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CONFORMAL FINITENESS

JlE QlNG

DEPARTMENT OF MATHEMATICS, UCSC

This is a lectures note for lectures delivered at ICTP for the workshop on the
development in nonlinear partial differential equations and their applications in
differential geometry.

1. INTRODUCTION

How do we understand a closed surface (M, #)? Take an isothermal coordinate
f* \\ £\ T""f"

then compute

e2u

By Gauss-Bonnet formula, one knows the Euler number

(1.1)

That gives us a pretty good idea what the surface looks like at least topologically.
Because we know that all closed surfaces topologically are just

S2, S 1 x S 1 , S1 x ^ f . . . ^ 1 xS1 •••

and, if denote by g the number of copies of S1 x S1 in M, the Euler number
X(M) = 2 - 2 0 .

How do we understand a complete open surface (M,g)7 It turns out that one
better considers complete surfaces satisfying

(1.2) / \K\dVg < oo,
JM

in other words, a complete surface with finite total curvature. Cohn-Vossen [CV]
showed that a complete surface M with analytic metric and finite total curvature
satisfies

(1.3) / KdA<2irX(M).
M
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One should realize that the underlined issue here is fmiteness in topology. Huber [H]
later extended this inequality to metrics with weaker regularity. More importantly,
Huber proved that such surface M is conformally equivalent to a closed surface with
finitely many punctures. We will call each noncompact component associated with
a puncture by an end for M. The deficit in formula (1.3) has an interpretation as
an isoperimetric constant. For a complete surface with finite total curvature, one
may represent each end conformally as R2 \ K for some compact set K and consider
the following isoperimetric ratio:

(1.4) v=liraL2M

r—>oo

where L(r) is the length of the boundary circle dBr — {\x\ — r} and A(r) the area
of the annular region B(r) \ K. For a fairly large class of complete surfaces Finn
[F] showed that,

(1.5) x{M) / KdvM =
2TT JM

where the sum is taken over each end of M.
what an analogue of the surface theory exists in higher dimension? To start, for

a closed LCF 4-manifold with positive scalar curvature, one knows, by a result of
Hamilton [Ha], that they are all diffeomorphic to

(1.6) S4, S ^ x S 3 , S1 x S3tf . . . JJS1 xS3 •••

if we neglect any torsion in the fundamental group. Therefore, again, Euler number
x(M) is 2 — 2g, here g is the number of copies of S1 x S3. Moreover, in the light of
locally conformal flatness, one can take a local conformal coordinate chart

(n,e2u\dx\2)c(M,g),

and compute

By Chern-Gauss-Bonnet formula,

(1.8) X(M) =

Thus we have a pretty good grip on closed LCF 4-manifolds with positive scalar
curvature. Now the question is, what are the complete LCF 4-manifolds with pos-
itive scalar curvature that correspond to complete surfaces of a finite number of
ends? In this note we will introduce and develop our approach to give a rather
complete answer to that question. The organization is: in the first lecture we study
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the asymptotic behavior of a simple end and show that such end is conformally
equivalent to a puncture under certain condition similar to that the total curvature
is finite in two dimension. Then in the second lecture we will try to give a full
generalization of surface theory mentioned in the above in four dimension. When
the fundamental group of the underlined LCF 4-manifold with nonnegative scalar
curvature is nontrivial, it is a Kleinian group through the holonomy representation.
It turns out that the finiteness of the holonomy representation of the fundamental
group plays an important role in our understanding of conformal finiteness. We
therefore will introduce a notion of conformal finiteness for a Kleinian group and
show that conformal finiteness is equivalent to the finiteness defined in the study of
hyperbolic spaces.

The materials covered in this note are mostly from a sequence of joint works with
Alice Chang and Paul Yang [CQY1] [CQY2] [CQY3]. The reason that this note is
entitled as conformal finiteness is to encourage to consider our works rather a start
of the study of conformal finiteness in general.

2. ON A SIMPLE END

Our motivations are twofold. Firstly we are searching for the analogue of the
above mentioned result of Finn (1.5). Secondly we would like to find a geometric
interpretation of the fourth order curvature Q. Here we take the initial analytic
step and study complete conformal metrics e2u\dx\2 on R4.

2.1 Spherically symmetric cases

To start we consider a metric g = e2u\dx\2 where u is a radial function, i.e.
u(x) — u(\x\). For convenience we use the cylindrical coordinates to rewrite the
equation (1.7) as

where \dx\2 = e2t{dt2+gs^)i w — u+t and t = log \x\. Let us define the isoperimetric
ratio as

(2.2) C3 d(s) = =

where
v4(s) = vol({£ < s}) = vo\(S3) f e4wdt

J—00

and

03 M = ^vol({i = s}) = i

When both 174(s) and v^(s) tend to infinity as s tends to infinity, we have, via the
L'Hospital's rule,

(2.3) lim c34(s) = lim w'(s).



Now let us digress to discuss Chern-Gauss-Bonnet formula for 4-manifolds with
boundary before we continue. Let us begin with Gauss-Bonnet for surfaces (M2,g)
with boundary

(2.4) '"^ l

We know that Q curvature is an analogue of Gaussian curvature in dimension 4
in Chern-Gauss-Bonnet (1.8), what is the analogue of the geodesic curvature k in
(2.4) in dimension 4? It was discovered in [CQ] that, for a 4-manifold (M,g) with
boundary, there indeed is a curvature

(2.5) T^\^f + JH-G-L+ \H3 - TrL3 + ^

where J — ̂ R, R is the scalar curvature, L is the second fundamental form of dM
in M, H is the trace of L, Ga/3 — Ranf3n is a part of the Riemannian curvature
tensor, n is the outgoing normal direction and A is the Laplacian on the boundary
dM. Moreover we also have a third order operator F3 on (M, dM) such that

(2.6)

and

(2.7) X(M) =-^ [ (\\W\2 + Q)dvg +-^ f[ \ ^ f
M

 4 4 7 r JdM

where W is the Weyl curvature and £ is a boundary curvature that is point-wisely
conformally invariant just like W and measures the umbilicality of dM.

Back to our discussion of the metric e2u\dx\2 on i?4, applying formula (2.7) we
have

87T2
X({t <s})~ f QeAwdx - 2 / Te3wdy,

J JJt<s Js—t

where, by (2.6) with the background metric as the Euclidean cylindric coordinates,
we have

(2.8) Te3w = P3w = -\w'" - w" + 2w'.

So

(2.9) X({t <s})~^Jt Qe"wdx = wf(s) - \{w'"{s) + 2w"(s)).

Notice that vo^/S3) = 2TT2. We would like to show that, under suitable conditions,

(2.10) lim w'"(s) = lim w"(s) = 0
s—s-oo s—>oo
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and (2.3) holds in general. Thus we turn to study the behavior of w. For conve-
nience, we denote Qe4w by F. Equation (2.1) is equivalent to the following ODE

(2.11) v""-4v" = F, -oc<£<oo

where J^° \F\dt < oo. Our strategy here is to have special solution v such that

"t pOO•I pZ pOO

v'{t) = -{e~2t / F(x)e2xdx - e2t / F(x)e~2xdx
8 J-oo Jt

F{x)dx- I F{x)dx]
J-oo

where

/

OO pt

F(x)e-2xdx, K2 = lim e~2t / F{x)e2xdx.
t-+oo J_oo

Then let
w(t) = c0 + at + c2e~2t + c3e

2t + v{t)

for some constants co,ci,02,03. Then we can fix those coefficients under suitable
conditions. For example, we easily prove

Claim A. Kx = K2 - 0.

Proof.

e~2t \ F(x)e2xdx
—oo

pT pt

~2t{ / F(x)e2xdx + / F(
J — OO •/ 1

OO pOO/ "OO />

<e-2(*-r) / \p(x)\dx+ /
J-00 JT

So K2 — 0, if take T — ̂ t for instance. On the other hand,

2t F(x)e~2xdx
t

T

/

T poo

F{x)e-2xdx+ / F(x)e-2xdx}
JT

T poo

/ \F(x)\dx

Similarly K\ — 0, again, take T — | t .
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Claim B. c2 = 0.

Proof. First from (2.21), one sees that v"(t) is of lower order than e~2t as t —» —oo.
Secondly,

w"(t) = u"rr
2 +u'rr

is also of lower order than e™2* as t —» —oo. Therefore it is easily seen that c2 — 0.

Claim C. v"(t) -»• 0 and v'"(i) -^ 0, as t -»• oo.

Proof. This is a consequence of Fact A.

Claim D.

and

i /
lim v'(t) = — / F(x)dx

*^oo 8 J . ^

1 Z"00

lim i/(i) = - / F{x)dx.
-*-oo 8 J_oc

Proof. Again, these are consequences of Fact A.

Therefore

Claim E. a = 1 - | / ^ F(x)dar.

Proof. Since ?/(£) —> 1 as t —> — oo.

Let us study a simple example before to handle the e2t term.

Example. Consider v — e2t. Then Q — 0; and the metric e2(v~t^go is complete at
infinity. Moreover it can be easily smoothed out at the origin. What we see from
this example is that we can't expect the term e2t dropped without any additional
condition.

Claim F. Suppose, in addition, that the scalar curvature is nonnegative at infinity.
Then c3 = 0.

Proof. This is a consequence of the transform formula for the scalar curvature. Let
us denote by R the scalar curvature. Then on the cylinder we have

Then from what we know about w, it is easily seen that C3 has to be zero.

Another way to eliminate the e2t term is to assume some growth condition on Q
or v. In summary we have
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Theorem 2.1. Suppose that u is a radial function on R4, and that e2u\dx\2 is a
complete metric satisfying

[ \Q\e4udx <oo[
M

and scalar curvature nonnegative at infinity. Then

(2.15) ^ /

Therefore

(2.16) X(R4) - A / Qe4udx = c3,4 > 0.

#.£ Normal metrics

Next we consider (R4, e2u \dx\2) in general. For this purpose we introduce a notion
of normal metrics as Robert Finn did in dimension 2. We will always assume that

(2.16) / \Q\e4udx < oo

where Q = e~4uA2u.

Definition 2.2. A conformal metric e2u\dx\2 satisfying (2.16) is said to be normal

(2.17) u(x) = - ^ / log -M-Q(y)eMv)dy + C
8ITZ JR4 \ x - y

for some constant

Clearly the expression on the right side of (2.17) is one solution to

(2.18) A2u = Qe4u.

But, there are many other rather nasty solutions to (2.18). In other words, to be
normal the asymptotic behavior of a metric is rather restricted. As before, one
defines, for {RA

1e
2u\dx\2),

(2.19) u4(r) - f e4udx,
JBr

(2.20) v3(r) = - ( e3uda(x),
4 JdBr

and C3;4 as in (2.2). In the following, we will adopt some techniques used by Robert
Finn in [F] to compare v±(r),v%{r) with v±(r),vz{r): the volumes for the metric
e2u|cte|2 which may be considered to be the average of the metric e2u\dx\2, where
u is defined as:

If
u — ——r / udcr(x).

vol(dBr) JdBr
 y }

Namely,



Lemma 2.3. Suppose that the metric e2u\dx\2 on R4 is a normal metric. Then,
for any number k > 0,

(2.21) [ ekuda(x)^ekileo^1\
JdBr

where o(l) —» 0 as r —> oo.

The proof of this lemma is very technical and heavily relies on the fact that
e2u\dx\2 is normal. As a direct consequence we have

Corollary 2.4. Suppose that the metric e2u\dx\2 on R4 is a normal metric. Then

(2.22)

and

(2.23)

v3(r)=v3(r)(l

We now study the metric which is an average of the metric e2u\dx\2 on R4 over
the spheres dBr. For convenience, we would like to use the cylindrical coordinates
again. Then u(r) — w(e*), and w(t) — u{r) + 1 . As we have seen in Section 2.1, w
satisfies

(2.24)

with

(2.25)

and

(2.26)

v"" - 4v" = Qe*uda(x) = F{t), -oo < t < oof
dBr(O)

2

t < ^
2 7 r

< oo

Lemma 2.5. Suppose that (R4,e2u\dx\2) is a complete normal metric. Then its
averaged metric {RA, e2u^ \dx\2) is also a complete metric.

This is basically a consequence of Lemma 2.3. Because

(2.27) , f
YO\(SS) JS3

where o(l) -> 0 as r -> oo. On the other hand, recall that in Section 2.1 the only
reason we need to assume the sign of the scalar curvature in Theorem 2.1 is because
we wanted to get rid of the e2t term (2.14). In fact, it is even easier seen that
w"{t) = 0(1) will also allow us to get rid of the e2t term in (2.14). Fortunately for
a normal metric we have
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Lemma 2.6. Suppose that (R4,e2u\dx\2) is a normal metric. Then

(2.28) Au{r) < -^.

Thus we have

Theorem 2.7. Suppose that (R4,e2u\dx\2) is a complete normal metric. Then

(2.29) x(RA) o / Qe4udx = c3 4 > 0.
8?H JR4

For the proof of this result, as we indicated previously, we first consider the
average metric e2u\dx\2, and then apply Lemma 2.3 and Corollary 2.4 to establish
(2.29) through (2.16) in Theorem 2.1 in Section 2.1.

2.3 Nonnegative scalar curvature

Let us first look at an example: u = r2, in cylindrical coordinate, w = e2t +t and
its curvature Q = 0. But clearly this metric r2\dx\2 is not a normal metric, although
it is complete. Therefore one does not expect any complete metric (R4,e2u\dx\2) is
normal. But we have

Theorem 2.8. Suppose that (R4,e2u\dx\2) is complete and with scalar curvature
nonnegative at infinity. And suppose that

Ae^dx < ex).

Then it is a normal metric.

Proof. The proof of this fact is rather interesting and simple. So let me include it
here. First let

(9 1ft) II(T) -

and w = u — v. Then we want to show that the biharmonic function w on R4 has
to be a constant. Recall the transform formula for scalar curvature

2u(2.31) Au + \Vu\2 = -Je

where 6J is the scalar curvature for the metric (R4:,e2u\dx\2). Notice that Aw is a
harmonic function. Thus, by mean value property of harmonic functions,

Aw(x0) = ———-y / Awda

(2.32)
1 ' (\VU\2 + J)da --—4—- / Avda.

\dBr(x0)\ { )

9



The first term on the right of (2.32) is nonpositive whenever r is large enough by
our assumption that J is nonnegative. We now observe that, we have

(2.33)

Avda —
dBr(x0)

2TT2

3

1

ru + x0 - y
da}Q{y)eAu{y)dy.

Therefore, taking r -> oo, we have, for each xo 6 R4,

(2.34) Aw(x0) < 0.

Thus Aw = Co for some nonpositive constant by Liouville Theorem for harmonic
functions. Thus, any partial derivative of w is harmonic, i.e.

(2.35) AwXi = 0.

By the mean value property again,

I / M2 I 1 f
\WXi(Xo)\ = | ry / WXid

oBr{Xo)\ JdBr(x0)
But

<

|Vw[2 < 2\Vu

\dBr{x0)\ JdBr(xo)

= -2C0 - 2Je2u -

Vw 2da.

and

\Vv\2<C([ - l
~~ y\

\Q\e*"dy)<C

Similarly, we conclude that, for each XQ G R4,

(2.36) wXi(x0)\
2 <-2C0,

which implies that all partial derivatives of w are constants. Then Aw = Co = 0,
which finally implies that all partial derivatives of w vanish by (2.36). Thus w is a
constant.

Theorem 2.9. Suppose that (i?4, e2u\dx\2) is a complete metric with its scalar-
curvature nonnegative at infinity. And

/ \Q\e4udx < oo.
JR4

Then

(2.37)

Proof. Simply because the metric has to be a normal metric by the above Theorem
2.8. Then this theorem follows from Theorem 2.7.
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3. CONFORMAL COMPACTIFICATION

We will first generalize our previous results to a conformally flat simple end of
a 4-manifold. Then we will study when an end of a 4-manifold is conformally flat
and simple. By a conformally flat simple end we mean that the end is conformally
equivalent to a puncture in RA. Therefore to show a complete 4-manifold has
only conformally flat simple ends is to say that the manifold can be conformally
compactifled by adding points.

3.1 Chern-Gauss-Bonnet integrals

Suppose that (M4,g) is a complete 4-manifold with only finitely many confor-
mally flat simple ends. We would like to establish the Chern-Gauss-Bonnet formula
on M, which will be a full generalization of (1.5) of Finn's works in dimension 2.
We first define what is a conformally flat simple end.

Definition 3.1. Suppose that (M,g) is a complete noncompact J^-manifold, and
that E is a connected component of noncompact part of M. We say E is a confor-
mally flat simple end if

(E,g) = {R4\B,e2w\dx\2),

for some function w, where B is the unit ball in R4.

To establish a Chern-Gauss-Bonnet formula for a manifold with only finitely
many conformally flat simple ends we first generalize our previous result in Chapter
2. Namely,

Lemma 3.2. Suppose that w is a radial function on R4\B and e2w\dx\2 is a metric
complete at infinity with L > g |Q|e4w; < oo and its scalar curvature nonnegative at
infinity. Then

(3.1) lim vf(t) = - ^ / Te3w - -?- [ Qe4w > 0.
t—>OO 4:7r JQB <37T JH4\B

Moreover, we have

(3 2) lim ^ d B ^ = J _ f Te3» _ J _ f ^4»

This basically follows from our discussions in Chapter 2. Next we modify Defi-
nition 2.2 as follows:

Definition 3.3. A conformal metric e2w\dx\2 satisfying condition

(3.3) / \Q\eAwdx < oo
JR*\B 11



is said to be normal on E — (R4 \ B, e2w\dx\2) if

. \y(3.4) Q(y)e/Lw{y)dy + a log |ar| +

where a is some constant and h(x) — h{j^) ^s some biharmonie function on B.

Similar to Lemma 2.3, Lemma 2.5, Lemma 2.6 we have

Lemma 3.4. Suppose that the metric e2w\dx\2 on R4\B is a normal metric. Then

(3.5) V3(r) -

and

(3.6) ^-VA{r) =

where w(r) = T W ^ /JdBr(o) , and o(l) -> 0 as x oo.

Lemma 3.5. Suppose that {RA \ B,e2w\dx\2) is a complete normal metric. Then
its averaged metric (R4 \ B,e2w\dx\2) is also a complete metric.

Lemma 3.6. Suppose that (RA \ B, e2u\dx\2) is a normal metric. Then

(3.7) \Aw(r)\ < —.

And we may arrive at

Lemma 3.7. Suppose that (R4 \ B, e2w\dx\2) is a complete normal metric. Then

(3.8) lim
4(2TT 2 )5 JB 4TT2 JdB 8TT2

0.

Now the key is to establish the following

Lemma 3.8. Suppose that (RA \ B, e2w\dx\2) satisfies

/ \Q\eAwdx < oo,
JR4\BIR4\B

and that its scalar curvature is nonnegative at infinity. Then e2w\dx\2 is a normal
metric.

Proof. This is a rather interesting proof and will help us to understand Definition
3.3. First set

(3.9) x =
4TT2

log \y
\x-y\
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and ip = w — 4>. We will show that the biharmonic function ijj on R4 \ B has to
be a:log \x\ + h(x) for some constant a and some biharmonic function h(-^) on B.
Recall the transform formula for the scalar curvature function

2w= -Je

And notice that Aip is a harmonic function on R4\B. Thus

(3.10)
(x0)

1

dBr{x0)\ JdB (x0)

Aipda
dBr(x0)

(\Vw\2 + J)da- A(pda
dBr(xQ)

as long as Br(xo) C R4 \ B. The first term on the right of (3.10) is certainly
nonpositive since J > 0 when |a:o| is large enough. For the second term, we have

A(f)da
dBr{x0)

2TT2
f I

JRA\B y

2<K2r2 \Q\e4wdy.

Therefore, taking r — 1\XQ\ for \XQ\ > 2, for instance, we have, for any XQ 6 R4 \ B,

Atp(x0) <
C

X0\'

for some constant C. Thus (it may depend on ip but not x E R4 \ B.)

C
— log

So, if we set g(x) — —ip — -y log \x\, then, Ag(-S^) > 0 and is harmonic on B \ {0}.
By Bocher's theorem (Theorem 3.9 in [ABR]), we have

x

X X

for some positive constant (3 and some harmonic function b(x) on B. This implies
that g{-njhs) + |/5 log is a biharmonic function on B. In other words, if denoted
by h(x) = ip + ^ log |x| — /̂51og |ic|, then, is biharmonic on B and

on R4\B.

We have thus finished the proof of the lemma.

Combining Lemma 3.7 and Lemma 3.8 we then have
13



Corollary 3.9. Suppose that (R4 \ B, e2w\dx\2) is a complete metric satisfying

\Q\e4wdx < oo

and that its scalar curvature is nonnegative at infinity. Then

— o o 4 ( 2 2 ) | f ^ d ^2 J ^ 2 J

From Definition 3.1, we understand that a complete manifold (M,g) has only
finitely many conformally flat ends means that

where (N, g) is a compact Riemannian manifold with boundary

k

i-l

and each Ei is a conformally flat simple end of M, i.e.

for some function Wi. Then Lemma 3.9 implies the following rather full generaliza-
tion of (1.5) of Finn's.

Theorem 3.10. Suppose that (M,g) is a complete ^.-manifold with finite number
of conformally flat simple ends. And suppose that

\Q\dvM < oo,
M

and that the scalar curvature of g is nonnegative at each end. Then

(3.12) X(M) - JL Jj\\W\2 + Q}dvM =

where the summation is taken for every end (Ei,g) — (i?4 \ B, e2wi\dx\2) and

(fa
(3.13) & = lim Jd

14



3.2 Simply connected cases

Given a simply connected, locally conformally flat, complete manifold M of di-
mension n > 3, there always exists an immersion <3? : M —>• Sn such that the locally
conformally flat structure of M is induced by <£. This immersion $ is called the
developing map of M. Existence of such developing map is due to the fact that con-
formal transformation is determined locally. By a well known result of Schoen and
Yau (cf. [SY, Chapter 6]), under the assumption that the scalar curvature Rg > 0,
then <E> is injective. Therefore, any such manifold can be considered as a subdomain

4

of Sn with a complete metric g = L/n~2gc where gc is the standard metric on the
sphere Sn. For convenience, we choose a point P in M and use stereographic pro-
jection which maps Sn \ {P} to Rn and P to infinity; then we may identify (M, g)
as (Q, W"T72 |d:r|2), where Q C Rn. Our goal is to measure the size of dQ, C Rn,
which in someway is to estimate the size of the singular set of the conformal factor
u. For this purpose, first, we have the following lower bound estimate from ( [SY,
Theorem 2.12, Chapter VI])

Lemma 3.11. Suppose (f2, un~2 \dx\2) is a complete Riemannian manifold with
scalar curvature bounded, i.e. \R\ < k, covariant derivatives of scalar curvature
bounded, i.e. \WgR\ < k, and the Ricci curvature bounded from below, i.e. Ric >
—k. Then there exists a constant C > 0 such that

n - 2

(3.14) u(x) > Cd{x)—— for all x e Q .

The proof of this estimate is an application of gradient estimates. It turns out
that, in dimension 4, we can also establish the upper bound of u in terms of the
distance function d too.

Lemma 3.12. Suppose (f2,u \dx\ ) is a complete manifold such that
(a) its scalar curvature R satisfies 0 < RQ < R < Ri and \VR\g < k, where
Ro,Ri,k are constants, and
(b) JQ \Q\uAdx < oo.
Then there exists some constant C so that

(3.15) u(x) < Cd{x)~1 for all x G O.

Our proof of the above lemma uses a blow-up argument, which in the case the
scalar curvature function R is a constant has been applied by Schoen (presented
in [Po] ) to obtain the same upper bound estimate (3.15). Thus what we have
done here is to replace the constant scalar condition by the integral bound of the
Q curvature and the condition (a).

The proof we have below for Lemma 3.12 depends on the following simple result,
which is a consequence of Theorem 2.8 in Chapter 2.

Lemma 3.13. OnR4, every metric u2\dx\2 with Q[u2\dx\2] = 0 andR[u2\dx\2} > 0
at infinity is isometric to the Euclidean space (i?4, | c 2
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We will now estimate the size of the integral of Q over a subset of ft in terms
of the integral of the boundary curvature T via the Chern-Gauss-Bonnet formula.
To do so, we will first derive a formula for the boundary integral. We will use the
following notations. We consider (ft,u2\dx\2) where ft C R4, and denote the level
set for the conformal factor u = ew by

(3.16) U\ = {x : 1 < u < A } , a n d Sx = {x:u = A } .

Also, dn denotes the normal derivative (chosen so that ^ > 0) .

Lemma 3.14. Suppose that (ft,u2go) is a complete Riemannian manifold. Then
on the level set S\ where X is a regular value for u, we have:
(3.17)

- / dnAwdcr=X— ( / {dnwfdo-+ I Jdnwe2wda + 2 / J\Vu\2dx)
Jsx "A \Jsx Jsx Jux )

{dnwfdd +
Sx

The proof of this identity is simply a calculation. The idea behind this is to
realize what we believe that the integral of Q curvature should in someway control
the growth of the volume towards the ends of the manifold. This idea is believed
to be the one that enabled Cohn-Vossen to obtain his result in [CV] in dimension
2. Now the final ingredient is the following simple covering lemma, namely,

Lemma 3.15. Suppose that A is a compact subset of R4. Then
(3.18)

Ns3, for any N>0 if dim(A) = 0 and H°(A) = oo
: dist(x.A) = s}\ > .

' Cs3~a, for a= -B if dim(A) =/? > 0.

Where dim(A) denotes the Hausdorff dimension of the set A, and H@ denotes the
Hausdorff measure of exponent (3 on R4.

Now we are ready to state and prove the main theorem of this section.

Theorem 3.16. Suppose that (M,g) is a simply connected, complete, LCF, 4-
manifold satisfies:
(a) The scalar curvature is bounded between two positive constants; \VgR\ is bounded

with respect to g; and the Ricci curvature of the metric g has a lower bound:
(b) the Q curvature is absolutely integrable, i.e.

M
\Q\dVg < OO.

Then M is conformally equivalent to S4 with finitely many punctures.
16



Proof. We identify (M,g) as (£l,u2\dx\2) for some subset O of R4 as in the above.
Notice that all ends of M is in bounded region in R4. Apply integration by parts,
we get

(3.19) / Qe4wdx= [ A2wdx = - [ dnAwda + / dnAwda
ITT ITT I O I C

J U\ *J Ux J oi t/ ox

Apply formula (3.17) in Lemma 3.14, we obtain

r r
Qe4wdx— / dnAwd(T — — dnAwda

Ux JSx JSx

=*4r{[ (dnw)3da+ f J{dnw)e2wda
(3.20) ^A Sx

r r r e^w
+2 / J\Vu\2dx)+ / (dnw)3da+ / J2-—da

JUx JSx JSx dnW

d

Where V(A) is defined as:

(3.21) V(\)= f (dnw)3da+ f J(dnw)e2wda + 2 f J\Vu\2dx.
Jsx JSx Jux

We recall the scalar equation

-Au = Ju3 in Q.

Thus

J\Vu\2dx > Jo \Vu\2dx
x Jux

r r r
(3.22) > JQ{ I Ju4dx— I udnuda + / udnuda)

JUx JSx JSx

where J > Jo > 0 as assumed in (a). And

(3.23) V{\) > 2J0
2 f u4dx.

Jux
To estimate the growth of V we use the lower and upper bound estimates of the
conformal factor u as in Lemma 3.11 and Lemma 3.12. Thus we may replace the
region U\ by

(3.24) Dx = {x : d > d(x,dtt) > C2X~1} C U\
17



Therefore we have

V(\) > [ uA = I' X f uAdads
J J^ J

by the co-area formula. Hence

(3.25) V(X) > C [ X \{x : d(x,dtt) =

We now estimate the size of the set d£l by lemma 2.6. In the case dim.(dft)— (3 is
positive, we have from (3.18) and (3.25) that

C A a 1
w-zo; v {A ^ î ) — „ ;,

a G2 Of

for a = |/3 which is positive. In the case when dim(<9f2) is zero, we have either the
zero Hausdorff measure of the set (i.e. number of points in the set) is finite; then
we have proved the theorem; or we have

(3.27) I {a; : d(x,dQ) = s}\ > Ns3

for any number N > 0. Hence

(3.28) V(X) >N[1-ds = N\og\- C.
A

In either case, we conclude that there exists at least a sequence of Â  —> 00 as i —> 00
such that Â  are all regular values (due to Sard's theorem) and

(3.29) XiJ\V^ - N

for any number Â  > 0. But in view of the equality (3.20), this contradicts with
our assumption (c) that Q is integrable. We have thus finished the proof of the
theorem.

3.3 General Cases

Suppose (M4,g) is a locally conformally flat 4-manifold with positive scalar cur-
vature, then by the result of Schoen-Yau, the universal cover M can be embedded
as a domain in the 4-sphere. Hence the fundamental group Y acts on S4 as a
discrete group of conformal transformations with a domain of discontinuity £l(Y)
which contains M. (Here as in the rest of this section, we refer to [Ra] for standard
notations and definitions of Kleinian groups.) The limit set L of a Kleinian group
F consists of accumulation points of orbits of Y. The discrete group Y also acts as
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hyperbolic isometries on the interior B5 of S4. We recall the following definitions
of limit points.

A point p G S4 is called a conical limit point of the group F if there is a point
x G B, a sequence {^i} C F, a hyperbolic ray 7 in J3 ending at p and a positive
number r such that {gi(x)} converges to p within hyperbolic distance r from the
geodesic 7.

A point p is a cusped limit point of a discrete group F if it is a fixed point of a
parabolic element of F that has a cusped region. To explain the notion of a cusped
region, we identify S4 as R4 and conjugate the point p to infinity in the upper
half space M+, and consider the stabilizer F ^ of 00. F ^ is a discrete subgroup
of isometries of R4 of rank 1 < m < 4. Let E be the maximal Too-invariant
subspace such that EfT^ is compact. Denote N a neighborhood of E in M.5^ and
set £/ = M.+ — iV. Then [/ is an open Too-invariant subset of R _̂. The set U is
said to be a cusped region for F based at 00 if and only if for all g in F \ Too,
we have U n gll = 0. In other words, a fundamental domain of F ^ in a cusped
region U is a part of the fundamental domain for F, that is to say, the hyperbolic
manifold B5 /F has a cusped end as U /T^ and the Kleinian manifold S7(F)/F has a
conformal cusped end as (U \ R^_)/Foo. The understanding of a conformal cusped
end is essential to our following discussions.

Definition 3.17. A Kleinian group F is said to be geometrically finite if its set of
limit points consists of only conical limit points or cusped limit points.

One also knows that, if a Kleinian group has only conical limit points, then the
Kleinian manifold Q(F)/F is compact. Now given a complete, LCF, 4-manifold
M with positive scalar curvature, in the light of the above discussion, we know
that M C Q(T)/T where T is the holonomy representation of TTI(M). Our strategy
is to take fi(F)/F as the candidate for a compactification of M and show that
M — VL{T)/T \ {pk}l

kz=1- Then the first question is whether O(F)/F is compact.
It turns out that the strictly positive scalar curvature assumption is exactly used
again to eliminate all cusped limit points. Thus we establish

Theorem 3.18. Suppose M is a locally conformally flat complete 4-manifold which
satisfies:
(a) The scalar curvature is bounded between two positive constants, \VgR\ is bounded
with respect to g, and the Ricci curvature has a lower bound;
(b) The Q curvature is absolutely integrable, i.e.

\ \Q\dvg < 00;
JM

(c) The fundamental group of M acting as deck transformation group is a geomet-
rically finite Kleinian group.
Then M = M \ {pi}^=1 where M is compact manifold with a locally conformally
flat structure.
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Proof. Denote by

$ :M ^ S4

(3.30) 7T : |

M

where <fr is the developing map from the universal covering M of M into S4, which
is an embedding. The holonomy representation F of the fundamental group of M
then becomes a Kleinian group of the conformal transformation group of S4, which
is assumed to be geometrically finite. Let ft — $(M). Clearly any point in ft is a
ordinary point for F, that is ft C ft(F): the domain of discontinuity of F. We are
interested in the set dft = S4\ft. If M is compact, then Oft = L(T) is the set of all
limit points of F and ft — ft(T), therefore M — ft(T)/T. But, in our case, we have

(3.3i) dft = (on n fi(r)) (J L{r),

and L(T) consists of only conical limit points and cusped limit points, we claim

Claim 1. Every point in dft Pi ft(Y) is an isolated point in S4,

and

Claim 2. There is no cusped limit points except possibly cusped limit points of rank
four in which case the closure of the fundamental region for the cusp does not meet
the limit set.

First we apply the proof of Theorem 3.16 in previous section to prove Claim 1.
According to Theorem 2.9 and Theorem 2.11 in Chapter VI of [SY], dim(dft) <
d(M) < 1, hence is a totally disconnected set.(cf Lemma 4.1, Chapter 4 in [Fa] ).
Therefore, for any x G dft D ft(T), there exists a ball B(r,x) such that jB(r,x)
f]B(r,x) = 0 for all 7 € F and dB(r,x)f)dQ = 0. Since the Q curvature is
absolutely integrable over flf]B(r,x), therefore we can restrict the conformal metric
to B(r, x)f)ft and apply the argument in the proof of Theorem 2.1 to conclude that
dftf)B(r, x) consists of at most finite number of points including x, thus in particular
x is an isolated boundary point.

To prove Claim 2, we recall, from the definition of the cusped limit points, a
cusped limit point p is a fixed point of a parabolic element jp in F and there is a
cusped region U for F based at p. The cusped region based at p restricted to the
4-sphere gives a conformal coordinates chart for M at the end Ep around p of the
following form (cf: Chapter 12 in [Ra]):

(M,g) D (Ep,g) = (Sm,(f>2gm)

for some Sm, 1 < m < 4, where Si = T1 x {x G R3 : \x\ > K}} S2 = T2 x {x G R2 :
x\ > K}, S3 = T3 x {x G R: \x\ > K}, 54 = T4, where Tk is a flat manifold of

dimension k, K > 0 is a large positive number, gm is the product metric on each
Sm, and ^ is a positive smooth function. Now we will show that such ends Ep can
not exist in our case.
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Lemma 3.19. There is no complete conformal metric <p2gm on Sm with its scalar
curvature bounded from below by a positive number, for m — 1, 2,3.

Proof. Let us illustrate the proof in case m = 1. Recall the scalar curvature equation
on 5i:

2 1
yururi r r

for r = |a: | , r G [X, oo) the norm of a point x in R3. We take the average of
S2 x T1 for each r and get

r

where J > Jo as assumed. Now take a change of variables

[et = r
(3.32)

I ?/) = rip

therefore

(3.33) "-^it + i^t ^ ^o^

We will show that ip attains zero or infinity at some finite t, which will be a con-
tradiction. First we observed that, if iftt{to) < 0 at certain to, then ifttt(to) < 0.
Therefore we have ipt < — OL < 0 and i/jtt < 0 for all t > t\ for some t\ > to, which
implies tp has to be zero at some finite t. Thus, we may assume ipt > 0 for all t.
Next we observed that, if tpt — Joi>3 < 0 at some to, then iptt{to) < 0 and therefore
^tt{t) < —fl < 0 for all t > t2 for some t^ > to; then ipt can not be positive for all
t. Thus, we may assume

" > 0

for all t. But this implies

^ (
dt

which is impossible unless ijj goes to infinity at some finite t. This finished the proof
of case m — 1.

To continue the proof of Theorem 3.18, we apply Lemma 3.19 to conclude that the
limit set consists of either conical limit points or cusp of rank four.

Since fixed points of either hyperbolic or parabolic elements in F are all in the
limit set L(F) of F, F acts on O(F) has no fixed points. Thus O(F)/F = M is
a manifold with a locally conformally flat structure. We consider a fundamental
domain F which satisfies:

O(F) = (J 7 F and Ff]jF = 0, V7 e F.
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And let C — F the closure of F in S4. Since all points in L(F) are either conical or
cusps of rank four, the closure of F does not meet the limit set, hence C C O(F).
This proves that M — C/T is compact since C is compact. In the mean while, we
have M = (C\ (dfl nQ(V)). Now since d£l n O(F) are all isolated points without
accumulation points in fi(F), C n (dQ H ^(F)) must be a finite point set. Therefore

for some k < oo. We have thus finished the proof of the theorem.

4. FlNITENESS OF KLEINIAN GROUPS IN GENERAL DIMENSION

In Theorem 3.18, in order to have a compactiflcation O(F)/F, we assume that the
holonomy representation F of the fundamental group TTI (M) to be a geometrically
finite Kleinian group. Obviously it is much more desirable to only assume that
7Ti (M) is algebraically finite, i.e. finitely generated. With this particular motivation
we would like to understand the finiteness of Kleinian groups in dimension higher
than two.

4-1 Finiteness of Kleinian groups in dimension smaller than 3

When dimension is one, things are very simple. A Fuchsian group (conventional
name for Kleinian group in dimension one) is algebraically finite if and only if it is
geometrically finite. Basically this is because any end of a hyperbolic 2-manifold is
either a funnel or a cusp.

In dimension two, it is already very interesting. Another finiteness is introduced,
namely, analytic finiteness. We say a Kleinian group F in dimension two is ana-
lytically finite if fi(F)/F is a collection of finitely many Riemann surfaces of finite
type. A Riemann surface is of finite type if it is a compact closed Riemann surface
with finitely many punctures. The celebrated finiteness theorem of Ahlfors [Ah]
and Bers [Be], which states that a finitely generated Kleinian group in dimension
two is analytically finite. Meanwhile, though much later, Bishop and Jones [BJ]
showed that, if the Hausdorff dimension of the set of limit points of a Kleinian
group F in dimension 2 is less than 2, then F is geometrically finite if and only if
it is analytically finite, therefore, by Ahlfors's finiteness theorem, if and only if it is
algebraically finite. Then the interesting nasty case is that F is algebraically finite
but with the set of limit points of Hausdorff dimension 2. In this case there is a
famous open conjecture of Ahlfors, that is, the area of the set of limit points is still
zero, which turns out to be intimately related to Thurston's approach to the study
of hyperbolic 3-manifolds. For our purpose, the overwhelming fact in dimension
two is the finiteness theorem of Ahlfors.

4-2 Conformal finiteness

As we mentioned in the above that algebraic nniteness is not equivalent to geo-
metric finiteness even in dimension two. But Bishop and Jones in [BJ] made it clear

22



that algebraic finiteness does not imply geometric finiteness unless the Hausdorff
dimension of the limit set is less than 2. In this section we will formulate an ana-
logue in higher dimension n > 3. But first we introduce standard conformal cusped
ends. Of course, a standard conformal cusped end Cm is the ideal boundary of the
standard hyperbolic cusped end. Suppose that F ^ is the stabilizer of a parabolic
fixed point. Then F ^ is a discrete subgroup of the group of Euclidean isometries
of Rn (a maximum parabolic subgroup in a Keinian group F), let Rm be the max-
imal invariant subspace so that Rm/Foo is compact. Suppose that N(Rm,e) is an
e-neighborhood of Rm in Rn. Then N(Rm,e) is also invariant under F ^ and a
standard conformal cusp end is of the form

Therefore, a standard conformal cusp end is conformal to (Rn m\Be(0)) x K where
K is a compact locally flat manifold of dimension m. We will call by ra the rank
of the conformal cusped end Cm. We remark that without a cusped region for a
cusped limit point one would not be able to recover the whole cusped end (the
hyperbolic (n + l)-dimensional end) from a given conformal cusped end, which is at
least on the surface the distinguishing property here. Interestingly, on a standard
conformal cusped end, there is a nice complete metric

(4.2) ds2 = ^ + J ^ , for x € Rm and y e Rn~m \ N(Rm, e)
\y

which has a finite volume

m

and the scalar curvature

(4.4) R=(n-l)(n-2-2m).

Note that the metric in (4.2) on Rm x [Rn~m \ {0}) gives Hm+1 x S™-™"1. Now
we are ready to give the following definition.

Definition 4.1. Suppose that V is a Kleinian group. Then we say F is confor-
mally finite z/O(F)/F consists of finitely many components and each component is
a disjoint union of a compact set and a finite number of standard conformal cusped
ends.

By definition, geometric finiteness implies conformal finiteness. In this terminol-
ogy, our goal is to investigate when conformal finiteness implies geometric finiteness.
It is clear that the notion of conformal finiteness is a higher dimension analogue
of the analytic finiteness. On the same note we give a name to each component of
Q(T)/T with the induced LCF structure by Klainian manifold as the analogue of
Riemann surface in dimension two. Therefore by a Klainian manifold of finite type
we mean it has at most finitely many conformal ends for the noncompact parts.
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Theorem 4.2. Suppose that Y is a nonelementary, conformally finite Kleinian
group on Sn, then Y is geometrically finite if and only if the limit set of Y has
Hausdorff dimension strictly smaller than n.

4-3 Construction of the Lipschitz graph

In our point of view, an important part of the work of [B J] is the construction of
an invariant Lipschitz graph which serves to relate the geometry of the hyperbolic
manifold B5/Y to the geometry of the Riemann surface Q(Y)/Y. Our following
construction, by completely elementary means, of the invariant Lipschitz graph
over a domain of discontinuity Q(Y) of a Kleinian group Y in higher dimension is
based on the idea of Bishop and Jones in [B J]. Take a small positive number e0 and
consider a collection of balls {Ba} such that

(4.5) Ba — B(xa, da) and da — eo • dist(a:Q;, L(Y))

for each point xa G O(F), where diameters and distances are all measured on Sn

with the standard metric go. To construct an invariant graph we would enlarge the
collection to take in all images of Ba under the group Y and denote the collection
of balls by J5(r). Set

where Hp is the hyperbolic half space over each ball Bp in B(Y), i.e. the dome whose
boundary intersects perpendicularly at dBp with Sn. Clearly G(Y) is a graph over

in the following sense

(4.7) G(Y) = {f{x)x : x G Q(T)}

where f(x) : O(F) —> (0,1). In fact G(Y) is a Lipschitz graph in the sense that

\f(x)-f(y)\<MdiSt(x,y)

for some M > 0 and all x,y G Q(Y). Therefore

Lemma 4.3. Given a nonelementary Kleinian group Y and a small positive number
eo, the above constructed graph G(Y) is a Y-invariant Lipschitz graph. Moreover

(4-8) 0 < d < ,X~ f ^ < C2

dist(x,L(Y))

for all x G Q(Y), where C±, C*2 only depend on eo-

The proof of this lemma is based on a generalized distortion estimate. It is a
rather elementary fact about nonelementary Kleinian groups. Namely,
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Lemma 4.4. Suppose that T is a nonelementary Kleinian group, 0(F) is its domain
of discontinuity and L(T) — d£l(F) is its set of limit points. Then there exists a
positive number C such that

{ ' } C dist(x, L(F)) ~ 7 l ^ s ~ dis^O, L(F))

for all x G lTi(F) and all 7 G F.

Remark 4.5. For L(F) — {00} and F is simply generated by a translation jx —
x + h, we have

I + ^xp g(x, 00)^

where
2\%-y\ j / x

™ ^ , ^ fit nf* r\T\ \ ~ —

-|x|2vTTff'
which is called the chordal metric and is equivalent to the spherical distance d(x,y).
For L(F) = {0,oo} and F is simply generated by an inversion jx = -r^, we also
have

l./^M _ 4(7^, °O)2

Let us discuss, when the Klainian manifold O(F)/F is compact, how the con-
structed invariant Lipschitz graph serves to relate the geometry of the hyperbolic
manifold Bn+1 /F and the geometry of the Klainina manifold il(F)/F. More pre-
cisely, since the Lipschitz graph has an induced metric from the hyperbolic metric,
we would like to compare it with a suitable conformal metric on the Kleinian mani-
fold Q(F)/F. In the case when the Kleinian quotient is compact, this is a relatively
simple matter.

Proposition 4.6. Suppose that F is a nonelementary Kleinian group, and that the
Kleinian manifold Q(T)/T is compact. Then, for any metric in the conformal class
on lH(r)/r? we have a complete T-invariant metric e2ugo on f2(F) and

K } K dist{x, L(F)) - - dist(x, L(T))'

for all x G ^(F) and some positive number K.

Proof. This basically is a consequence of Lemma 4.4. Due to the invariance of the
metric e2ugo, we have

eu{x) =

Now, fix a fundamental region D, whose closure D is compact in O(F), and for any
x G ft(T), there exists 7 G F such that j~1x = y G D. Then

eu(y) =
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where, by Lemma 4.4.

Cdist(j/,L(r))

Thus

ldist(s,L(r)) , dist(s,L(r))

( x )

C dist(x,L(T)) ~ ~ dist(a:,L(r)) '

that is

K dist(x, L(T)) ~ ~ d\st(x,L(T))

for some positive constant K.

Remark 4.7. In particular, we may consider the Yamabe metric on Q(F)/F in
Proposition 4-6- Therefore, under the assumptions of Proposition 4-6, there is a
complete T-invariant metric on O(F) with constant scalar curvature and satisfying
(4-9).

We point out that the natural bounds (4.9) on the invariant metric on O(F) is
the key to relate the hyperbolic geometry inside B/T to the conformal geometry at
infinity Q(F)/F through the constructed F-invariant Lipschitz graph G(T). Namely,

Proposition 4.8. Suppose that F is a nonelementary Kleinian group and that the
Kleinian manifold O(F)/F is compact. Then the map

is a F-invariant bi-Lipschitz map with respect to the induced hyperbolic metric on
the graph G(T) and any metric on lTi(F) which is induced by a metric on Q(V)/T in
the conformal class.

Next, when F is only assumed to be conformally finite, we can still obtain the
conclusions in Proposition 4.6 and 4.8 in the above. Let us fix a conformal metric
on O(F)/F which agrees with the §h on each conformal cusp end and arbitrary on
the compact part. Let us denote it by gr (this is not intended to signify gr is an
any way canonical).

Proposition 4.9. Suppose that F is nonelementary, conformally finite Kleinian
group, and that gr is a metric constructed as the above. Then the metric e2ugo on
O(F) lifted from gr satisfies

C dist(x,L(T)) ~ ~ dist(x,L(T))

for some constant C > 0 and all x G

To relate the geometry of the hyperbolic manifold Bn+1 /F and the Kleinian
manifold f2(F)/F, we find
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Proposition 4.10. Suppose that Y is nonelementary, conformally finite, and that
gr is a metric constructed as the above. Then the map

F(x) = f(x)x : fl(r) -> G(Y)

is a T-invariant bi-Lipschitz map with respect to the induced hyperbolic metric on the
graph G(Y) and the above metric gr on Q(T). Moreover the hypersurface G(Y)/Y
in Bn+1/Y has finite volume.

4-4- Sketch of the Proof of Theorem 4-2

Let us consider the hyperbolically harmonic function on Bn+1 with the boundary
condition

[ 1 on O(r)

{ 0 on L(Y)

Lemma 4.11.

(4.12) u(x) = f
G{Y)/T

where gr is the positive minimal Green function on Bn+1 /Y.

To illustrate, let us compute u(0):

vol(5") "

Recall that, for the Green function on the hyperbolic ball Bn+1,

Q^ dBr(o) ^

Let Or be the part of dBr(0) which is between G(Y) and Q(T) and Gr = G{Y)nBr

Clearly

«0 =
vo\(Sn)

1 /* z~)

lim / (

- lim

= cn / ^dcr.
J dn

Then, due to the fact that G(Y) is Lipschitz,

G(T) u n
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If let S be any fundamental region for G(T),

og \—\ i uy
fin = \ I /

J
da

a d a -
G(T)/r On

which proves this lemma for x — 0. For other points one may use the transforma-
tions to compute. It is clear that, under the assumption that dim(L(F)) < n, the
harmonic function constructed in the above is constant 1. But, on the other hand,
we are going to use (4.12) to show that, if F is conformally finite but geometrically
infinite, in addition to dim(L(F)) < n, then u(x) can be small for some choices of
x on Bn+1 /F [x will be chosen to be far into the geometrically infinite end). But
first, we have

Theorem 4.12. (Sullivan) Suppose that F is a nonelementary Kleinain group.
Then

(4.13) A0(£n+7r)
6(n-S) if6>%

where 5 is the Poincare exponent.

and

Theorem 4.13. (Bishop and Jones) Suppose that F is a nonelementary Kleinain
group. Then

(4.14) 5 - dim(Lc(T)).

Therefore, combining with estimates for the Green functions, we have

Proposition 4.14. / / dim(L(T)) < n, then

(4.15) 0 < gr(x,y) <

where gr is the positive minimum Green function on Bn+1 /F.

Meanwhile, as observed by Bishop and Jones in [BJ], we have the following for
us to make the choice of the x to evaluate the F-invariant harmonic function u.
Namely,
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Lemma 4.15. Suppose that Y is nonelementary, conformally finite, and that Y
is geometrically infinite. Then, there exist e > 0 and a sequence of points xn E
C(Bn+1 /F) such that dH(xn,G(Y)/Y) —> oo and the injectivity radius inj(xn) > e
for all n.

We recall that equivalently F is geometrically finite if and only if the thick part
of the convex core C(Bn+1 /F) is compact. Thus, if F is geometrically infinite,
there must be a sequence of points {pi} G C(Bn+1/Y) for which the injective radius
of Bn+1 /Y at Pi is bounded from below and pi tends to infinity in the convex
core C(Bn+1/Y). Finally we have to use the so-called thick-thin decomposition for
hyperbolic manifolds to prove

lemma 4.16. Suppose that Y is a nonelementary and conformally finite Kleinian
group. Then

(4.16) / voUB^y^daiy) < oo.
JG(T)/T

Outline of proof of Theorem 4-2. Let assume otherwise that F is geometrically
infinite. First, by (4.12) in Lemma 4.11 and (4.15) in Lemma 4.14, we have

u(x) <
JG(T)/r

In the light of (4.16) in Lemma 4.16, if we consider xn given in Lemma 4.15 we have
u{xn) gets smaller and smaller when xn goes far and far away from the hypersurface
G(Y)/Y in Bn+1/Y, which contradicts with the fact that u(x) is constant.

4-5 Combination Theorems

To understand how algebraic fmiteness relates to our conformal finiteness, we
propose to use combination theorems of Kleinian groups. Probably the first combi-
nation theorem for Kleinian groups was the combination theorem of Klein:

Theorem 4.17. (Klein) let Y\ and Y2 be finitely generated Kleinian groups, and
let D\ and D2 be fundamental domain forY\ andYi, respectively. Suppose that the
interior of D\ contains the boundary and exterior of D2, and that the interior of
D2 contains the boundary and the exterior of D\. Then the group generated by Fi
and Y2 is a free product Fi * F2 and also a Kleinian groups with the fundamental
domain D\ ft D2.

Maskit in a series of papers [Mt] further well developed combination theory for
Kleinian groups, particularly for Kleinian groups in two dimension. One of his
combination theorem that is particularly interesting to us is the following:
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Theorem 4.18. (Maskit) Let (F1,D1,HJAJ-f,B1), (T2,D2,H,A,j,B2) be two big
conglomerates where B\ fl B2 — 0. Let F be the group generated by I \ and F2 and
D — D\ Pi D2 • Then Y is a Kleinian group and is a free product of I \ and F2 with
amalgamated subgroup H. And D is a fundamental set ofT.

Here a big conglomerate (T,D,H,A,j,B) is a collection of a Kleinian group F
in two dimension, its fundamental set D, a subgroup H C F, a fundamental set A
for H such that D C A, a simple curve 7 in the interior of D and invariant under
H, and a topological disk bounded by 7.

Our approach to combination theorem for Kleinian groups is different. In fact, we
are interested in not only decomposition of Kleinian groups but also decomposition
of Kleinian manifolds. But it appears that the above combination theorem of Maskit
gave a nice setting for us. Luckily but not surprisingly, the above combination
theorem of Maskit takes a simpler form in dimension higher than two. Because we
may replace the simple curve by an embedded sphere (simply connected) and we
may take the trivial subgroup H, therefore F is simply a free product of Fi and F2.

Let us consider a connected Kleinian manifold Mn — Q(T)/T of dimension n > 3.
Suppose that there is an embedded (n-l)-sphere E inM, and that the embedded
sphere S separates M into N\ and iV2, i.e. N\ and N2 are the two connected
components in M \ E. Let Mx = N±#Bn and M2 = N2#Bn where Bn is a n-ball.
Therefore, one sees that M is a connected sum of M\ and M2, i.e. M = Mi#M2 .
Let E a be all the lifts of E in fi(r) and

fi(F) \ {Sa} = | J ^ = (|J Q%) |J(U Qj)
P i 3

where each fla is a connected component, and Qi covers JVi and flj covers iV2.
Take a fundamental set D of F which includes a lift Eo of E in its interior. Let

Oi G {O^} and O2 G {Qj} such that D C fii U O2. Let Fi is the subgroup of F
which is the stabilizer of J^i, i.e.

And let F2 is the subgroup of F which is the stabilizer of O2, i.e.

F2 - {g G F : g : O2 —> fi2}.

Since Eo bounds two n-balls Bi, B2 in S1" ( B\ is at the same side of Eo
is), we let

and

Notice that
= O(F) \ ( | J
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Then it is not hard to see that, if denote by fJ(Fi) the domain of discontinuity of
Fi, then

and D\ is a fundamental set for Fi. Similarly,

and D2 is a fundamental set for F2. Thus we obtain a Kleinian structure for Mi as
fi(Fi)/Fi and a Kleinian structure for M2 as £7(F2)/F2. Moreover, M as a Kleinian
manifold is a connected sum of Kleinian manifolds M\ and M2. In summary

Theorem 4.19. Suppose that M — Q(T)/T is a connected Kleinian manifold of
dimension n > 3, and there is an embedded (n-l)-sphere E in M, which separates
M. Then there are two subgroups Y\ and F2 of F such that F = Fi • F2 and
M = M1#M2 where Mx = ft(Fi)/Ti and M2 = n(F2)/F2.

The picture we present here was also observed by Kulkarni, when he found that
a connected sum of two Kleinian manifolds is still a Kleinian manifold. In the rest
of this section we will focus on n — 3. The reason we would rather focus on n = 3
is because the following sphere theorem which apparently is not available in any
higher dimension.

Theorem 4.20. Suppose that M3 is an oriented and connected 3-manifold, and
that 7T2(M) / 0. Then there exists an embedding

F :S2 —> M3

where [F] ^ 0 G T T 2 ( M ) .

Now we are ready to state and prove a finiteness theorem as follows.

Theorem 4.21. Suppose that F is a finitely generated Kleinian group acting on
B4. And suppose that the limit set of F is of Hausdorff dimension less than one.
Then it is geometrically finite.

Proof. First, since the limit set of F is of Hausdorff dimension less than one, the
set fl(T) of ordinary point on S3 is connected and simply connected. Therefore the
fundamental group of the Kleinian manifold O(F)/F is F. Now, by Theorem 4.19,
we may decompose F into the free product of two subgroups Fi and F2 as long as we
can find an embedded 2-sphere in O(F)/F which separates O(F)/F. Next we observe
that, as long as the limit point set contains more than one point, 7r2(O(F)/F) ^ 0.
Therefore, by sphere theorem as stated in the above, we find an embedded 2-sphere
in O(F)/F. Then, if this embedded 2-sphere separates O(F)/F, we may decompose
F = Fi •Fa and O(F)/F = ft(ri)/rittft(r2)/T2; if this embedded 2-sphere does not
separate O(F)/F, then we have O(F)/F = M^S1 x S2

y where M1 = n(T1)/F1 and
F — Fi * Z. Thus, in the end, we may conclude that

(4.17) fi(r)/r = fi(ri)/r!it • • • ^ ( r f c ) / r a ^ x s2t • • • $sl x s2
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and

(4.18) r = (Zni)*---*(Znk)*Z*---*Z.

The key here is to notice that, indeed, Q(F)/T is compact except a finitely many
conformal ends, that is to say that F is conformally finite. Therefore, by Theorem
4.2, we conclude that F is geometrically finite.

To end this section we would like to pose as an open question that how we find
an analogue of Theorem 4.21 in dimension higher than 3.

4-6 Conformal finiteness revisited

In this section we would like to give some geometric criteria for a Kleinian group
to be conformally finite. The idea still is that the hypersurfaee G(F)/T with the
metric induced from the hyperbolic metric is the right geometric representative for
the Kleinian manifold Q(F)/F. We first observe:

Theorem 4.22. Suppose that T is a nonelementary Kleinian group. Then F is con-
formally finite if and only if the volume of the hypersurfaee G(T)/T in the hyperbolic
manifold Bn+1 /T is finite.

Proof. Let us begin with the thick-thin decomposition of hyperbolic manifolds
Bn+1 /F with respect to a small number e which is smaller than the Margulis con-
stant in the same dimension. The hypersurfaee G(T)/T is also decomposed into
thick part We and thin part Se. Clearly at each point in the thick part We there is
the hyperbolic geodesic ball Bie where G(T) f]Bie belongs to some fundamental
domain for F on the graph G(T). Because G(T) is Lipschitz graph over the unit
sphere (or any sphere with the same center), the volume of G(T) f]Bie under the

metric induced from the hyperbolic metric on Bn+1 is bounded from below by some
constant only depending on e. Therefore, if G(T)/T has a finite volume with the
metric, then the thick part We has to be compact. Now we may conclude that the
number of the noncompact connected components has to be finite. Because the
finite boundary of each noncompact component, which is the connecting region of
the end to the thick part, has a size again bounded from below (depending on e).
Notice that, each of those noncompact thin ends corresponds to a maximum para-
bolic subgroup Pi whose fixed point is Pi. Then, we find that, for some fundamental
domain for F in its domain of discontinuity Q(T), there are only finite number of
limit points pi on its boundary. Moreover, those parabolic fixed points therefore
have to be bounded, i.e. have to be so-called cusped limit points. This means
precisely that the Kleinian manifold Q(F)/T is a disjoint union of a compact part
and a finite number of standard conformal cusp ends. So F is conformally finite.

On the other hand if F is conformally finite, it follows from Theorem 3.5 that
the hypersurfaee G(F)/F has finite volume. So the proof is completed.

As a consequence we have the following criterion to tell when a Kleinian group
is conformally finite.
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Theorem 4.23. Suppose that F is a nonelementary Kleinian group. Then F is
conformally finite if and only if the Kleinian manifold Q(F)/T possesses a conformal
metric which is of finite geometry.

Proof. First of all, if F is conformally finite, it is clear the Kleinian manifold pos-
sesses a metric satisfying (1) and (2), by Proposition 4.9 and 4.10. The converse
part of this theorem is a consequence of above Theorem 4.22 and Theorem 2.12,
Chapter VI in [SY]. The Harnack estimate in [SY] shows that, denoting the metric
by e2ugo where go is the standard metric on the sphere,

u{x) > C-!— for all x G Q(T) .
d[x)

where d{x) = dist(a?,<9f2(r)). Then for the metric induced from the hyperbolic
metric on the hypersurface G(F)/F, its volume is controlled by the volume of the
Kleinian manifold with the given metric, therefore is finite. In light of the above
Theorem 4.22, the proof is finished.
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