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Chapter 1

Mountain pass theorem

1.1 Differentiable functionals
Let us recall some notions of differentiability.

Definition 1.1. Let <p : U —> M where U is an open subset of a Banach
space X. The functional <p has a Gateaux derivative f G X' at u G U if,
for every h G X,

Jim -[<p{u + th) - (p(u) - (f, th)] = 0.

The Gateaux derivative at u is denoted by <f'(u).
The functional <p has a Frechet derivative f G X' at u G U if

Urn 7TT7T W + h) - <p(u) - {/, h)] = 0.

The functional ip belongs toCx(U,M) if the Frechet derivative of <p exists
and is continuous on U.

If X is a Hilbert space and <p has a Gateaux derivative at u G U, the
gradient of ip at u is defined by

Remarks 1.2. a) The Gateaux derivative is given by

(<p'{u), h) := Jim - fa (« + th) - <p(u)].

b) Any Frechet derivative is a Gateaux derivative. Using the mean
value theorem, it is easy to prove the following result:

Proposition 1.3. If ip has a continuous Gateaux derivative on U then
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Definition 1.4. Let <p e CX{U, R). The functional <p has a second Gateaux
derivative L 6 C(X, X') at u e U if, for every h, v 6 X,

lim - (<p'{u + th) - <p'{u) - Lth, v) - 0.

The second Gateaux derivative at u is denoted by <p"{u).
The functional <p has a second Frechet derivative L 6 C(X, X') at

ueU if

M [ / ( fc)/()Lft] 0

The functional <p belongs to C2(U, R) if the second Frechet derivative of if
exists and is continuous on U.

Remarks 1.5. a) The second Gateaux derivative is given by

(if"(u)h, v) := Jim - ( / ( « + th) - <p\u),v).

b) Any second Frechet derivative is a second Gateaux derivative. Using
the mean value theorem, it is easy to prove the following:

Proposition 1.6. If tp has a continuous second Gateaux derivative on V
thenveC2(U,R).

We will use the following function spaces.

Definition 1.7. The space

H\RN) := {u E L2{RN) : Vu € L 2 ^ ) }

with the inner product

(u,v)i := / [Vu-Vv + uv]
M" J

and the corresponding norm

is a Hilbert space. Let Cl be an open subset ofRN. The space HQ(£1) is
the closure ofV(Q) in H1(RN).

Let N > 3 and 2" := 2N/(N - 2). The space

V1'2^") := {u e L2'(RN) : Vu e L2(RN)}

with the inner product
f Vu-Vv

1.1. DIFFERENTIABLE FUNCTIONALS

and the corresponding norm

1/2

is a Hilbert space. The space £>o'2(ft) is the closure ofV(Q) in
For simplicity of notations, we shall write 2* = oo when N = 1 or N = 2.

For the following results, see [20] or [90].

Theorem 1.8. (Sobolev imbedding theorem). The following imbeddings
are continuous:

) C IS{RN), 2<p<oo,N = l,2,
Hl(RN) C LP(RN), 2<p<2*,N>3,
Dl*{RN)cLr(RN), N>3.

In particular, the Sobolev inequality holds:

S := inf \Vu\l > 0.

Theorem 1.9. (Rellich imbedding theorem). If \Q\ < oo, the following
embeddings are compact:

Corollary 1.10. (Poincare inequality). If |fi| < oo, then

XAQ) := inf \Vu\l > 0

is achieved.

Remarks 1.11. a) It is clear that H^tl) C T>0' (Q).
b) If \Q\ < oo, Poincare inequality implies that HQ{£1) = T>l'2(Q).

Proposition 1.12. Let Q be an open subset ofRN and let 2 < p < oo.
The functionals

are of class C2(Lp(fi), R) and

&'(u), h)=pf \u

(«) := / W+\P

X ' ( u ) , h)=pf (u+f-'
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Proof. Existence of the Gateaux derivative. We only consider ip.
The proof for x is similar. Let u,h E V. Given x £ Cl and 0 < \t\ < 1, by
the mean value theorem, there exists A G]0,1[ such that

Xth{x)\p-'\h(x)\th{x)\p-\u(x)\p\/\t\ =

The Holder inequality implies that

It follows then from the Lebesgue theorem that

{ip\u),h) =p f \u\p~2uh.
Jn

Continuity of the Gateaux derivative. Let us define f{u) :=
p\u\p~2u. Assume that un —> u in IP. Theorem A.2 or A.4 implies that
f{un) —• /(«) in Lq when q := p/(p — 1). We obtain, by the Holder
inequality,

KV'K) - rP'(u),h)\ < \f(un) - f(u)\g\h\p,

and so
I I ^ ' K ) - xP'(u)\\ < \f(un) - / ( « B ) | g - 0,n -> oo.

Existence of the second Gateaux derivative. Let u,h,v G Lp(fi).
Given x £ Q and 0 < \t\ < 1, by the mean value theorem, there exists
A e]0,1[ such that

\[f(u(x) + th(x))-f(u(x))]v(x)\/\t\
= p{p-l)\u(x) + Xth{x)\p-2\h(x)\\v(x)\
< p(p - l)[\u(x)\ + \h(x)\]»-2\h(x)\ \v(x)\.

The Holder inequality implies that

It follows then from the Lebesgue theorem that

(il>"(u)h,v)=p(p-l) I \u\p~2hv.

Continuity of the second Gateaux derivative. Let us define
g{u) := p(p - 1) |w|p~2. Assume that un —» u in Lp. Theorem A.2 or A.4
implies that g{un) —> g(u) in U where r := p/(p - 2). We obtain, by the
Holder inequality,

- i>"(u))h,v) < \g(un) - g(u)\r\h\p\v\P,

1.2. QUANTITATIVE DEFORMATION LEMMA 11

and so

\\xp"(un) - ip"(u)\\ < \g(un) - g{un)\T —> 0, n —• oo. •

Corollary 1.13. a) Let 2 < p < oo if N = 1,2 and 2 < p < 2* if N > 3.
The functionals ip and x are of class C2(H£(n),R).

b) Let N > 3 and p = 2*. The functional tp and x are °f ciass

Proof. The result follows directly from the Sobolev theorem. •

1.2 Quantitative deformation lemma

We will prove a simple case of the quantitative deformation lemma. The
general version will be given in the next chapter. Let us recall that <pd :=
V-'Q-ocd}).

Lemma 1.14. Let X be a Hilbert space, ip G C2(X,R), c G R, e > 0.
Assume that

(Vu € <p-\[c - 2e, c + 2e))) : ||^'(u)|| > 2e.

Then there exists rj e C(X, X) such that
(i) ri(u) =uyu<? <p-\[(c- 2e,c+ 2e]),
(ii) V(<pc+') C <fc~e.

Proof. Let us define

A := V>-1{[c
B := <p-\[c

i>{u) := dist(u, ~\ist(«, X\A) + dist(u, B))~\

so that ip is locally Lipschitz continuous, tp = 1 on B and ip = 0 on X\A.
Let us also define the locally Lipschitz continuous vector field

f(u) := - ^ ( «
:= 0, ue X\A.

It is clear that | |/(u)|| < (2s)-1 on X. For each « G X, the Cauchy
problem

—o{t,u) = /(cr(f,w)),
at

a(0,u) = u,
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has a unique solution o(.,u) defined on R. Moreover, a is continuous on
R x X (see e.g. [78]). The map rj defined on X by r](u) := a(2e, u) satisfies
(i). Since

(1.1)

= (Vip(a(t,u)),f(a(t,u))
= -iP(a{t,u))

(p(a(.,u)) is nonincreasing. Let u G <pc+£. If there is t G [0,26:] such that
<p{a(t, u)) <c- e, then y?(cr(2£", u)) < c - £ and (ii) is satisfied. If

then we obtain from (1.1),

<p(cr{2£,u))

and (ii) is also satisfied. D

r2e d
tp(u)+ —<p{a(t,u))dt

Jo at

ip{u)- / ip{a{t,u))dt
Jo

-2e = c — e,

1.3 Mountain pass theorem
The mountain pass theorem is the simplest and one of the most useful
minimax theorems.

Theorem 1.15. Let X be a Hilbert space, <p G C2(X,R), e e X and
r > 0 be such that \\e\\ > r and

(1.2) b := inf <p(u) > <p(0) >

Then, for each e > 0, there exists u G X such that
a) c-2e < <p(u) <c + 2e,
b) \\v'(u)\\ < 2e,
where

c := inf max<j?(7(i))76rte[o,i]

and
T := {7 G C([0,1], X) : 7(0) = 0,7(1) - e}.

Proof. Assumption (1.2) implies that

b < max

1.3. MOUNTAIN PASS THEOREM 13

and so
b < c < max (p(te).

~ - t€[0,l]
Suppose that, for some e > 0, the conclusion of the theorem is not satisfied.
We may assume

(1.3) c-2e>ip(0)>ip(e).

By the definition of c, there exists 7 G F such that

(1.4)
te[o,i]

Consider 0 := 77 o 7, where 77 is given by the preceding lemma. We have,
using (i) and (1.3),

0(0) = 77(7(0)) = 77(0) = 0,

and similarly 0(1) = e, so that 0 G F. It follows from (ii) and (1.4) that

c < max <p(0(t)) <c — e.

This is a contradiction. •

In order to prove that c is a critical value of ip, we need the following
compactness condition.

Definition 1.16. (Brezis-Coron-Nirenberg, 1980). Let X be a Banach
space, ip G C^X.R) and c G R. The function ip satisfies the (PS)C condi-
tion if any sequence (un) C X such that

has a convergent subsequence.

Theorem 1.17. (Ambrosetti-Rabinowitz, 1973). Under the assumption
of Theorem 1.15, ifip satisfies the (PS)C condition, then c is a critical value
of ip.

Proof. Theorem 1.15 implies the existence of a sequence (un) C X
satisfying (1.5). By (PS)C, (un) has a subsequence converging to u G X.
But then <p(u) = c and ip'(u) = 0. •

Example 1.18. (Brezis-Nirenberg, 1991). Under the assumptions of
Theorem 1.15, c is not, in general, a critical value of ip. Let us define
V?GC°°(R2,R) by

tp(x,y) := x2 + (1 -xfy2.

Clearly ip satisfies the assumptions of Theorem 1.15. But 0 is the only
critical value of ip.
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1.4 Semilinear Dirichlet problem

In this section, we consider the model problem

-Au + Xu = \u\p~2u,

where Q is a domain of RN. The main result is the following:

Theorem 1.19. Assume that |Q| < oo and 2 < p < 2*. Then problem
(Vx) has a nontrivial solution if and only if X > -XX(Q).

Proof. Necessary condition. Suppose u is a nontrivial solution of
(Pi). Let ex € Hi be an eigenfunction of - A corresponding to Ai = Xx(Cl)
with e, > 0 on Q (see [90]). We have

A / « ei = / {up~l + Au)ex > f Au ex = -A] f u exJn Jn Jn Jn

and thus A > —A].

Sufficient condition. Suppose A > -A], so that Cj := l+min(0, A/A])
> 0. On HQ we have, by the Poincare inequality,

|Vu|a + X\u\\ > C]|V«|2.

On Hi we choose the norm ||u|| := sJ\Vu\l + \\u\%. Let us define f(u) :=
(U+)"-1 and F(u) := (u+)p/p.

By Corollary 1.13, the functional

is of class C2(//o,R). We will verify the assumptions of the mountain
pass theorem. The (PS)C condition follows from the next lemma. By the
Sobolev theorem, c2 > 0 such that, on HQ,

\u\P < c2\\u\\.

Hence we obtain

1,

and there exists r > 0 such that

b := inf <p(u) > 0 = <p(0).

1.4. SEMILINEAR DIRICHLET PROBLEM

Let uE HQ with u > 0 on Q. We have, for t > 0,

15

Since p > 2, there exists e := tu such that ||e|| > r and y?(e) < 0.
By the mountain pass theorem, <̂  has a positive critical value and

problem
-Au + Xu = f(u),

has a nontrivial solution it. Multiplying the equation by u~ and integrating
over $7, we find

b = \Vu-\l + X\u-\l = \\u-\\2.

Hence u~ = 0 and u is a solution of (Vi). •

Lemma 1.20. Under the assumptions p of Theorem 1.19, ifX > — Ai any
sequence (un) C HQ such that

d := sup ip(un) < 00, <p'(un) —»• 0
n

contains a convergent subsequence.

Proof. 1) For n big enough, we have

d + l + llilnll > V{un)-p

(

It follows that | |«n | | is bounded.
2) Going if necessary to a subsequence, we can assume that un —' u

in Hi. By the Rellich theorem, un -* w in Lp. Theorem A.2 implies that
/ (« n ) —> /(w) in L9 where 9 := p/(p - 1). Observe that

|K " "IP = MM ~ V » , «n " «> + / ( /K) - /(«)(tl™ - «))•
<J it

It is clear that

<V;(«n) - ^ ( M ) . wn - «> -» 0, n -» 00.

It follows from the Holder inequality that

- f(u))(un - u)\ < \f(un) - f(u)\q\un - u\p -> 0 ,n -> 00.

Thus we have proved that ||un — w|| —> 0, n —* 00. •
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1.5 Symmetry and compactness

Symmetry plays a basic role in variational problems. For example, the
imbedding Hl(HLN) C L2(RN) is noncompact because of the action of
translations. If ft is bounded, the embedding H&(Cl) C L2*(Q) is noncom-
pact because of the action of dilations. When the problem is invariant
by a group of orthogonal transformations, the situation is different. In
some cases, it suffices to consider invariant functions in order to recover
compactness. We will also see in chapter 3, that, in other cases, symmetry
implies multiplicity.

We will use the following lemma.

Lemma 1.21. (P.L. Lions, 1984). Let r > 0 and 2 < q < 2*. If (un) is
bounded in Hl(RN) and if

JB[
sup / \un

JB(y,r)
0, n —> oo,

then 0 in LP{RN) for 2 < p < 2*.

Proof. We consider the case N > 3. Let q < s < 2* and u e H1(RN).
Holder and Sobolev inequalities imply that

< \u\Li(B(y,r))\U\L*'(B(y,r))
A/2

where A := £-?- —. Choosing A = 2/s, we obtain

Now, covering RN by balls of radius r, in such a way that each point of
RN is contained in at most TV + 1 balls, we find

\u\S < (N + 1)CS

Under the assumption of the lemma, un —» 0 in LS(RN). Since 2 < s < 2*,
«„ -» 0 in LP(RN) for 2 < p < 2*, by Sobolev and Holder inequalities. •

Definition 1.22. Let G be a subgroup ofO(N), y €
define

and r > 0. We

m{y,r,G) := sup{n e N : 3gu... ,9n e G : j ^ k =^ B(gjy,r)nB{gky,r) -

1.5. SYMMETRY AND COMPACTNESS 17

An open subset Q of RN is invariant if gCl = Q for every g e G. An
invariant subset Q, ofRN is compatible with G if, for some r > 0,

lim m(y,r,G) = oo.
dist(y,fi)<r

Definition 1.23. Let G be a subgroup ofO(N) and let ft be an invariant
open subset ofRN. The action of G on HQ(£1) is defined by

gu{x) := u{g~lx).

The subspace of invariant functions is defined by

KoiP) •= iu 6 #o(n) :gu = u,Vge G).

The following theorem is the main result of this section:

Theorem 1.24. Ifil is compatible with G, the following embeddings are
compact:

Proof. Assume that un —•• 0 in //oG(ft). It is clear that, for every n,

/ |«n|2 < sup \un\l/m(y, r, G).
JB(y,r) n

Let e > 0. If ft is compatible with G, there exists i? > 0 such that, for
every n,

sup / |un |2 < e.
\y\>RJB(y,r)

It follows from the Rellich theorem that

/ |un |2 —> 0, n —> oo,
JB(O,R+T)

and so
sup / |«n |2 —> 0,n —» oo.
|j/|<fl-'B(y,r)

By the preceding lemma, un -> 0 in //(ft) for 2 < p < 2*. D

Corollary 1.25. (P.L. Lions, 1982). Let A^ > 2, j = 1 , . . . , k, ̂ TiV, = N

and

Then the following embeddings are compact:

Proof. It is easy to verify that RN is compatible with G. •
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Corollary 1.26. (Strauss, 1977). Let N > 2. Then the following embed-
dings are compact:

Proof. It suffices to apply the preceding result. •

1.6 Symmetric solitary waves
This section is devoted to the problem

u€Hl

where TV > 2 and 2 < p < 2*.
We will apply the mountain pass theorem to the functional

where F(u) := (u+)p/p. In fact it suffices to find the critical points of ip
restricted to a subspace of invariant functions.

Definition 1.27. The action of a topological group G on a nonned space
X is a continuous map

such that

G x X —• X : [g,u] —> gu

1 • u — u,
{gh)u = g(hu),
U H gu is linear.

The action is isometric if

IMI = IH|.
The space of invariant points is defined by

Fix{G) := {u £ X : gu = u,Vg £ G}.

A set Ac X is invariant ifgA = A for every g e G. A function ip : X —+ R
is invariant ifipog = (p for every g £ G. A map f : X —> X is equivariant
if g o f = f o g for every g £ G.

Theorem 1.28. (Principle of symmetric criticality, Palais, 1979). As-
sume that the action of the topological group G on the Hilbert space X
is isometric. If' <p e Cl(X, R) is invariant and if u is a critical point of ip
restricted to Fix(G) then u is a critical point of ip.

1.6. SYMMETRIC SOLITARY WAVES 19

Proof. 1) Since ip is invariant, we have

(<p(gu),v) — hm
~xv) - <p(u)

2) Since the action is isometric, we obtain

,^-1^) - {gV<p(u),v)

and so V(p is equivariant.
3) Assume that u is a critical point of <p restricted to Fix(G). It is clear

that
gVip{u) = V<p(gu) = V<p{u)

and so Vip(u) G Fix(G). Hence

V<p(u) e Fix(G) n Fix(G)x = {0}. •

Theorem 1.29. (Strauss, 1977). If N > 2 and 2 < p < 2*, there exists a
radially symmetric, positive, classical solution of

Proof. 1) Consider the functional (p restricted to X :— ^^
We shall verify the assumptions of the mountain pass theorem. As in the
proof of Theorem 1.19, there exists e £ X and r > 0 such that ||e||i > r
and

b := inf <p(u) >0 = y?(0) > <p(e).
||u||i=r

2) It remains to prove the Palais-Smale condition. Consider a sequence
(un) C X such that

sup ip(un) < oo, ip'(un) —» 0 in X'.
n

As in the proof of Lemma 1.20, ||«n | |i is bounded. Going if necessary to a
subsequence, we can assume that un —* u in X. By Corollary 1.26, un —> u
in V. As in the proof of Lemma 1.20, it follows that ||un — u\\i —+ 0.

3) Using the mountain pass theorem, we obtain a nontrivial critical
point u of ip restricted to X. By the principle of symmetric criticality, we
have

Multiplying the equation by u~ and integrating over RN, we find

Hence u~ = 0 and u is a nonnegative solution of (p2)-
4) The next lemma implies that u £ C2(RN). By the strong maximum

principle u is positive. •
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Lemma 1.30. If u is a solution of (V2) then u G C2(RN).

Proof. Since
-Au = au

where a := \u\p~2 — 1 G L^2(RN), the Brezis-Kato theorem implies that
u G Llc{RN) for all 1 < p < oo. Thus u G W?*(RN) for all 1 < p < oo.
By elliptic regularity theory, u G C2{RN). D

The existence of a nonradial solution of (V2) has been an open problem
for some time.

Theorem 1.31. (Bartsch-Willem, 1993). If N = 4 or N > 6 and 2 <
p < 2* then problem {V2) has a nonradial solution.

Proof. Let 2 < m < 7V/2 be a fixed integer different from (N - l)/2.
The action of

G := O(m) x O(m) x O{N - 2m)

on tf^R") is denned by

gu(x) := u(g~lx).

By Corollary 1.25, the embedding H^(RN) C ^ (R^) is compact. Let r
be the involution defined on RN = Rm © Rm © RN~2m by

T(XUX2,X3) := (x2,x1,x3).

The action of H := {id,r} on H^(RN) is defined by

hu{x) := u(x), h = id,
h — T.

It is clear that 0 is the only radial function of

X := {u G Hl
G{RN) :hu = u,VheH}.

Moreover the embedding X C IfiR**) is compact. As in the proof of
Theorem 1.29, we apply the mountain pass theorem. We obtain a non-
trivial critical point u of <p restricted to X. By the principle of symmetric
criticality, u is a nontrivial critical point of tp. O

1.7 Subcritical Sobolev inequalities
Let N > 2 and 2 < p < 2*. The Sobolev theorem implies that

Sp := inf ||u||? > 0.

1.7. SUBCRITICAL SOBOLEV INEQUALITIES 21

In order to prove that the infimum is achieved, we consider a minimizing
sequence (un) C H1

(1.8) Klp = l, | |«n||i-*5p> n-+oo.

Going if necessary to a subsequence, we may assume un —* u in H1

so that

Thus u is a minimizer provided |u|p = 1. But we know only that |tt|p < 1.
Indeed, for any v G H1 and y G RN the translated function

vy(x) := v(x + y)

satisfies

\vy\U = ;V\ =

Hence the problem is invariant by the noncompact group of translations.
In order to overcome this difficulty, we will use the following result.

Lemma 1.32. (Brezis-Lieb Lemma, 1983). Let Q be an open subset of
RN and let (un) C Lp{9), 1 < p < 00. If
a) (un) is bounded in Lp(^l)J

b) un —> u almost everywhere on f2, then

Proof. Fatou's Lemma yields

\u\P < iim|un|p < 00.

Fix £ > 0. There exists c(e) such that, for all a, b G R,

Hence we obtain

< (l+c(e))\u\».

By the Lebesgue theorem, /n f^ —> 0, n —> 00. Since

*n\ I "n

we obtain

where c := sup|un — wjp < oo. Now let e —» 0. •

<
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Remarks 1.33. a) The preceding lemma is a refinement of Fatou's
Lemma.

b) Under the assumptions of the lemma, un -* u weakly in 2/(ft). How-
ever, weak convergence in i /(Q) is not sufficient to obtain the conclusion,
except when p — 2.

c) In any Hilbert space

un —> u =*> lim {\un\
2 — \un - u\2) = |u|2.

Theorem 1.34. (P.L. Lions, 1984). Let (un) C Hl(RN) be a minimizing
sequence satisfying (1.8). Then there exists a sequence (yn) C RN such
that u^n contains a convergent subsequence. In particular there exists a
minimizer for Sp.

Proof. Since \un\p = 1, Lemma 1.21 implies that

6 := lim sup / \un\
2 > 0.

Going if necessary to a subsequence, we may assume the existence of
(yn) c RN such that

jB ^ K|2 > 6/2.
Let us define vn := uy

n
n. Hence \vn\p = 1, \\vn\\\ —> Sp and

(1.9)
B(O,1)

\vn 6/2.

Since (vn) is bounded in Hl(RN), we may assume, going if necessary to a
subsequence

vn — v inH1(RN),

vn —> v in L2
OC(7

vn -^ v a.e. on

By the preceding lemma,

where wn :— vn — v. Hence we have

Since, by (1.9), v ^ 0, we obtain \v\^ = 1, and so

D

Theorem 1.35. There exists a radially symmetric, positive, C2 minimizer
for Sp.

1.8. NON SYMMETRIC SOLITARY WAVES 23

Proof. 1) By the preceding theorem, there exists a minimizer u £
for Sp. By Theorem C.4, u is radially symmetric. Replacing u by

|u|, we may also assume that u is non-negative.
2) It follows from Lagrange multiplier rule that, for some A > 0, u is a

solution of
u = Xup~x.

By Lemma 1.30, u e C2{RN). The strong maximum principle implies that
u is positive. •

1.8 Non symmetric solitary waves
This section is devoted to the problem

-Au + u = Q{x)\u\p-2u,
u>0,ue H\RN),

where JV > 2, 2 < p < 2* and Q e C{RN) satisfies

(i.io) ! = h'm Q(x)= [nl,Q(xy

By scaling, it is easy to replace 1 by any positive number. Let us define
as before f(u) := (u+)p~l and F(u) := (u+)p/p. By a variant of Corollary
1.13, the functional

is of class
let (an) C

^ ) . Let v > 0 be a minimizing function for Sp and
be such that \an\ —» oo, n —» oo. It is easy to verify that

1

oo.

_ £ _

Hence condition (PS)C is not satisfied for c = ( | — i)

Lemma 1.36. Under assumption (1.10), any sequence (un) C H1(RN)
such that

d := < c* := (^ -

contains a convergent subsequence.
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Proof. 1) As in the proof of Lemma 1.20, (||un||i) is bounded. Going
if necessary to a subsequence, we can assume that

un-*u
un-+u

un^> u

in n [a

in LLO
a.e. on

It follows that

and so
- A u + it = Q(x)\u\p~2u,

(1.11) <p(u) = M - JQ{x)F{u)dx = {\- l)\\u\\\ > 0.

2) We write vn := un — u. The Brezis-Lieb Lemma leads to

j Q(x)F{un)dx - J Q{x)F{u)dx + J Q{x)F{vn)dx + o{

— Q(x)F(u)dx + / —-—dz + o(l).
y J p

Assuming V3(itn) —+ c < rf, we obtain

(1.12)
~ J P

•dx —> c.

Since {<//(?/„), tin) —» 0, we also obtain

\\vn\\\ - j{vt)pdx - pIQ(x)F(u)dx - \\u\

= 0.

We may therefore assume that

By the Sobolev inequality, we have

p
P " 2and so b>Sp b2/p. Either 6 = 0 or 6 > 5P
P"2. If 6 = 0, the proof is complete

Assume b > 5P
P"2. We obtain from (1.11) and (1.12)

a contradiction. •
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Theorem 1.37. (Ding-Ni, 1986). Under assumption (1.10), ifN > 2 and
2 < p <2*, problem (V3) has a nontrivial solution.

Proof. 1) It suffices to apply the mountain pass theorem with a value
c < c*. Let v > 0 be a minimizing function for Sp. If Q = 1, the result
follows from Theorem 1.29. We may assume that Q •£ 1. Hence we obtain
JQ(x)vpdx > Jvpdx. It follows that

m a x f — llull? / Q(x)vpdx)
t>o V2 p J >t>o

1 1 _ E _
" 2 — r*

2) Since

2 p 1

INI? M
72 INI7,

where M := maxQ, there exists r > 0 such that

& : = i n f
||u||x=r

0 =

There exists t0 > 0 such that ||io^||i > r a n d <fi{tov) < 0. It follows from
the preceding step that

max ip(ttov) < c*.

By the preceding lemma and the mountain pass theorem, <p has a critical
value c e [b, c*[ and problem

has a nontrivial solution u. Multiplying the equation by u~ and integrat-
ing, we find u~ = 0 and u is a solution of (T>3). D
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1.9 Critical Sobolev inequality

Let N > 3. The optimal constant in the Sobolev inequality is given by

S := inf |Vu|2 > 0.
uev12(RN)

Ha.=i

In order to prove that the infimum is achieved, we consider a minimizing
sequence (un) C V1'2(RN):

(1.13) nb* = 1, | V l i n | 2 —> 5 , TZ —> CO.

Going if necessary to a subsequence, we may assume un —>• u in V1'2

so that

Thus u is a minimizer provided |z/|2- = 1. But we know only that ju|2- < 1.
Indeed, for any v € 2?1'2, y e RN and A > 0, the rescaled function

satisfies

|w>A |2 = |Vv|2, l^ -V = M2..
Hence the problem is invariant by translations and dilations. In order to
exclude noncompactness, we will use some results from measure theory
(see [90]).

Definition 1.38. Let 17 be an open subset ofRN and define

JC(Q) := {u G C(S1) : supp u is a compact subset o/fi},

BC(Cl) := {u e C(fi) : M*, := sup|«(ar)| < oo}.

The space C0(Q) is the closure of IC(Q) in BC(Q) with respect to the
uniform norm. A finite measure on Q is a continuous linear functional on
Co(S7). The norm of the finite measure fi is defined by

\\fi\\:= sup \(fi,u)\.
u€C0(f2)
|u|Oo = l

We denote by M{0) (resp. M+(ty) the space of finite measures (resp.
positive finite measures) on Q. A sequence (fin) converges weakly to \i in

) , written

provided
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Theorem 1.39. a) Every bounded sequence of finite measures on Q con-
tains a weakly convergent subsequence.

b) If jj.n —- fj, in M(Q) then (ftn) is bounded and

c) If n then

= sup
u&Bc{n
|«|oc = l

Following P.L. Lions [51] (inequality 1.15), Bianchi, Chabrowski, Szulkin
(inequality 1.16) and Ben-Naoum, Troestler, Willem (equalities 1.17 and
1.18), we describe the lack of compactness of the injection P1>2(R/V) C
L2'(RN).

Lemma 1.40. (Concentration-compactness lemma). Let (un) C Dlt2(M.N)
be a sequence such that

in
(un-u)\2-v inM(RN),
\un - uf — v in M{RN),

un —• u a.e. on RN

and define

(1.14) /Zoo := h'm lim / |Vun |2, ôo := lim lim / \un\
2'.

fi_oo n^oo J\x\>n R—oon->oo7|x|>/j

Then it follows that

(1.15) |M|2/2"

(1.16) i

(1.17)

2/2* < o - l

lim |Vun |2 = |Vu|2 +

(1.18) lim K | 2 . = |u | 2 .+ |MI + ̂ oc.

Moreover, ifu = 0 and \\^\\2^2' = S 1||A'||, then u and // are concentrated
at a single point.
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Proof. 1) Assume first u = 0. Choosing h G V(RN), we infer from the
Sobolev inequality that

{J\hun\
2'dx)VT < S-1 J \V(hun)\

2dx.

Since un —> 0 in L2
OC, we obtain

(1.19) ( / \h\2'dufIT < S-1 J \h\2d(x.

Inequality (1.15) then follows.
2) For R > 1, let 4>R G Cl(RN) be such that tpR{x) = 1 for |xj > R+ 1,

-0fl(x) = 0 for |x| < R and 0 < ^ ( z ) < 1 on RN. By the Sobolev
inequality, we have

I t 2 . \2/2' , /• „
/ W n "^) < 5 / V(^fi«n) dx.

\J ' J
Since un —* 0 in Lfoc, we obtain

(1.20) lim ( ( \ipRun
 2'dx)2/2 < 5" 1 lim / \Vun\

2ilj2
Rdx.

n-*oo\J I n—oo J

On the other hand, we have

[ \Vun\
2dx < f \Vun\

2iP2
Rdx < [ \Vun\

2dx
J\x\>R+l J J\x\>R

and
/ |un|2*dx < / |wn|

2*-0fl dx < / \un\
2"dx.

J\x\>R+l J ^|x|>R

We obtain from (1.14)

UQO = lim lim / |V'uTl|
2x/;»<£r, i/^ = lim lim / luJ2 ib2

Rdx.

Inequality (1.16) follows then from (1.20).

3) Assume moreover that |M|2^2* = 'S^IMI- The Holder inequality
and (1.19) imply that, for h G ^ ( R ^ ) ,

/ / I . I O * . \ lf * y - i_1 / O i l I l l / A / / I I t l 9 * * \ X / *

( / /ir d^l < 5 7 H^lr ( / \h\2 d/i)

We deduce i / '= 5-2*/2||/i||2/Af-2/i- It follows from (1.19) that, for h G
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and so, for each open set Q,
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It follows that v is concentrated at a single point.
4) Considering now the general case, we write vn := un — u. Since

vn - 0, in Vl'2(RN),

we have

According to the Brezis-Lieb Lemma, we have for every non negative h

fh\u\2' =nlirn (Jh\un\
2' - Jh\vn\

2').

Hence we obtain
K f -v+\u\2' inM{RN).

Inequality (1.15) follows from the corresponding inequality for (vn).
5) Since

fiin / |Vyn|2 = Em f \Vun\
2 - [ |Vu|2,

"-"ttJIx^R n-^°°J\x\>R J\x\>R

we obtain
lim lim

By the Brezis-Lieb Lemma, we have

/
\x\>R

and so
lim lim / \vn\

2* — u^.
R-*<x>n—ooJ\x<>R

Inequality (1.16) follows then from the corresponding inequality for {vn).
6) For every R > 1, we have

When R —> oo, we obtain, by Lebesgue theorem,

n ^ y \Vun\
2 = /xoo + Jdfi + I \Vu\2 = /ioo + ||/x|| + \V

The proof of (1.18) is similar. D
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Theorem 1.41. (P.L. Lions, 1985). Let {un) C V^2(RN) be a minimiz-
ing sequence satisfying (1.13). Then there exists a sequence (yn,Xn) C
R x]0,oof such that (u%l'Xn) contains a convergent subsequence. In par-
ticular there exists a minimizer for S.

Proof. Define the Levy concentration functions

Qn(A) := sup / \un\
2'.

yZRN JB(y,X)

Since, for every n,

lim On(A) = 0, limQn(A) = l,
A—»0+ A—>oo

there exists An > 0 such that Qn{Xn) = 1/2. Moreover, there exists yn €
RN such that

f 12*

JB(yn,Xn)

im / \un\
2' = 0.

l^oo JB(y,X,i)

Let us define vn := u*-A". Hence |vn|2. = 1, |Vvn|?. -* S and

\=f \vnf = sup / \vn\
2'.

since
lim

M-

(1-21)

Since (vn) is bounded in D1'2(Ryv), we may assume, going if necessary to
a subsequence,

vn — v in Vh2(RN),

\V{vn-v)\2-fi mM{RN),

\vn - v\2' - v in M(MN),

vn —* v a.e. on RN.

By the preceding lemma,

(1.22) S = lim \Vvn\
2 = \Vv\2 + ||/i| | + /*„,,

(1.23)

where

^Jirn^JIm^y |Vt;n|
2, ux := Yim^lim^J \vn\

2'.
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We deduce from (1.22), (1.15), (1.16) and Sobolev inequality,
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It follows from (1.23) that \v\l'., \\v\\ and v^ are equal either to 0 or to
1. By (1.21), Voo < 1/2 so that u^ = 0. If \\u\\ = 1 then v = 0 and

I- The preceding lemma implies that u is concentrated|2/2*
at a single point z. We deduce from (1.21) the contradiction

\ = sup / K f > / \vn\
2'

2 ygRw ^B(y,l) ./B(z,l)
= 1.

Thus \v\"%. = 1 and so

Theorem 1.42. (Aubin, Talenti, 1976). The instanton

[N{N - >/

n

U(x) :=

is a minimizer for S.

Proof. 1) By the preceding theorem, there exists a minimizer u G
T>lt2(RN) for S. By Theorem C.4, u is radially symmetric. Replacing u
by |u|, we may also assume that u is non-negative.

2) It follows from Lagrange multiplier rule that, for some A > 0, u is a
solution of

N+2

-Au = Xu»-2.
By the argument of Lemma 1.30, u G C2(RN). The strong maximum
principle implies that u is positive.

3) After scaling, we may assume

—Au = uN~2.

Moreover we can choose e > 0 such that

U£(x) := e(2-N)/2U(x/e)

satisfies
U£(0) = u(0).

But then u and Ue are solutions of the problem

It follows easily that u — U£. By invariance, C/ is a minimizer for 5. •
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Proposition 1.43. For every open subset 0, ofRN,

S{n) := inf |Vu|2 = S

and S(Cl) is never achieved except when Q = M.N.

Proof. 1) It is clear that S < S(fi). Let (un) C V{RN) be a minimizing
sequence for S. We can choose yn C RN and Xn > 0 such that

Hence we obtain S(Q) < S.
2) Assume that Q 7̂  M.N and w € P o ' (^) ^s a niinimizer for

By the preceding step, u is also a minimizer for 5. We may assume that
u > 0, so that u is a solution of

—Au = Att7^5.

By the strong maximum principle, u > 0 on RN. This is a contradiction,
since u G P Q ' 2 ( ^ ) - '-1

1.10 Critical nonlinearities

This section is devoted to the problem

1
-Au + Xu = |u|2*~2

u,

where Q is a bounded domain of RN, N > 3 and A > —A^H).
Let us define as before f(u) := (U+)2*"1 and F(u) := (u+)2'/2*. By

Corollary 1.13, the functional

is of class C2(H&(Q),R). On H&(Q), we choose the norm | |u| | :=

Lemma 1.44. Any sequence («n) c / / Q ( ^ ) S U C ^ ̂ a t

d := sup<p(nn) < c* := SN/2/N^'(un) -* 0,
n

contains a convergent subsequence.

+
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Proof. 1) As in the proof of Lemma 1.20, (||un||) is bounded. Going if
necessary to a subsequence, we can assume that

in
un —* u in L2(Q),
un —> u a.e. on Q.

Since (un) is bounded in L2'(Q), (f(un)) is bounded in L2N^N+2\Q) and
so (see [90])

It follows that
- Au + Au = f(u)

and

{ • ) f\u) - 2 J ^t ~ ^2 ~ 2*^'U '2* ~

2) We write vn := un — u. The Brezis-Lieb Lemma leads to

JF(un) = j>(«)
Assuming i^(un) —* c < 0?, we obtain

(1.25) tp(u) + % ^ _

Since ((p'(Mn),un) —* 0, we obtain also

\\vn\\2-rjF(vn) - 2-/F(u)-||u|

= 0.

We may therefore assume that

JF(vn) b.

Since vn —> 0 in L2(Q), it follows that |Vi;n|2 —> &• By Sobolev inequality,
we have

and sob>S b2l2'. Either b = 0 or 6 > 5 N / 2 . If 6 = 0, the proof is complete.
Assume b > SN/2. We obtain, from (1.24) and (1.25),

c* = (l- L)SN/2 <(---)b<c<d<c\V2 2* ~ 2 2*

a contradiction. •
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Theorem 1.45. (Brezis-Nirenberg, 1983). Let ft be a bounded domain
ofRN, N > 4. If-Ai(ft) < A < 0, then problem (P4) has a nontrivial
solution.

Proof. 1) It suffices to apply the mountain pass theorem with a value
c < c*. By the next lemma, there exists a nonnegative v G / / Q \ { 0 } such
that

We obtain

0 < max<p(tv) = maxf— |M|2 / v2')
t>o ^v ' t>o \2 2* J '

SN/2/N =

2) Since

<p(u) > HP

there exists r > 0 such that

b := inf > 0 =

There exists also t0 > 0 such that ||£ovll > r a n d <f{tov) < 0. It follows
from the preceding step that

max ip(ttov) < c*.
te(o,i]

By the preceding lemma and the mountain pass theorem, ip has a critical
value c € [b, c* [ and problem

-Au + Xu - f(u),

has a nontrivial solution u. Multiplying the equation by u and integrat-
ing, we find u~ = 0 and u is a solution of (P4). O

If U is the instanton, we have, for A < 0,

\\U\\2 _ \VU\\ + X\U\l |W{f
\U\2. ~ |t/|2. < Tuft: ~ 6-

Since U 0 //^(ft), it is necessary to "concentrate" U near a point of ft
after multiplication by a trunction function.
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Lemma 1.46. Under the assumption of Theorem 1.45, there exists a
nonnegative v e / / Q ( Q ) \ { 0 } such that

\\v\\2/\v\l < S.

Proof. We may assume that O e f i . Let ip e V(Sl) be a nonnegative
function such that ip = 1 on S(0, p), p > 0, and define, for e > 0,

Ue(x) := e

ue{x) := ip(x)Ue(x).

It follows from Theorem 1.42 that

As e —> 0+, we have that

JB{0, L,e) IZe'J"— ^<|x|<p
•| + O{e2), if TV = 4,

+ ( ^ (e^ - 2 ) , if N > 5,

where d is a positive constant . If iV = 4, we obtain

\\u£\\
2 S2 + Xde2\£ne\ + 0{e2)

\2\x\21N-2

\u\2
2, - (S2 + O{,

= 5 + \de2\tne\S-1 + 0{e2) < S,

for e > 0 sufficiently small. And similarly, if iV > 5, we have

A<fe2 + O{eN-2)
2 + O{eN))2l2'

for e > 0 sufficiently small. •

When ft is a smooth starshaped bounded domain, Theorem 1.45 is
sharp.
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Proposition 1.47. Assume that problem (V4) has a nontrivial solution.
Then we have A > —Ai (Q). Moreover if£l is a smooth starshaped bounded
domain, then A < 0.

Proof. As in Theorem 1.19, it is easy to see that A > — Ai(Jl). Let
us prove that any nontrivial solution u of (P4) is smooth if Q, is smooth.
Since

—Au = au

where a := u2'~2 — A € LN/2(fi), Brezis-Kato theorem implies that u G
Lp(fi) for all 1 < p < 00. Thus u e W2<p(tt) for all 1 < p < 00. By elliptic
regularity theory, u G C2(Q) PlC^Q). The Pohozaev identity (Theorem
B.I) leads to

[ u [ ovdo.
Ju Jon 2

If Q, is starshaped about the origin, we have s • n > 0 on dtt. It follows
that A < 0. If A = 0, then Vu = 0 on dQ and we obtain from (V4)

0 = - f Au= f u2'~\

so that u = 0. •

Remarks 1.48. a) It is interesting to compare Propositions 1.43 and
1.47. Under the stronger assumption that the domain f2 is starshaped,
Proposition 1.47 gives the stronger conclusion that equation

(1.26) - A u = \u\2'~2u

has no positive solution in Hl{Q).
b) For some domains Q,, equation (1.26) has a positive solution in

HQ(Q) (see [21]). By Proposition 1.43, it is not possible to construct this
solution by minimization.
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1. Introduction

Let us consider Henon's equation (see [7]) with Dirichlet boundary conditions:

Au = \x\aup-\ u > 0 in 0 ,

= O on on, ^

where U denotes the unit ball in RN.

We are interested in the symmetry of ground states solutions of (1). For a > 0

and p superquadratic but subcritical

(2 < p< 2* = +oc . if N = 2,

it is easy to verify that

Sa.p • =

is achieved at least by a positive function. By ground state, we mean any minimizer

u in (2). After rescaling. u is a solution of (1). Since (1) and (2) are invariant under

467



rotations of H, it is natural to consider

•Vp • - inf Jn (3)

where #orad(fi) denotes the space of radial functions in HQ(Q). It is also easy to
verify that S£p is achieved by a positive function v. By the symmetric criticality
principle (see e.g. [12]), after rescaling, v is a solution of (1).

Since the weight |x|a in front of the nonlinearity is increasing, the celebrated
theorem of Gidas, Ni and Nirenberg [6] nor any of its later variants do apply.
For the same reason, symmetrization will in general not increase the value of the
denominator in (2) (see [9] for a survey on symmetrization). Hence, there is an
interest in analyzing the symmetry properties of the ground states.

In a very interesting paper [3] there are numerical computations suggesting that,
in some cases,

>->cr,p <« °a,p • \*l

Our main result is that for any 2 < p < 2*, there exists Q* > 0 such that (4) holds
provided a > a*. A monotonicity result can also be proved in dimension 2.

The existence of nonsymmetric ground states of symmetric problems was first
proved by Brezis and Nirenberg in [2] for an annulus when p is almost critical.
The subcritical case was treated by Coffman [4] for an expanding annulus. The
survey [1] by Brezis contains many references. Notice that for an annulus, the
Gidas-Ni-Nirenberg theorem does not imply symmetry even in the autonomous
case.

In Sec. 2, we prove a general necessary condition for radial ground states, which
also holds for local minimizers. This condition is used in Sec. 3 to prove our main
result. Section 4 contains an asymptotic analysis:

C
a + N

N

l + 2/p
+ OC. (5)

Sections 5 and C are devoted to ground states for p close to the limit values 2 and
2*. Section 7 contains some numerical computations concerning the transition from
radialicity to symmetry breaking, and in Sec. 8 a generalization to the q-Laplacian
is presented.

2. A Necessary Condition for Radial Ground States

Let Q be a radial bounded domain in M.N, N > 3, e.g. a ball or an annulus. For
2 < p < 2* and p e Li (ft), q = 2*/(2* - p), p positive, we define on H^Q) the
Rayleigh quotient

R(u) = Z(u) _ j n \Vu\2dx
lVW):~ (fap{x)\u\Pdx)*'r'

(6)
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Theorem 2.1. If p is a radial function then any radial local minimizer u of R
satisfies

r v — 1 f ii2

/ | y u | 2 d x < i ! _ i / 2L^dx.
Jn ~ P ~ 2 Ja i^l2

Proof. Without loss of generality, we can assume that

p{x)\u(x)\'dx = l.

Any local minimizer u of R satisfies <?"(0) > 0 where g(e) = R(u + eh) and h £
is fixed. Since g'(0) = 0,

{Z"(u)h.h)N(u) - (N"{u)h.h)Z{u)
9 (0) =

where

and

(N"{u)h,h) = 2

(Z "(u)h,h) =2 / )
Jn

-p)( [ p(x)\u\p-2uhdi\ +(p-l) I p(x)\u\p~2h2dx

(7)

(8)

(9)

from which we deduce that

/ \Vu\2dx (2 - p) ( f p(x)\u{p-2uhdx) + (p - 1) / p(x)\u\p-2h2du
Jn [ \Jn ) Ju

< I \Vh\2dx.
Jn

(10)

Assume now that u is radial. For h we choose a function of the form h = u(r)f(a)
where / is a smooth function defined on the sphere S'1^1. with zero mean. Notice
that h € #d since N > 3.

Since

we obtain

But

(P - 2) f \Vu\2dx f f2do < I ~dx f \SJof\
2da.

Jn J s N i Jn \x\ JsN->

since the infimum is attained by the first non constant spherical harmonic in
dimension N (see [8]). This ends the proof. a
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Our argument was suggested in part by [10]. However, it should be pointed out
that the function f(a) used in [10] is not in / /^(S^"1) . Nevertheless, the argument
there is easily corrected using the same function f(a) as in Theorem 2.1.

3. Non-Radialicity of the Henon Equation Ground States

For the Henon equation, ft is a ball and p is a pure power. By a scaling argument,
we can assume that 17 is the unit ball. Let a > 0 fixed and uQ denote a minimizer
of the problem (3) such that

/ |VuQ|2dx = 1.
JB(O.l)

Proposition 3.1.

—» 0 as a —» + o c .

Proof. Choose e > 0.

Step 1. There exists 0 < R < 1 independent of a such that ua(R) < e.
Indeed, as JB(0 j . \Vua\

2dx = 1. /? := 1 - e is an admissible value.

Step 2. From the next lemma, we deduce that

|VuQ |2dx -> 0 as a -
B(O.ft)

Step 3. Split the integral in the following way:

(11)

B(O.H) A(IIA)

lHO.R)
l r | 2

'• r u2

-dx+ / -%dx, (12)
JA(R,D X\

I B(O.R) !J-

where ?7O := ua - uQ(R).

As uQ £ #o(S(0, R)), we deduce from the Hardy inequality that

f u2 4 f 2

/ T~V2dx - T\T—0X2 I i v"Q i dx- (1 3)
J BfO,/?) 1*1 l iV ZJ JB(O.R)

Using Step 2. this term must converge to 0 as a goes to +oc.
For the second term,

/ u4^.dx<Ce2,
J B(O.R) \x\

where • depends only on N > 3.

And for the third term, we deduce from Step 2 that ua weakly converges to 0
in HQ as n —> +oc. Hence, by Rellich theorem,

0. (14)f ^-
JA(RA) l-̂ i
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Since e was arbitrary, this ends the proof. •

The next estimate was used in the proof of Proposition 3.1.

L e m m a 3 . 1 . For all 0 < R<\,

/• 2

JB(O.R)

Proof. Fix e > 0. From the equation
- 1

(15)
B(O,I)

we deduce that for each r > 0,

f \x\°uPQdx) I \x\°uldx.
JB(0,1) J JB{0,r)

Hence. ua being decreasing with respect to

ifl(0,r)
(16)

Let fc € N such that 2Rk~l < e. We define the stretched functions ?;a(|:r|) :=

ua{\xf), where 3 := 1 + k/[a + N - k). A calculation leads to
/• \ r \ a - k \

,, \-p/2 _ o-l-p/2 .

From Holder inequality, it follows that

73(0,1)

(17)

(18)

Notice that 7 := = o(\) and define

1 if s < 1

Then.

oc rg(s)

//
•/o

/•+cx: /-

JO Jo

= /

u
\x\a->uPndx-

B(0.i)
\x\auldx

- ]

(19)
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Since R(va) > R(ua), we deduce from (18) and (19) that

f \x\°~kupdx

Jfl(O.l)

which clearly imply

'B(CU)

(20)

Also,

/ \x\Q-^up
adx I \x\Qupdx - I \x\a-iup

adx I \x\aup
Qdx

JB(0,R) •/B(O.l) JB(O,1| JB{0,R)

'B(0,R)

|x|au£dx
3,1)

From Eq. (20), we now have

= o

\aup
adx(f

p
adx I

/

ix|c

2..?

as a -> +oc . (21)

(22)

if a is large enough. The conclusion then comes from Eq. (16). •

Using Theorem 2.1 and Proposition 3.1. the next theorem immediately follows.

Theorem 3.1. Assume N > 3. For any 2 < p < 2*. there exists a" > 0 such that
no minimizes of R is radial provided a > a*.

4. Asymptotic Estimates

The technique used in the two previous sections can be adapted easily to prove
equivalent symmetry breaking results in dimension two. In this situation one uses
the test function h :— u(r)if(r)f(cr) where u and / are as before and ^ is a cut-off
function which is zero in a neighborhood of r — 0 and one on a neighborhood of
r = 1. Thanks to the concentrating behaviour proved in Sec. 3, the contradiction
comes the same way.

Nevertheless, we have a different method of proof which is particularly simple
when N — 2 and which we will present now. It depends on a change of variable that
leads to an asymptotic estimate of S'Jp a s a - > +oc. Again, Q. stands for B(Q. 1).

Theorem 4.1. If N > 2, there exists C > 0 depending on N and p such that

l+2/p

N , . a^+oc.
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Proof. Let u G H^,rad(ft) and define the rcscaled function u(|x|) = u(\x\0), where
3 = N/{a + N). Then

u(r)\»ra+N-ldr[ \x\a\u\pdx = uN-i I
n Jo

(23)

and

Jo

,?-i

It follows that

,o

= 1 /n

(24)

For every 0 < 3 < 1,

c-,3 = inf
(Jn

is achieved by standard arguments. Since C,Q is non-decreasing on [0,1],

^ C + N\1+Vp

where C = lim^^o. D

We now derive from Theorem 4.1 another proof of Theorem 3.1, valid from
dimension A' - 2.

Theorem 4.2. Assume N > 2. For any 2 < p < 2 \ there exists a* > 0 si/c/i that
Sa.p < 5 " p provided a > a*.
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Proof. Let u € T>(S1), u > 0, and define uQ(x) :— u(a(x - xa)), where xQ —
(1 - 1 / Q ; 0 , . . . , 0 ) . One has

I \Vua\
2dx = a2 / |VU(Q(JC - xQ))j2dz

= a2-" / \Vufdx.
in

L

(25)

and

x\av?ndx

(26)

a2'N JQ\Vu\2dx

Hence by definition, one obtain

So,p < R(ua) <

<ca'~"^ir. (27)

Since 1 + 2/p > 2 - N -f (2N)/p whenever p > 2, it suffices to use Theorem 4.1. D

5. Analysis for p Close to 2

In Theorems 3.1 and 4.2, we proved the existence of a limiting o* above which an
infimum cannot be radial. At this point, a* is only an upper bound, and it could
be that no minimizer is radial whatever a > 0 is. We will now prove that this is
not the case, by showing that as p decreases to 2. the limit a* goes to +oc.

Let (—A)"1 denote the inverse of the Laplacian operator with Dirichlet
boundary conditions. We define the operator

(p, a, u, A) >—> ((—A)~ (Ajx|Q|iijp~ u) — u, ||u|| - 1 ) .

Notice that P is well defined,

n 1 1 / ' p~'«€// ,}=» \u\p-2u € L— => (-A)- 1(A]xr |« | p- 2u) £ W

since (2*/(p - 1))* > 2 when p < 2*.

Proposition 5.1. Let cto > 0 fixed. There exist z > 0 and continuous functions

A : [2, 2 + e) x (a 0 - e, a 0 + e) -> (5Qo.2 - £, 5 a o .2 + £)

L r: [2, 2 + s) x ( Q 0 - e, a0 + e) -> B(uQ 0 .2,0

suc/i t/ta«. m [2. 2 + f) x (a0 - e, a 0 + e) x B(uan>2, s) x (Sao.2 - £:. SQo.2 + s),

9, a, u, A) = 0 <=> u = L^(p, a) and X - A(p. n).

(28)
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Proof. This will follow from the implicit function theorem if we prove that
the partial derivative of P with respect to (u, X) at (2,ao,uc,0i2,S'(10,2) is an
homeomorphism on //<j (SI) x R. Clearly,

, Q0, ua o ,2,5Q o ,2)(t' . t)

so that
t = 0,

= 0 .

Since the kernel of (-A)~1(5ao,2|2:|0:0/) - / is reduced to the multiples of uQo,2, it
follows that

0P(2. Q 0 . Uao,2, Sno,2)(v, t)=Q*=> (V, 0 = 0 .

Let (UKS) G / / Q ( 0 ) x R. Since ( - A ) " ^ ^ ! ^ ^ , , ^ ) is proportional to uQo,2, there
exist t € R such that u> := u ' -< ( -A)~ ] (|x|ao«aOi2) € (iic,,^)1. By self-adjointness,
there exists v € //(] such that (—A) ~1(5Qo,2|^|Qo'i3) — i) = ?7.'. Choose v :~ v +
{s/2)uO0,2. Then,

Being continuous and bijective, the partial derivative of P is a homeomorphism.
This ends the proof. •

Theorem 5.1. For each n € N, there exists 6n > 0 such that the unique minimizer
°f 5Q,P is radial provided a < n arid p < 2 + 6n.

Proof. By contradiction assume that there exist n G N and sequences (6k) —> 0+,
(ak) C [0. n] such that a minimizer vtk for Snkt2+Sk is non radial. Without loss of
generality, we can assume that c*fc —» ax ^ n a n d Uk —* u^, € //g. One has,

< C

—> 1 as fc —> +oc. From this, and the Rellich theorem, wewhere a := JV( J - ^ J — jr)
infer that

so that in particular u

[ \x\aocui.dx > 1 ,
in

0. On the other hand,

: < liminf / \S7uk\
2dx = liminf SQk,2

in



H I U i-/ .

which implies that 5Qoc,2 < liminf SQk,2+sk- By upper semi-continuity, it follows
that 5Qoc,2 = lim5Qt,2+*fc and by uniform convexity, that u* —> Uoc = unoc,2 in
//(}. By the preceding proposition, u& is unique when fc is large, and hence radial,
which is a contradiction. •

6. Analysis for p Close to 2*

In this section, we analyse the case where p is close to 2*. We will show that for
any fixed a > 0, the minimizer of R is radial provided 2* - p is sufficiently small.

Lemma 6.1. / / N > 3, iftere eiz.si.s Co > 0 suc/i
every a > 0,

or euen/ 2 < p < 2* and /or

Proof. It follows from the Ni inequality (see [11]). if u G H$ ra

We obtain

/ NQ!u |pdr < c2|VujP

or
2 / p

a + N

\2dx

- l

Since u G HQ rad(O.) is arbitrary,

1 - N

(29)

which ends the proof. •

Let us denote by 5 the classical Sobolev constant,

fo \\7u\2dx
S — inf ,. . ,„. .

«€//,;(fi) ( J n | u j 2 c/x)^2

It is standard that this Rayleigh quotient is invariant under translations and
dilations.

Lemma 6.2. If N > 3 and a > 0. t/ien

5 = SQ.2' < Sa2- •

Proof. Using the Ni inequality, it is easy to verify that S^ 2 . is achieved, so that
5 < S£2-- By invariance, using a minimizing sequence for S in V(il) concentrating
at y G il. we obtain

S<SQ,2- <\y\-2a/rS.
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Since y € ft is arbitrary, the proof is complete. •

We can now state the counterpart of Theorem 5.1.

Theorem 6.1. Assume N > 3. For any n 6 N there exists Sn > 0 such that
Sa,p < S£p provided a > 1/n and 2* - 6n < p < 2*.

Proof. By contradiction, assume that there exists n G N and sequences a t > 1/n
and Jfc —> 0 such that

(30)

By (27), there exists c,-? independent of 2 < p < 2*, such that

Ja,p _i t-3"

Lemma 6.1 implies that

It is then clear that a/t is bounded. We can assume that a^ —> a > 1/??..
As in the proof of Theorem 5.1,

On the other hand, by upper continuity.

5Q,2- > Ii
fe-t'+OC

(31)

(32)

We obtain, from (30), (31), (32). 5 Q , 2 ->5^ 2 - - But this contradicts Lemma 6.2. •

7. Numerics for the Threshold Value of a

In this section, we briefly present some numerical computations concerning the
frontier between radialicity and symmetry breaking. More precisely, the curves in
the figures below correspond the limiting a's above which the necessary condition
of Theorem 2.1 fails to be satisfied. To compute these curves, we have implemented
an algorithm converging, for fixed a and p, to the radial minimizer for S^p. Then,
p remaining fixed, we determine which value of a yields an equality in the necessary
condition, by using a modified secant method. Given the time to compute one mi-
nimizer. it is important to make use of the already computed points and minimizers
to provide the algorithm with accurate initial guesses.

The first figure here below correspond to N — 3, the second is just a zoom of
the first one for p > 3. and the third correspond to N = 6.

Notice that, as one would expect, symmetry breaking occurs later in higher
dimension.
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alpha

alpha

alpha

8. The Case of the q-Laplacian

The necessary condition of Sec. 2 and the symmetry breaking result of Sec. 3 can
be generalized in the framework of the case q-laplacian. More precisely, define the
minimization problem

min { f IVuI'dx, u € W^iil), I p(x)\u\pdx =
Un in

where q > 1 and q < p < q* = qN/(N - q). Then,

(33)

Theorem 8.1. If p is a radial function then any radial local minimizer u of (33)
satisfies

in \ P-q ) Jn \x\q

Proof. The proof follows the same lines as the one of Theorem 2.1. The equivalent
of equation (10) is

\ 2 f
p(x)\u\p-2uhdx) + ( p - l ) / p(x)\u\p-2h2dx

(34)

(35)

D

19-2

from which it follows, with the same h as in Theorem 2.1, that

(p - q) f \Vu\'dx < (q - l)(N - 1) / ~ j V u j " - 2 d z .
Jn in \x\

The conclusion comes from the Holder inequality.

In the case of the modified Henon equation, we now have

Theorem 8.2. Assume N > q and p(x) - \x\a for some a > 0. Then, for any
q < p < q*, there exists a* > 0 such that no minimizer of (33) is radial provided
a > a*.

Proof. The proof of Proposition 3.1 is easily adapted to the present setting. The
conclusion follows from the previous theorem. D
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After this work was completed, we were mentioned a result by Ding and Ni
[5] where symmetry breaking is proved for a semilinear equation on expanding
balls. The situation is however somewhat different since the weight in front of the
nonlinearity is unbounded, leaving more chances for symmetry breaking.
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