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Fully nonlinear equations in conformal geometry

Matthew J. Gursky
April, 2003

1 Background: The curvature tensor

Let (M", g) be an n-dimensional Riemannian manifold. We denote the curvature
tensor by Riem. Contracting the curvature tensor we obtain the Ricci tensor Ric;
contracting once more gives the scalar curvature R. In this section we want to describe
various ways to decompose Riem into irreducible components. To this end,it will be
helpful to introduce the Kulkarni-Nomizu product of symmetric two-tensors A and
B: let X,Y, Z, W be tangent vectors, and define A ® B by

(A® B)(X,Y, Z,W) =A(X, Z)B(Y,W) — A(X,W)B(Y, Z)
— A(Y, Z)B(X,W) + A(YY, W)B(X, Z).

This product is commutative, and the resulting tensor shares many of the symmetries
of the curvature tensor.

The idea behind our first decomposition of Riem is to write it as the sum of a
'trace-less’ part and ’pure trace’ part. To this end, let £ = Ric — %Rg denote the
trace-free Ricci tensor. Then

1
Rz’esz—FM—g@E—Fn

1
) ng@g, (1.1)

where W is the Weyl curvature tensor. For our purposes, we take (1.1) as the defini-
tion of the Weyl tensor; see [1] for a more complete description. The point is that W is
trace free, while the remaining terms on the right all have a term involving the metric
g (i.e., they are ’trace’ terms). Geometrically, (1.1) is useful because the vanishing
of each component has an interpretation. For example, the last two terms vanish if
(and only if) the manifold has constant curvature. If the middle term (involving F)
vanishes, then we say the manifold is Einstein.

An important property of the Weyl tensor is its conformal invariance: if § = e=2%g
is a metric conformal to g, then the Weyl tensor of g is given by

W = e W. (1.2)

Keeping this in mind, from the point of view of conformal geometry there is a more
natural decomposition of Riem.



Definition 1. The Weyl-Schouten tensor A is

A= 4(n 1 %) (Rz'c -

1

2(n — 1)R9)'

In terms of the Weyl-Schouten tensor, we can write
Riem =W + ¢ ® A. (1.3)

A consequence of (1.3) and (1.2) is the following: the behavior of the curvature tensor
under a conformal change of metric is completely determined by the behavior of the
tensor A under this change. This simple observation provides the justification for
much of the analysis which follows.

Before we move on to some linear algebra, a final remark about three dimensions.
In this case the Weyl tensor always vanishes, therefore

Riem = g © A. (1.4)

In particular, the sectional curvatures of ¢ are determined by A.

2 Some Linear Algebra

In this section we introduce the elementary symmetric polynomials and describe some
of their important properties. We only provide a summary of the relevant results;
details and proofs can be found in {19}, [6], and [14].

Definition 2. For 1 < k < n, the kth elementary symmetric polynomial o, : R" —
R is defined by

ok{T1, Ty ... Ty) = z Tiy iy +* * T - (2.1)

11 <fg < <ig

The sum in (2.1) is taken over all increasing n-tuples; since there are (’,;‘) such

terms sometimes a factor of (Z) ! is included in the defintion. We prefer the simpler
defintion despite the fact that some inequalities involving the symmetric polynomials
become more complicated with this convention.

To the functions o} we associate the following family of cones in R™:

Definition 3. For1 <k <n, let
IF={z=(x1,....2,) e R®Vj <k o04(z) > 0}. (2.2)
Also, Ty = T}

It is not difficult to show that the sets ['} are open, convex cones; moreover, we
have the inclusions

rycry ,c---cIf

Examples



1. For k = 1, T’} consists of all vectors in R™ whose components have a positive
sum. For example, in R?, this is just the set of points (z,y) which lie above the
line x +y = 0.

2. For k = n, [} is the positive cone {x = (zy,...,z,) € R*"|Vi x; > 0}.
The following result is usually refered to as the Newton-MacLaurin inequality.
Lemma 2.1. If z € T, then

nlk
(k—D!n—k+n—-k+1)

op(2)F < oy (2). (2.3)

Now, let V be an n-dimensional real inner product space, and 4 : V — V a
symmetric linear transformation. Then A has n real eigenvalues {A1, Ay, ..., A, }, and
we define

(Tk(A) = Uk(/\h /\27 ceey )\n)
Examples
Iooy(A) = A + -+ A\, = trace(4).

2. 02(A) = 3 MiAg AP = 370 A7 denotes the Hilbert-Schmidt norm of A,
then

1 1
oa(A) = —§|A|2 + §tmce(A)2. (2.4)

3. 0n(A) = Ay -+ A, = det(A).
Definition 4. We say that A € T} if (M, Ag, ..., M) €T}

Since we are viewing the symmetric polynomials as functions on the space of real
symmetric matrices, we would like to understand their differentiability properties.

Definition 5. Let A :V — V be a symmetric linear transformation. For 0 < g < n,
the gth Newton transformation associated with A is

T,(A) =0,(4) - T —041(A)- A+ -+ (—1)24% (2.5)
Lemma 2.2. (i) We have the identities

Ty—1(A)] AL = koy(A),
trace(Tp_1(A)) = (n — k + Dop_1(A4).

i) If Ae T} (resp. T, ) then Tp_1(A) is positive (resp. negative) definite.
k k
(ii3) If A and B are symmetric linear transformations, then
d

EzO'k(A + tB)|t:0 = Tk—l(A)‘ZB;



Examples
1. The first Newton tranform is
Ti(A) =0y(A)- T — A, (2.6)
so that

d , L
%az(A +tB) |10 = (01(A)d] — Af)B;

2. When k£ = n, the nth Newton tranform can be expressed in terms of the inverse
matrix:

T.(A) = det(4) - A~ (2.7)

Finally, we note the following convezity property of the symmetric polynomials:

Lemma 2.3. For symmetric linear transformations A, B € T} and t € [0, 1] we have

{on((1 = )A +tB)}/* > (1 — t)oyp (A)VF + toy (B)*.

3 Fully Nonlinear Equations

Let © C R" be an open set. A general second order differential equation on 2 can
be written

Flu] = F(x,u, Vu, V?u) = 0, (3.1)

where F/: S = QxR x R" x R"*" =+ R, R""” denotes the space of real symmetric
n x n matrices, and Vu, V?u denote respectively the gradient and Hessian of u. We
denote points in S by s = (z, z,p, 7).

To take a simple example, consider the case of a linear second order equation:

Flu] = a¥(2)8;0;u + b (z)0u + c(z)u — g(z) = 0. (3.2)
In this case, F' is given by
F(z,2,p,7) = a(x)ry; + b'(2)p; + e(z)z — g(7). (3.3)

Recall that equation (3.2) is elliptic in § if the matrix {a"(z)} is positive definite for
all x € O; e,

Clij(iE)&fj >0 Ve Q,f e R" — {0}

If the eigenvalues of {a“} are uniformly bounded above and below by positive con-
stants, then we say that (3.2) is uniformly elliptic in .
For more general equations such as (3.1), ellipticity is defined in the following way:



Definition 6. Given a subset X C S, we say that the operator F 1is elliptic in X if
the matrix
oF
Fi(z,z,p,r) = 6—(3},,3,1), ) (3.4)
Tij
is positive definite for all (x,z,p,r) € ¥. If the eigenvalues of gr—i are uniformly
bounded above and below by positive constants, then F' is uniformly elliptic in .

Remark 1. If the matriz in (3.4) is negative definite, we replace F with —F'.
For the linear operator in (3.2), using (3.3) we find

OF (o 2p,r) = a9 ().

(97“2’]'
So ellipticity in this sense coincides with the usual notion.

Examples

1. Minimal surface equation Let u € C?(Q2). Then the graph of u (as a hyper-
surface in R™®™1) is minimal if u satisfies

OOt 5o = 0. (3.5)

Mlul = Bu = 58 03,

In this case, the smallest and largest eigenvalues of % are given by
ij

1
Amzn - (1 + |p|2)7 )\maa: - ]..
Notice a crucial point here: while M is clearly elliptic everywhere in § =
QxR x R™ x R"*", it is uniformly elliptic only on subsets of S where the the
gradient |Vu| is uniformly bounded. Therefore, the results of classical elliptic
theory (elliptic regularity, Schauder estimates) are only accesible if one first
establishes a priori estimates for the first derivatives of a solution.

2. Prescribed Weingarten curvatures More generally, if I denotes the second
fundamental form of a hypersurface M"® — R"*!, then o4 (II) is called the kth
Weingarten curvature. If M™ is the graph of u : @ — R", then the equation
which prescribes the kth Weingarten curvature is given by

Vju
V14| Vul?

Because the relevant operator involves a symmetric polynomial, ellipticity can
be described using the ideas developed in the previous section. Since we will be
considering similar equations in the context of conformal geometry, we will not
give the details here.



3. Special Lagrangian Equation In [15], Harvey and Lawson introduced the
Special Lagrangian Fquation. Let u : ) C R"® — R, and consider

Flu} = Imdet(I, + v—-1V?u) = 0, (3.7)

where I, denotes the identity matrix. This is the basic equation of Calibrated
Geometry. The geometric meaning of (3.7) is that the graph {(z,u(z))|z €
Q} C R*™ is minimal.

4 Fully nonlinear equations in conformal geometry

Let us now return to the Riemannian setting, where (M™, g) is a compact, closed (no
boundary) Riemannian manifold of dimension n. Recall A denotes the Weyl-Schouten
tensor:

1 , 1
T -2 (RZC T2 1)R9)'

Being a section of the bundle of symmetric (0, 2)-tensors, A smoothly assigns to
each point z € M” a quadratic form on the tangent space T, M™. Using the metric we
can canonically associate to A a (symmetric) linear transformation of T, M™ denoted
by g7'A. This notation is due to the fact that the inverse of the metric tensor is
used to identify the T, M™ and the cotangent space T, M". In old-fashioned index
notation, the components of A with respect to a local coordinate system are A,
while the components of g~ A are A% = g* Ay This is classically known as ”raising
an index”.

Let g, = e 2%g be a conformal metric, and A, denote the Weyl-Schouten tensor
with respect to g,. Then A, and A are related by

1
Ay = A+ Viu+du®du— §\Vu]2g (4.1)
Given f € C°(M™), we consider the equation

aF (gt A,) = f(=). (4.2)

To simplify our formulas we usually interpret A, as a bilinear form on the tangent
space with inner product g (instead of g,). That is, ox(A4,) means o4 (-) applied to
the eigenvalues of the g7'A4,. With this convention, (4.2) is equivalent to

1
o * (A + Vu + du @ du — 5IVul’g) = fla)e™. (4.3)

Note that when k = 1, then o1(¢7'A) = trace(A) = mR. Therefore, (4.3) is the
classical problem of prescribing scalar curvature.

Based on the results of the preceding two sections, we see that (4.2) is elliptic if
the eigenvalues of A, are in the cone '} (or I'). However, as a consequence of the
convexity of F,f, ellipticity can be more easily described:



Lemma 4.1. (See [21]) If the eigenvalues of A = A, are everywhere in Iy, and if u
is a solution to (4.3) with f > 0, then (4.3) is elliptic.

Based on this we make the following

Definition 7. A metric g is k-admissible if the eigenvalues of A = A, are everywhere
in T . We then write g € T (M™).

Alternatively, if the eigenvalues of A are everywhere in I',, then (4.3) will be
elliptic; in this case we would say that g is negative k-admissible.

In considering the ellipticity properties of (4.3) we are inevitably lead to two
questions:

1. Under what conditions can we verify that a conformal manifold admits an ad-
missible metric? This question should precede any serious analysis of (4.3); if
admissibility turns out to be too strong an assumption then (4.3) would only
be of limited interest.

2. Given a k-admissible metric g and a function f > 0, does (4.3) admit a solution?
Does one have a priori bounds for solutions? Are solutions unique?

It turns out that these two questions are closely related: admissibility (since it
implies ellipticity) is clearly connected to the PDE aspects in Question 2. But it is also
true that the apparently geometric question about the existence of admissible metrics
can sometimes be addressed by PDE techniques. We will see a striking example of
this in Section 6, where we describe some joint work with Chang and Yang in four
dimensions. Here, we just want to point out an obstruction to admissibility noted by
Guan, Viaclovsky, and Wang:

Proposition 4.1. (See [7]) Suppose g is k-admissible with k > 5. Then the Ricci
curvature of g is positive and satisfies

: (2k — n)
Ric > m

Corollary 4.1. If M™ admits a k-admissible metric with k > 3, then the first deRham
cohomology group HY(M™) = 0.

Ry. (4.4)

We will discuss some further consequences of admissibility in four dimensions in
Section 6. In the next section, however, we want to begin to lay the groundwork for
approaching (Question 2.

5 A priori estimates

The first systematic study of (4.3) was carried out in the thesis of Jeff Viaclovsky
([21]). In a subsequent paper, he considered a slightly more general version of (4.3):

1
U;/k(A + Viu + du @ du — §[Vu|2g) = (z, u).



Assuming g is admissible and ¢(z, -) satisfies certain growth conditions, Viaclovsky
proved various estimates and existence results. To simplify the exposition we will
only summarize the results that are relevant to the study of (4.3).

First, the invariance of (4.3) under conformal transformations along with the fact
that the round sphere has a non-compact conformal group means that, in general,
one should not be able to establish a priori L*-estimates for solutions. This is a
well known problem for the semilinear version of (4.3); i.e., when k£ = 1. However,
assuming such bounds Viaclovsky proved

Theorem 5.1. (See [22], Proposition 6 and Proposition 8). Suppose g is admissible
and u € CY(M™) is a solution of (4.3) satisfying —B < u < B. Then there is a
constont C = C(B, g, || fllc2) such that

Vu| + |V2u| < C. (5.1)

Since ox(-) is a concave function of A,, a fundamental result of Evans [5] and
Krylov [16] says that bounds on the second derivatives of solutions of (4.3) imply
Holder norm bounds for the second derivatives. Therefore, we can apply the Schauder
estimates and derive bounds for derivatives of all orders.

Corollary 5.1. Suppose g is admissible and u € C*(M™) is a solution of (4.3)
satisfying —B < u < B. For any m > 1, there is a constant C = C(m, B, g, || fllc2)
such that

Vu|+---+ |V™u| < C. (5.2)

Subsequently, local estimates for (4.3) were derived by Guan and Wang in [9].
These estimates imply e-regularity results and are extremely useful when applying
blow-up arguments, as we shall see in Section 7.

Lemma 5.1. (See [9], Proposition 2) Let w € C* be an admissible solution of
1
F(u) = 0" (A+ Vu + du ® du — 5|Vule) = fla)e™ (5.3)

on B(0,2p), where p > 0. Then there is a constant C(k,n, p, ||gllcs(so0.0)) |fllc2(80,0)))
such that

(Vul?(z) + |[V?ul*(z) < C(1 + e_ZinfB(UvP)“) (5.4)

for all z € B(0, p/2).

Remarks

1. For negative admissible metric, Viaclovsky obtained C°- and C*-estimates, but
not C%-estimates. It remains an open question whether such estimates are true.

2. In [4], Chang, Gursky and Yang proved an a priori estimate for solutions of
(4.3) with k& = 2 on four-manifolds.



3. Once a prior: estimates of solutions are known there are various methods for
establishing existence; e.g., degree theory or the continuity method.

The problem of solving (4.3) with f(x) = constant is referred to as the oy- Yamabe
problem. It will be convenient to normalize the value of this constant, so that the
round metric on the sphere is a solution (with no need of rescaling):

1
o (A + Vu + du @ du — 5IVul’y) = o *(5™)e 2, (5.5)

where o,/ *(5") = 0,/*(A,), and Ay is the Weyl-Schouten tensor of the round metric
on S™. We remark that the associated equation is variational when k = 1 or k = 2, but
in general not when k£ > 2 (see [21]). The results of Viaclovsky reduce the question of
existence of solutions to that of establishing C%-bounds, which by our comments above
means distinguishing the case of the sphere. This has been accomplished in some
cases: in low dimensions, and when the underlying manifold is locally conformally
flat. This will be discussed in more detail in subsequent sections.

Turning from general estimates to more specific results, we begin with the work
of Chang, Gursky and Yang in four dimensions.

6 Four dimensions

Four dimensions enjoys some special features due to the relationship between (4.3)
and the Chern-Gauss-Bonnet formula. The decomposition (1.3) implies a splitting of
the Euler form, and consequently we can write

4y (M*) :/4 HWHZdvol—i—2/02(9_1A)dvol. (6.1)
M

Combining this with the signature formula, we obtain the following obstruction to
the existence of admissible metrics:

Proposition 6.1. If M* admits a k-admissible metric with 2 < k < 4, then the Euler
characteristic and signature of M* satisfy

X(MY) > Spr()],

Another important feature of four dimensions is the conformal invariance of the
integral

‘/M4 oa(g~t A)dvol. (6.2)

In particular, a necessary condition for conformal class of metrics to admit a k-
admissible metric (k > 2) is that the integral in (6.2) is positive and the Yamabe
invariant is positive. Remarkably, when k = 2 this condition is also sufficient:



Theorem 6.1. (See [3]) If (M*, g) has positive scalar curvature and if

/ o9(g™  A)dvol > 0, (6.3)
M4

then there is a conformal metric g, = e 2*g which is 2-admissible; i.e., ¢, satisfies
o1(g;tA,) > 0 and 03(g,*A,) > 0. Consequently, the Ricci curvature of g, satisfies

1
0 < Rie, < §Ru “ Gu, (6.4)

where R, is the scalar curvature of g,.
Remark 2. The inequality (6.4) follows from (4.4) and (2.6).

Since the hypotheses in Theorem 6.1 are fairly simple to check, by using surgery
techniques we are able to construct many examples of manifolds which satisfy (6.3).
For example, CP?#CP? CP*#CP*#CP?, and S? x S?#8? x 82, etc. all admit
many such metrics.

The proof of Theorem 6.1 is extremely involved, and difficult to even summarize,
as it involves techniques from many fields: spectral theory, the calculus of variations,
higher order elliptic equations, and fully nonlinear equations. In place of discussing
the proof we point out its highly non-trivial geometric consequences.

First, as inequality (6.4) demonstrates, admissibility implies a kind of pinching
condition on the Ricci curvature. Thus, this theorem gives a method for construct-
ing metrics with positively pinched Ricci tensor on a large class of conformal 4-
manifolds. In contrast, the construction of metrics with just positive Ricci curvature
(in four dimensions, anyway) has been limited to either special cases (such as Kéhler-
Einstein metrics), or to surgery techniques which glued together known examples (see
[20]). Moreover, Theorem 6.1 simply requires us to check two conformal invariants:
[ o2(g7 A)dvol, and the Yamabe invariant. The hypotheses are therefore stable under
fairly dramatic deformations, unlike previous constructions.

In subsequent work, Chang, Gursky, and Yang were able to solve (5.5) when k = 2
in four dimensions:

Theorem 6.2. (See [{]) If g is a 2-admissible metric, then there is a solution g, =
e g of (5.5).

Recently, Gursky and Viaclovsky treated the cases £ = 3 and £ = 4 in four
dimensions, by introducing a new conformal invariant. We will describe this work in
more detail in the next section.

7 Maximal volume

According to Proposition 4.1, a k-admissible metric with k& > n/2 has positive Ricci
curvature. In fact, if one normalizes such a metric, then by Bishop’s Theorem the
volume has an explicit upper bound. This observation naturally leads to the following
defintion:

10



Definition 8. Let (M", g) be a compact n-dimensional Riemannian manifold. For
n/2 < k < n we define the k-maximal volume of [g] by

AR(M™, [g)) = sup{vol(e2g)|e~g € T} (M™) with o, (g, A,) > 0,/ (S™)}.
(7.1)

If [g] does not admit a k-admissible metric, we set A(M™,[g]) = +o0.

Proposition 7.1. If [g] admits a k-admissible metric with k > n/2, then there is a
constant C = C(n) such that Ag(M™, [g]) < C(n).

In analogy with the classical Yamabe problem, when this invariant is strictly less
than the value obtained by the round metric on the sphere we obtain existence of
solutions to (5.5):

Theorem 7.1. (See [12]) Let (M"™, g) be a closed n-dimensional Riemannian manifold
satisfying

Ap(M™,[g]) < vol(S™), (7.2)

where vol(S™) denotes the volume of the round sphere. Then [g] admits a solution
gu = € 2%g of (5.5). Furthermore, the set of solutions of (5.5) is compact in the
C™-topology for any m > 0.

Despite the parallels with the Yamabe problem, Theorem 7.1 can only be consid-
ered satislying il the condition (7.2) is known to be sharp. Although we conjecture
this to be the case in general, we can only substantiate it in dimensions three and
four. In each case the techniques for proving sharp estimates of Ax(M™, [g]) are quite
different in spirit.

In three dimensions our estimate follows from the volume comparison theorem of
Bray ([2]). We will give a precise statement of his result later; for now we simply
state the consequence for our invariant.

Theorem 7.2. Let (M3, g) be a closed Riemannian three-manifold, and assume [g]
admits a k-admissible metric with k =2 or 3. Then

Ar(M?, [g]) < vol(S7). (7.3)

The proof of this result allows an important refinement of inequality (7.3). As a
consequence, we are able to verify the assumptions of Thorem 7.1 whenever M? is
not simply connected:

Theorem 7.3. Let (M3, g) be a closed Riemannian three-manifold, and assume [g]
admits a k-admissible metric with k = 2 or 3. Let m(M?®) denote the fundamental
group of M?. Then

A, [g)) < SN (7.4

= lm (ME)]]

11



Corollary 7.1. Let (M?,g) be a closed, non-simply connected Riemannian three-
manifold. If g is k-admissible with k = 2 or 3, then [g] admits a solution g, = e *'g
of (5.5). Furthermore, the set of solutions of (5.5) is compact in the C™-topology for
any m 2> (.

In four dimensions, our estimates of Ay follow from the sharp integral estimate
for o9(A) due to the first author ([11}).

Theorem T.4. Let (M%,g) be a closed Riemannian four-manifold, and assume |g|
admits a k-admaissible metric with 2 < k < 4. Then

Ar(M*, [g]) < vol(SY). (7.5)

Furthermore, equality holds in (7.5) if and only if (M*,g) is conformally equivalent
to the round sphere.

Corollary 7.2. Let (M*,g) be a closed Riemannian four-manifold, and assume g is
a k-admissible metric with 2 < k < 4. Then [g] admits a solution g, = e **g of (5.5).
Furthermore, if (M*, g) is not conformally equivalent to the round sphere, then the
set of solutions of (5.5) is compact in the C™-topology for any m > 0.

We now briefly outline the proofs of these results. To begin, let M™ be a closed
n-dimensional manifold, and suppose ¢ is k-admissible. By rescaling, we assume that
g has unit volume. Consider the equation

2

n+1

1
o (Mg + V?u + du @ du — EIVu\Qg) = (/ e_(”+1)“) , (7.6)

Ao = (Z) o (7.7)

This choice of A\ implies 0% (M\g) = 1. Consequently, u = 0 is a solution of (7.6).

where A is given by

Lemma 7.1. u = 0 is the unique solution of (7.6).

We now introduce a one-parameter family of equations connecting equation (5.5)
with equation (7.6). For ¢ € [0, 1], consider

or/F (/\k(]. —(t))g + () A + Viu + du @ du — %|Vu|zg)

2 (7.8)
=(1—-1) (/ e"(n+1)u) e + Tb(t)O;/k(Sn)e—Qu,

where ¢(t) € CY0,1] satisfies 0 < ¢(t) < 1,4(0) = 0, and ¢(t) = 1 for t > <.

From the properties of ¥(t) we sce that if u is a solution of (7.8) with ¢t > , then

o/F(A,) > 0,/*(S™)e 2. Therefore,

1
Ag(M™,[g]) > sup{vol(g,)|u satisfies (7.8) with ¢ > 5} (7.9)

12



Since (7.8) admits a unique solution when ¢ = 0, we would like to use a degree
theoretic argument to show that it also admits a solution when ¢ = 1. The degree
theory developed by Li ([18]) for second order fully nonlinear equations provides
a framework for this approach. The first step is to compute the Leray-Schauder
degree of the solution u = 0 of (7.6). By Lemma 7.1 and the non-degeneracy of
the linearization of (7.8), this degree is non-zero. The next step is to appeal to the
homotopy invariance of the degree to conclude that (7.8) has a solution when ¢ = 1.
To justify this, however, we need to establish a priori bounds for solutions of (7.8).
Basically, when ¢ < 1 the integral term in (7.8) imposes L>-bounds on solutions, and
as we saw before, this suffices.

To establish pointwise bounds, we argue by contradiction, and assume there is
a sequence t; — 1 and solutions {u;} of (7.8) with maxu; — oco. We then apply a
standard blow-up argument by dilating coordinates. There are two crucial ingredients
to this procedure:

1. The local estimates of Guan and Wang (see Proposition 5.1) allow us to prove
that a suitably rescaled sequence of solutions converges to a solution on R"™ of
(5.5).

2. The classification of such solutions due to Li and Li [17}) imply that all are
obtained by pulling back the round metric of the sphere (and its images under
the conformal group) by stereographic projection. In particular, the volume of
the resulting metric is equal to the volume of the sphere.

If the maximal volume of [g] is strictly less than the volume of the sphere, we
conclude that the blow-up could not have happened, and thus all solutions of (7.8)
are bounded. This fact, along with the degree theory argument, gives the existence
of solutions.

8 Final remarks: the conformally flat case

We close by mentioning some important work by other authors in the conformally
flat setting.

In [8], Guan and Wang considered the parabolic version of (5.5). Assuming k #
n/2, they were able to prove the long-time existence and convergence to a solution of
(5.5) assuming the initial metric is admissible.

In a separate paper [10], the same authors considered equations involving ratios of
symmetric polynomials. They also developed the interesting parallel between these
quantities and the classical 'quermassintegrals’, resulting in some fascinating Sobolev-
type inequalities for admissible metrics.

On the elliptic side, in [17] Li and Li proved the existence of solutions to (5.5)
for all 1 < k& < n, assuming ¢ is admissible, and proved Liouville-type uniqueness
theorems. They also considered much more general functions of the eigenvalues of
the Weyl-Schouten tensor; these results have been very useful in giving a new proof
of the main result in [3] (see [13]).
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