drdx
— 2 [ sheiidz — 2 [ n (c0wn) hiidde — [ o (s*Ouh) ddde
B
Similarly,
/ ? (ehpi;) 0f Mz = —(28 - 1) / n? (e*ohi;) 47~ dz
B
—nf 772u dz — /(kakvf) drdx
so that _5
ka ; 2—1d — 2~ 2* ’“8 2 A‘?*d
/BU( ku) z = B(a: kn)uZ z
and

* - 2 *
2/ k(‘?kuz "ldx + (n — / na; dx = I / (wkaknz) 47 dz
B

o)
It follows that

n—2

/ ( kﬁkn)u dz + R(n, 0;) +2/772h A dx

—|—2/ k(?kn hit; dm+/ kf)k 1) t2dr <0

Regarding Rz (n, 4;), an integration by parts gives that

1 1
[ i (Vo) de = o [ n(anidde - 5 [ |[Vnlalda
B 2/B 2J/B
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and we therefore get that
Rao(n. i) = [ [Vnfafde
Regarding R1(n, ;), we have
/n(azkakﬁi) L Andr = —n/ n(An)i zdx—/ (mkﬁkn) (An)aide
B B
—/ nlx 8kui> ﬂiAnd:)s—/ (x’“@kAn) na;dx
B B

so that
/B (x 8kuz) i Andy = —5/ n(An)iids
_% : (g;kakn) (An)aidz — %/ (xk(?kAn) ni;dz
Independently,
[ (o) watmade = [ (a* o) (An)aide
+ [ (a"0n) niuAiide - 2 [ (z*0m) @ (VVa) do

/B (c*hn) s Aidz = /B (a*0kn) " dz — /B (*0n) nhidZdz
while, integrating by parts,
/B (a*0kn) & (VnV ;) de = /B (c*0kn) (Am)idde
_ /B (k) it (V0 Vi) da — /B (V(a ) Vn) i de
so that
/B (a*0hn) 2 (VVas) dz = % / *0u) (An)aida
~-;— (v (’“&m)Vn) i dz
Therefore,
[ (zown) tss(nao)de = [ (") ni? da
- /B (*04n) mhiidz + /B (V(2*8m)Vn) 42dz

and we get that



Therefore,
2/ n°h; u2d9:—|—/ ’“ak u 2dx
—4/3 x Bkuz-) n(VnVi;)de
+/}Bf(n)ﬁ?dw+fgg(n)ﬁ?*dw <0
where

fm) = 2(V(*dm)Vn) —nnln — (z*0un) An
— («*n) 1 + (n - 2)|Vnl?

and g(n) = % (:z:’“(?kn) n. As easily checked,
. . 1 d N2
(:vkakui) n (VnVi,) = ;nd—z (xkakuJ

Since 1 was chosen to be nonnegative and nonincreasing, (xkakﬂ,) n (VnVi;) is nonpositive,
and we get that

2 / Whitlde + / 2*duh;) 2dz
+/fnu?da:+/gnui dz <0
B B

As easily checked,

k _ . n=2 22 ko  2-2*
2h; + (CL‘ 8khz) = (Otz 4(n — 1) Sg) (2@ +x (9kgo )
=2 g9k
Y E—— xS,
an—1)7 (20:5,)
Choosing § > 0 sufficiently small, there exists ¢; > 0 such that
202 4 kGt T > ¢

in B. Since we assumed that o > «p, « the limit of the «;’s, we get that for ¢ sufficiently large,
2h; + (mkakh@-) > ¢ for some ¢y > 0 independent of i. We then get that there exists some
constant C' > 0, independent of 4, such that

f a2dz < C i2dz
By (4) Bo(20)\Bo(8)

Coming back to the manifold, it follows that for any 43 > 0, there exists 0 < § < dp and a
constant ' > 0, independent of 4, such that

2 2
widv, < C ui dv
/Bzo((?) v Bay(o\Bag(6) =

o7



Repeating the argument for the other geometrical blow-up points in S, and summing the
different inequalities we get, leads to the following: for § > 0 small, there exists a constant
C > 0, independent of ¢, such that

2 2
usdv, < C usduv
/36 178 — M\Bs [t}

where Bj is as in step 2. By step 2,

. fM\55 uzZ dvg
lim ———— =
imtoo [\ uidv,
when n > 4, and the contradiction follows. This ends the proof of Theorem 6.1.

As a remark, it follows from the above proof that there always exists u € S, such that
FE(u) = En(a) when a > op.
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