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Topology and Sobolev Spaces - an Introduction

Itai Shafrir (Technion-I.I.T, Israel)

1 Introduction

Degree theory is an important basic topic in topology which has many applications

in different domains. Classically, the Brouwer degree was used in the study of

continuous maps between manifolds or domains in finite dimension. A generalization

to a certain class of continuous operators in infinite dimension, the Leray-Schauder

degree, is very useful in the theory of nonlinear partial differential equations. In

recent years degree theory was extended to a class of maps in finite dimensional

spaces, which are possibly discontinuous. This was first done for some Sobolev

spaces, which are limiting cases of the Sobolev imbedding, such as W1'n(Sn, Sn)

and Hl^2(S1
7 S1). Brezis and Nirenberg [9, 10] unified and generalized the previous

results by defining a degree for VMO-maps, (following a suggestion of L. Boutet de

Monvel and O. Gabber, see [5]). This is a class of maps that includes continuous

maps as well as the limiting cases of Sobolev spaces.

In these notes we shall describe, for simplicity, only degree theory for maps from

S1 to Sl, although the theory extends to maps u : X —>• Y where X and Y are

arbitrary smooth n-dimensional oriented manifolds without boundary. These notes

are based mainly on [7]. A good survey on the subject is [8] and relevant research

papers containing more advanced material are [9, 10, 4, 5].

Acknowledgment. I am grateful to Prof. Brezis for allowing me the use of a draft

of [7]. I thank Prof. Brezis and Prof. Mironescu for very helpful suggestions.



2 Degree for maps in (7(Sfl,Sf]

Consider a continuous map g from the unit circle S1 to itself. The function / :

[0,2TT] —> S1 which is defined by f{6) = g(ete), V0 G [0, 2TT] is also continuous.

Therefore, there exists a continuous scalar function 0 : [0, 2TT] —» R such that

f($) = e
i m , V0G [0,2?r].

Since /(0) = /(2TT) we must have 0(2TT) - 0(0) = 2irk for some k G Z. We then

define the degree of g on 5 1 by

A:. (2.1)

An immediate consequence of this definition is:

d e g ^ O = * imageW = 51 . (2.2)

Note that if deg g = 0 then the associated 0 above satisfies 0(0) = 0(2TT). We can

then define a single valued and continuous function, 0O
 : S1 —> R, by (f>o(et6) — 0(0),

which satisfies

0(x) = e ^ W , VxeS1. (2.3)

A function 0O satisfying (2.3) is called a lifting of g. Actually it is easy to see that

g has a lifting if and only if degg = 0.

An important property of the degree is:

deg(#!5r2) = deggx + degg2 , deg(g1/g2) =deggi -deg# 2 , V^i ,^ G C(51,<Sfl).

(2.4)

Another important property is the stability of the degree with respect to small

perturbations. If Ui,u2 G C(Sl,Sl) satisfy \\u2 — uiW^ < 2 then degwi = degw2-

Indeed, the map v — w2/wi G C(Sl, Sl) satisfies \\v — l||oo < 2, so its image does not

cover all of S1. We must have then degv = 0, so that by (2.4), degwi = degw2. This

implies, in particular, that the degree remains constant under continuous homotopy,

namely

H eC(Sl x [0,1], S1) =*• deg^(. J0) = deg^( . , l ) . (2.5)



Let us present two classical results which demonstrate how degree theory can help

in proving existence of solutions for some equations.

Proposition 2.1. Let D denote the unit disc in R2 and consider a continuous map

u G C(.D,R2) such that its restriction to Sl — 3D is an Sl-valued map g of degree

d ^ 0. Then, there exists a point x G D with u(x) = 0.

Proof. Arguing by contradiction, assume tha t there exists such a map u with « / 0

on D. Then, the map v := u/\u\ G C{D,Sl) and satisfies V\QD = g. We can now

define an homotopy H G C(5 ' 1 x [0,1], Sl) by

H(eie,r)=v(reie).

By (2.5) we have degH(-, 0) = degH(-, 1). But this is a contradiction since H(-,Q) =

v(Q) implies that deg/f(-,0) = 0 while deg#(-, 1) =degg = d^0. D

We can now deduce a special case of Brouwer fixed point theorem.

Corollary 2.1. Let T be a continuous self-map of D. Then, T has a fixed point,

i.e. there exists some XQ G D such that Tx$ — XQ.

Proof. We argue again by contradiction and assume that there exists a continuous

T : D —)• D with no fixed point. Then,

a := min \x — Tx\ > 0 . (2.6)

We define a new mapping R : D —> 3D by setting R(x) to be the point on dD

hit by the ray emanating from Tx and passing through x. Using (2.6) it is easy to

see that R is well defined and continuous. Moreover, Rx = x, Vx G 3D, so that

deg R\BD = 1 ^ 0 . By Proposition 2.1 it follows that Rx = 0 for some x G D.

Contradiction. •

When g G C1(5'1,S'1) the following explicit convenient formula for the degree is

available:

gg = ^- I (gAgT)ds, (2.7)
2TT JSI



where a A b = a\b2 — a2b\ (i.e. a A b is the z—component of the vectorial product

a x b of the two planner vectors a and 6) and gT denotes tangential derivative (in the

positive sense). To prove (2.7), let 0 : [0,27r] —>• R be the function associated with

5 as above, i.e. g(eie) = elW\ V6> G [0,2TT], SO that degg = (0(2TT) - 0(O))/(2TT).

Under our current assumption 0 is a C1-function, and we compute for all 9 G [0, 2TT]:

= (cos 0(0), sin 0(0)) A (-0'(0)sin0(0),0'(0)cos0(0)) = 0'(0).

Therefore,

2?r

as claimed.

We close this section with two other formulas for the degree. The first is the

index formula (change of argument) for a function g G C1^1, C \ {0}):

9—ds. (2.8)

<si 9

To see that (2.8) coincides with the degree that we defined above, it suffices to note

that when g is 51-valued, 1/g = g, hence,

f5i g mi jsi
i r2n .

—i y(0))e^d0 * M2TT)-0(O)).
2ni]n

 C ^ v - " ~ ™" 2TT

Next we present another formula for the degree, assuming that g G C2(Sl,Sl),

although it is valid for g G Cl(Sl,Sl), and actually, as we shall see below, also

for more general classes of functions. For such g we consider any extension u G

C2(D, R2) such that u = g on 3D = Sl and claim that

1 f
degg=— / uxAuvdxdy. (2.9)

K JD

4



To prove (2.9) we compute,

If If If
— / ux A uy = — / [(w A Uy)x + (w^ A u)y ] drr G??/ = — / div(w A uy, ux A w) G?X dy

_ 1 f , _ 1 f
Q IV if ' t*-1 / O/TT / " \ •^ / t>

If If
I \ Lib / \ Ujy J I y \ ^X ) X I ^ ' ^ \ ^X X *^ 1i if J ^JJO

1 /

2TT Jao

and the result follows from (2.7).

3 Degree for VMO maps

As pointed out by L. Boutet de Monvel and O. Gabber (see the appendix in [5]), a

notion of degree makes sense for self-maps of 5*1 which belong to the class VMO (=

vanishing mean oscillation), although such maps are not necessarily continuous. This

notion was later considerably developed and generalized to Riemannian manifolds in

dimension TV by Brezis and Nirenberg in [7, 8]. Here we restrict ourselves to degree

t h e o r y i n V ^ 1

We start with the definition of the space VMO(Sl,C). Consider a function

/ e L 1 ^ 1 , C). For any x G S1 and e > 0 put

A£(x) = {yeS1 : \y-x\ < e},

so that if x = ei(i>^ then A£(x) = {elt : t G {(f){x) ~ a,(j>(x) + a ) l w i t h a =

2sin"1(e/2). Next define

Ux) = I f(y) dy := — I ^ T / f(y) dy, Vx e S1. (3.1)
J A£(x) \Ae{x)\JMx)

The function / belongs to VMO(S\ C) if

lim f \f(y)- fs(x)\dy = 0 uniformly in x G S1. (3.2)
e^°J Ae(x)



It will be also convenient to use an equivalent condition to (3.2), namely:

lim / / \f(y) - f(z)\dydz = 0 uniformly in x E Sl.
£^° J A£(x)J A£{x)

The equivalence follows from the inequalities:

(3.3)

\f(y)-fs{x)\dy<4- 4- \f(y)-f(z)\dydz
Ae[x) J As(x)J As(x)

As(x)J Ae(x)

<2-f \f{y)-Ux)\dy.
A£(x)

Ux)-f{z)\dydz (3.4)

The basic property of ̂ -valued yMO-maps which enables us to define the degree

is given by the following lemma.

Lemma 3.1. If g E VMO{S\Sr) then

lim |<7e(:r)| = 1, uniformly in x E S1. (3.5)

Proof. For every x E S1 we have,

\
AE{x)

g(y)-ge(x)\dy,

and the conclusion follows from (3.2). •

By the above, for g G VMO{Sl, S1) there exists e0 > 0 such that

g£(x)\ > 1/2, \/x E S\ Ve < £0.

Therefore,

, \/x E S\ \/e <

is well defined and belongs to C(S1, S1). We define

deg g = deg ge for any e <

(3.6)

(3.7;

Note that degge = deggeo, Me < s0, since geo can be connected to g£ by the contin-

uous homotopy H(t,x) — gte+(i-t)eo{
x) (see (2-5)). Therefore, the definition (3.7)

6



makes sense. In particular, for g G C(Sl,Sl) the definition in (3.7) coincides with

the one given in Section 2 (since lime^0 \\9e —9 WOO = 0). It can be shown (see [7]) that

the VMO-degree is stable with respect to small perturbations in the VMO-metric:

/ \{f-g){y)-{J^g)5{x)\dy.
xGS1 J As(x)

More precisely, for every g G VMO(S1, S1) there exists r\ > 0 such that for every / G

VMO(SX, S1) with d(f,g) < rj we have deg / = degg. Note however a significant

difference with respect to the continuous case: r\ really depends on the map g and

cannot be taken uniformly in the map (see [7]).

Examples of discontinuous maps in VMO(Sl, S1) will be given in the next sec-

tion, once we show that /f1 /2(51 ,51) C VMO{Sl
1S

1). We mention in passing that

the m a p g(x) = exp(i\\og\x - l\\a) is in VMO(S\Sl) for every a G (0 ,1) , and i ts

degree is zero. We close this section with a simple result characterizing Z-valued

VMO-maps. We shall use it in the study of lifting for i/1/2-maps.

Proposition 3.1. Every map u in VMO(Sl,Z) is constant.

Proof. For u G VMO{S\Z) define ue as in (3.1). By the VMO-property (3.2),

dist(we(a;),Z) < +• \ue{x) — u(y)\ dy —> 0, as e —>• 0, uniformly in x G S1.
J Ae(x)

(3.8)

Since u£ is continuous, it follows from (3.8) that there exist integers {me}{e>o} such

that ||we — "/rig ||oo —»• 0. Using the convergence u£ —> u in L1(5<1), it follows that {m£}

remains bounded as e —>• 0, hence me = m for s < e0. Therefore, u = m a.e. on

S1. D



4 The space

An important space, which contains discontinuous functions, on which degree theory

can be applied is Hl/2{Sl, Sl). We first define,

l/to"/(?/)|2\q ={/ eL2(S\C) : / f
JslJs \x-y

dxdy < 00} , (4.1)

and then set,

H^2{S\ Sl) = {ge Hl'2{S\ C) : \g\ = 1 a.e. on S1} .

The standard semi-norm on H1^2(Sl, C) is given by

|2

\x ~ y

(4.2)

(4.3)

As a norm on this space one can use

2
L2

The i^"1/2 space is only a special case (s = 1/2, p = 2) of the fractional Sobolev

spaces Ws'p, see [1]. The next theorem gives a characterization of H1^2(S1,C) in

terms of Fourier series and harmonic extensions.

Theorem 1. (i)For f e L2(S\£) let f{el6) = be the associated

Fourier series and u(re%e) — X^L-

sion to the unit disc D (Pr(e
te) —

n

= 2^(/ *Pr)(e
te) its harmonic exten-

zm0 is the Poisson kernel). Then,

<oo ^ ^ ueHl(D,C)- (4.4)

Moreover, when f G i71//2(S<1, C) we have,

n = 2TT I \Vu\2.
JD

(4.5)

(ii) The space H1^2(S1, C) consists exactly of all the functions f which are the trace

of some harmonic function u in H1(D1 £), in the following sense:

\imur(e
ze) = f{eie) m L2^1), where ur(e

%e) = u(ret9). (4.6)



Proof. Note first that,

I/to-/Ml2f\\ \x-y
dx dy =

2TT r-2-K ~ f(ei$\\2

2TT flitI
'o Jo I

12 /"7T /"27T

g?T gi# 12
drdfl

dOdh.

(4.7)

Using

we get,

- f(e
i0) = V ane

z ^
n = —oo

d9dh = an

einh _

" n=—oo
nh( f

.,, V sin f
|n| K|2, (4.8)

where we used the fact that for m > 1,

m\ sin ^
= Km(h)

is the Fejer kernel, hence J ^ Km(h) dh = 2TT. The first equivalence in (4.4) follows

by combining (4.7) with (4.8).

Next we turn to the second equivalence in (4.4). By assumption, E ^ L . ^

oo. This easily implies that u G L2{D, C). Now u G Hl(D, C) if and only if

sup / |Vw| < oo
R<lJ{\x\<R}

anr <

(4.9)

But a direct computation yields

{\x\<R}

Hence, (4.9) is equivalent to J2^L-oo lnllan|2 < °°> a n d the result follows.

(ii) Let / G Hl'2{S\ C). By (i) we have /(e*) = E"=-oc with n\\a <



oo. Therefore, the function u(re%e) = ^~(/ * Pr){c%e) is harmonic in D and belongs

to H1(D,C) by (i). Further, (4.6) holds since the Poisson kernel is a summability

kernel, see [12].

Conversely, if u is harmonic in D, we may write u{relB) = ^2<^>-_oo anr^em6 for

some {an}'^=_00 (one can use the Taylor expansion of F + iG where F and G are

analytic functions in D such that Re F — Re u and Re G — Im u). The assumption

that u G H1(D,C) implies that Y^oo lnllan|2 < oo i.e. f(et6) = YL^L-oo an,eme G

Hll2{Sl, C), and we conclude as above. •

Remark 4.1. Theorem 1 actually establishes the existence of a bounded linear oper-

ator Tr : Hl(D) —>• Hll2{dD), called the irace operator, that satisfies Tru = U\QD

for M G Hl(D) n C(D). The result extends to smooth domains in R^, see [1].

Remark 4.2. From the definition (4.1) it can be easily seen that if $ is globally

Lipschitz and / G Hl'2(S\ C) then $ ( / ) G Hll2(S\ C). Further, if /„ ->• / in

Jff
1/'2(S'1,C), then $(/„) -» $ ( / ) i n ^1 / 2(5'1 ,C) (this follows by the dominated

convergence theorem, see Step 4 of the proof of Theorem 4 below).

Remark 4.3. We give some examples of discontinuous functions in H1/2. We claim

that /(£) = log | log |t|| G H^2((-R, R),R), VR > 0. Indeed, consider the extension

of / t o t h e d i s c B R ( 0 ) = {\x\ < R } b y F ( x ) = f ( \ x \ ) . S i n c e

\x\ l o g \x\

we deduce that F G Hl(BR(0)). Consequently, its restriction to (-R, R), / , belongs

to H^2((-R,R)) as claimed. Using Remark 4.2 we get that g(x) = e*
losIloeI^H G

H^iS1^1). By a similar argument, ga(x) = e*lloglxllQ G H1/2^1, S1) for 0 < a <

1/2.

Next we prove

Theorem 2. ^ ( S ^ C ) C VMO{S\C).

10



Proof. For / G H1^2(S1, C) and s > 0 we have by the Cauchy-Schwarz inequality,

\f(y)-f(z)\dydz<f I l f { y ) ~ f { z ) l - ( 2 e ) d y d z
J AJx)J AJx) V ~ zA£{x)J A£(x) J Ae(x)J A£{x)

<c\
'A£(x) JA£(x)

Since the r.h.s. of (4.10) tends to zero with e, uniformly in x, we deduce that

condition (3.3) holds, hence / G VMO(S\C) as claimed. •

5 Lifting for i^-maps

In the next section we will define a notion of degree for i/1//2-maps which is based on

lifting. Since Hll2(d£l) is the trace space of Hl{0)1 we shall first investigate the lift-

ing problem in H1 (ft) where ft is a domain in M.N for some N > 2 (although we will

later use only the case N = 2). The next theorem is due to Bethuel and Zheng [2].

We give a proof based on Carbou [11] and Bourgain, Brezis and Mironescu [4].

Theorem 3. Let ft be a smooth, bounded and simply connected domain in M.N and

u G Hl(£}, Sl). Then, there exists some (j) G H1^, R) such that u = e%<^.

The proof is based on the following generalized form of Poincare's lemma.

Lemma 5.1. Let ft be as in Theorem 3 and let f G L2(tt,M.N). Then, the following

properties are equivalent:

(i) There is some (f) G i71(ft,R) such that f — V</>.

(ii) One has,

in the sense of distributions, i.e.,

(5.2)

11



Proof. The implication (i)=^(ii) is obvious, so we turn to the proof of (ii)

Extend / to RN by setting,

and let fE = p£*f G C00(R7^, R^) where {p£}£>o is a family of mollifiers, i.e. p£(x) =

pvp(f) for some p G C%°(M.N) satisfying p > 0 and JRiV p = 1. For any w CC fi,

smooth and simply connected domain, we have

d(fE)i dh dfj d(fe)j .
=P* = P * J = ^ m UOXj OXj , J,

provided that e < dist(w, <9Q). Therefore, by the classical Poincare's lemma there

exists a function ipe G C°°{u) such that fe = Vipe in u. Moreover, we can choose ipe

such that Jw ijje — 0. Since lims^0 fe — f m L2(co, M.N), it follows that ijj — lim£^0
 %h

exists in Hx{u) and satisfies V^ = /•

Next we choose a sequence of such domains, c</m) /* 0. For each m there exists

by the above, a function ^ e Hl(co^) such that V^ ( m ) = / in a;(m). Setting for

every m, ^(m) = cm + •?/;(m) for an appropriate constant cm, we get a new sequence

) | satisfying,

^(n) _ ^(m) o n ^(m) w ] i e n e v e r n > m.

Passing to the limit, we obtain a function (j) G //"^(Q) satisfying V0 = / . By a

theorem in Sobolev spaces, see Maz'ja [13], it follows that <fi G i/1(f2). •

Proof of Theorem 3. The basic idea behind the proof is the following. Assume a

lifting (j) does exists. Then we have, u — u\ + iu<i — cos dp + i sin 0. It follows that,

and

i.e.,

V0 = uiVw2 - M2VWI . (5.3)

Our strategy will be to find (f) by solving (5.3), using Lemma 5.1.

12



Setting / = u\Vu2 — u2Vu\ = {u\^ — M 2 | | i )^ 1 , we need to verify condition

(5.1). Consider first the case of a smooth u. Then,

dui

— 2
du\du2[

\dxj
= —2 det

du\
(5 .4)

But differentiating the relation \u\2 = u\ + u\ = 1 yields,

du\ du2
 Q~ ° •
= {ui, u2) = 0 , V« = 1 , . . . , TV,

i.e. the vector {u\, u2) is orthogonal to (Ir1, f^1) for all i. It follows that the vectors

{ ( ^ , ^r;)}f=i are all collinear. Therefore, the r.h.s. of (5.4) is zero and (5.1) is

satisfied.

The case of a general u G Hl(£}7S
l) will follow by approximation. By the

density of smooth functions in i/1(i7), see [1], there exist sequences {wi)n}, {u2y7l}

in C°°(f2,]R) such that u\,n —> U\ and u2^n —>• u2 in if1(f2,R) and ||wi,n||oo <

1) ||w2,n||oo < 1 (note that we do not claim that un = (ui,n,u2jH) takes its values

in Sl). Put / n = Mi,nVM2jn — w2,nVwijn so that / n —> f in L2(O,RiV). Indeed, to

prove for example that wi,nVw2,n —̂  MIVM2 in L2 write,

and apply the dominated convergence theorem. Next we claim that for all 1 < i, j <

9(/n)i ^(/n)j _ o r^Wi,n ^W2,n

5x?; j dxt xj J xi dx3

(5.6)

Indeed, to prove, for example, that ^ ^ g f ->• f ^ f j in L\ write first,

(5.7)

Next use the Cauchy-Schwarz inequality to get,

du\^n du2^n du2 / f dui^n 2\
 1I2

dXj dxj

du-. du2 2 \V 2

<C
n

13



The second term on the r.h.s. of (5.7) is treated similarly, and (5.6) follows.

Testing the equality in (5.6) against ip E C^°(Q) yields,

Passing to the limit n —> oo, using (5.6), yields

f (f.^t - f - ^ - ) = f 2\—— - — — ]tb (5 8)
Jn % dxj 3 dxi Jn I dxj dxi dxi dxj J

But for any u G /f1(i7, S1) we have, by the same argument as for smooth w,

/ dui du2 \

det dx> dXi = 0 a.e. on tt. (5.9)
y dxj dxj J

Therefore, the r.h.s. of (5.8) vanishes and (5.2) follows. Applying Lemma 5.1 we get

that there exists some </> E i/1(f2,R) such that / = V0. We will now prove that, up

to an additive constant, (f) is the required lifting.

Recall that if #, /i E Hl(Q) n L°°(Q) then gh E Hl(Q) n L°°(0) and

5 / h\ dh
 t ud9ygli) = g \- h .

Therefore, v - ue~^ G Hl(Q, Sl) satisfies

= ue-l<t>{uVu - if) = ue'^iuxVux + M2VM2) = 0 .

Therefore, v = const, and since \v\ — 1 we have v — elc for some constant c G l

Thus u = el^+c\ i.e. 0 + c is the required lifting. •

Remark 5.1. An analog to Theorem 3 holds when we replace H1^, Sl) = H/1'2(O,S'1)

by Vl/1'p(f2, S*1) with p >2. But the conclusion fails for every 1 < p < 2 (although an

analog of Lemma 5.1 holds for any 1 < p < oo). Assume for simplicity that N — 2

and assume w.l.o.g. that 0 E 0. It is easy to see that u(x) = x/\x\ E VF1;P(Q, S1)

for every 1 < p < 2. We claim that there exists no 0 G W/1;P(r2,M) such that

14



u = e^. Assume by contradiction that such cj) exists. Since u G C°°(Q, \ {0}) it

follows that also cj> G C°°(O \ {0}). Fix r > 0 small such that {\x\ < r} C O. Then,

on Sr — {\x\ — r} we have el^r^ — et0. Therefore for some constant k G Z we

must have 4>(r,9) — 9 + 2TT/C. But this is impossible since cf) is single-valued and

continuous.

6 Existence of local lifting in

Since by Theorem 2, H^iS1^1) C VMOOS1 ,^) , every g G H^iS^S1) has a

degree as defined in Section 3. We denote this degree temporarily by degy # and

investigate in the sequel other definitions of degree for i/1/2-maps (we shall show

later that they all coincide).

In the next section we shall define another notion of degree which is based on a

local lifting. The rest of this section is devoted to the lifting problem. Consider a

map / G i/1 /2(/ , S"1), where / C R is a bounded interval, i.e. we require that,

\f{x)-f{y)\2

x-y 2 dx dy < oo .

Applying extension via reflections we may assume that / G i/loc (R, Sl). The next

lemma shows that such / can be extended to an T^-map on a rectangle. We present

the proof from [5].

Lemma 6.1. For every f G i/1/ /2(/, S*1) there exists an e0 > 0 such that,

F(x}£) = f£(x) = -4M- G H\I x (-eo.eo)^1),
\j£\X)

where for e / 0 we define (analogously to (3.1)^:

x+£

Proof. We first prove that F(x,e) = fe(x) belongs to Hl{I x (—£O,eo):C) for every

e0 > 0. Note that F(x, e) = ^{J*_£ f{t) dt + f*+£ f(t) dt). Hence it suffices to show

15



that G(x, E) := \ £+e f(t) dt G Hl{I x (-s0, E0), C). Clearly

BG 1
^ = -(/(a: + e) - f(x)) G L2(I x (-50 ,£0), '

since / G # 1 / 2 ( / , C) implies that,

°
-eo JI

Next we compute,

^ ' C ; ~ ^ '

dx ds < oo .

1 /•£

^ /

£ Jo
t)-f(x))dt

dG

Therefore,

dG dG
dx ds L'2

dG
L2 ds <

2

3
5G

where we used

dG
dx

dG . 2
[X, S£

dG

-eo JI

-(x, SE)] dx d£ — -
JU ' S

dG .2 1
-z-(x,a)\ dxdo = -

x,(j) dx da

dG
dx

Our claim that F G i / 1 ( / x (—£o?£o)> C) is established.

Next, / G Hl/2(I, S1) implies that / G F M O ^ , 51) by the same argument as in

Theorem 2 (the space VMO(I, S1) is defined analogously to the definition in (3.2)).

Therefore,

lim |F(a:,e)| = 1, uniformly in x G / .

In particular, there exists some £Q > 0 such that,

1
F(x,e)\>-,

It follows that F = F/\F\ G Hl(I x (-EO,EO), Sl) as required.

An easy consequence is the existence of a lifting for maps in / G Hl/2(I, S1]

•

16



Proposition 6.1. For every f G Hll2(I,Sl) there exists a function 4> G

such that f = ei(t>.

Proof. Fix any bounded open interval J such that / CC J and recall that we may

assume that / G i/1//2(J, Sl). Applying Lemma 6.1 we obtain, for some e0 > 0> an

extension F G Hl(J x (—£O,£o)5 5*1)- Let Q be a smooth, simply connected domain

such that,

/ x {0} C 0 C J x (-£Q, £0) .

By Theorem 3 we may write F = e1^ for some ip G i/1(r2,R). The restriction

(j) = ip\i then belong to i71/2(/,R) (see Remark 4.1, it can also be deduced from

Theorem 1) and satisfies

/ = ei4> on / . (6.1)

•

7 Degree theory on Hll\Sl, S1

In this section we shall define different notions of degree for maps in H1^2(Sl, S1) (in

addition to the VMO-degree degy that was defined in the beginning of Section 6)

and show that they all coincide.

We begin by showing how the results about local lifting from Section 6 can

be used to define a degree for a map g G Hll2(Sl,Sl). Consider the function

f(t) = g(eu), Vt G R Clearly / G H^(R,Sl) and f(t + 2TT) = f(t) a.e.. By

Proposition 6.1 there exists some (j) G i7loc (M, M) such that f — e%<^, which is unique

up to an additive constant in 2TTZ, by Proposition 3.1, or rather by a variant of it

for functions defined on an interval (since Hll2 C VMO by Theorem 2). Clearly

^: (</>(£+ 2?r) — (f)(t)) G Z a.e. on R. By Proposition 3.1 there exists a constant fceZ

such that,

(f)(t + 2TT) - <f>(t) = 2irk a.e. on R. (7.1)

17



Since (j) is unique up to an additive constant it follows that the integer k is indepen-

dent of the choice of <f>, and it makes sense to define:

degLg = k. (7.2)

Next we define two additional notions of degree for a map g G i/1/2(S'1, 5"1). The

first one is a generalization of (2.9). Take any u G Hl(D,~R2) such that u = g on

3D — S1 in the sense of traces (one can take for example the harmonic extension,

see Theorem 1). We set

1 f
deg s g — — / ux AUydx dy. (7-3)

^ JD

To see why deg s g is well defined, we need to prove that the r.h.s. of (7.3) is inde-

pendent of the choice of u. Consider another v G H1(DJ R2) such that v — g on dD,

i.e. w = v - u e Hi(D,R2). Now,

f f f f

/ (VXAVy-UXAUy)= / WX A Uy + / UX A Wy + / WX AWy . (7.4)

It suffices to show that

f wxAfy= f wyAfx VweHiiD^^feH'iD.R2). (7.5)

Indeed, applying (7.5) with / = u and / = w in (7.4) yields JD vx A vy = fD ux A uy.

Consider first w G CC°°(L>,R2). Then,

/ WxAfy= / (WxAf)y- / Wxy A f = ~ Wxy A f
JD JD JD JD

and

/ wyAfx= / {wyAf)x- j wxyAf = - / w-cj, A / ,
JD JD JD JD

so that (7.5) holds. The general case follows by approximation.

Finally we give a definition generalizing (2.8). Consider g G C°°(S1, S1) with its

Fourier series expansion
oo

- V a eine

n— — oo

18



Then, by (2.8)
- i 2n OO

de = n\ar

Motivated by the above we define for g = an^n° £ Hl/2{S\ S1):

(7.6)

Note that the series on the r.h.s. of (7.6) converges absolutely thanks to (4.4). The

next theorem shows that all this four notions of degree coincide for H1/2 maps.

Theorem 4. For a map g G H1/2^1, S1) we have

degv g = degL g = deg s g = degF g := deg g

and when g G H1/2 n C(S1,S1) we obtain the usual degree. Moreover, the map

g i—>• deg g is continuous from Hll2 to 7L.

For the proof we need the following density result.

Lemma 7.1. For every g G if1/2(S<1, S1), g£ (as defined in (3.6))tends to g in Hll2.

Moreover, C 0 0 ^ 1 , ^ 1 ) is dense in Hll2(Sl,Sl).

Proof. Put ge(x) =-f Ae{p)g{y) dy as in (3.1). Then,

a (e
ie)

t

a ein(-6+t) dt -ane dt- ind
_ p

-inaE

fc

with a£ = 2 sin ( | ) . Therefore, by Theorem 1

1 -
2inaf

0 as 0.

Since |^e(a;)| -^ 1 uniformly in x and the function $((") = C/KI is Lipschitz on

{|C| > 1/2} we deduce from Remark 4.2 that ge —>• ^ in ii/"1/2. Finally, for the

assertion about density, given 5 > 0 we can find by the above E\ > 0 such that

g := gei satisfies \\g — g\\Hi/2 < 5/2. Since g G ilf1/2 D C(SX, S1) we can find some

h G COO(S'1,S'1) such that \\h — g\\Hi/2 < 5/2 by convolution with a mollifier and

normalization. D
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Proof of Theorem 4- The proof is carried out in 5 steps.

Step 1: The maps g \-> degEg and g i—> degF g are continuous from Hll2 to Z.

For g,h G H1^2(S1, S1) let u,v £ Hl(D, R2) be their respective harmonic extensions

(see Theorem 1). Then,

(Ur A Uy — Vr A Vy) <
V x y x y / —

<

J D

V
I 

V
I

u —

?\\9

ux

V

A (Uy -

1

/l||ffl/2

-Vy) +

H1 + V

( <7 Lff!/2

- ^ ) A

and the continuity of deg s on H1/2 follows.

Let g(e") = EZ-oo^e^ and h(e*0) = . Then,

n(|an |2 - \bn \ ) \ <

9 II H I /

and the continuity of degF on Hll2 follows as well. Using Lemma 7.1 we get that

degF#,degs£ e Z, V^e H^(S\Sl).

Step 2: deg s 5 = degF g, Vg e Hll2(S\ S1) and degi, p = deg#, V̂  G ̂ 2 ( 5 ^ 5 i ) n

The equality for smooth g extends to all of Hll2{Sl, Sl) by Step 1 and Lemma 7.1.

The same argument, combined with (2.9), shows that deg^g = degg for g e

Hl/2nc{s\sl).
1 / 2 1 1 1 / 2 1 ^ ) suchStep 3: For g G H1/2^1^1) with degL# = 0 there exists ij) G

that g = e^.

By the definition of degL it follows that there exists some </> G i7loc (M, M) such that

/( t) = 5(erf) = e1^ on R, and in our case we have,

(/>(t + 27r) - 0(t) = 2TT degL 5 = 0 a.e. on R.

We can then define on S1, ^(e") = 0(£), which satisfies ^ G Hl/2(S\ R) and g = e^.
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Step 4: degLg = degEg = degF#, \/g G

Firs t no te t h a t H1/2{Sl
1 S1) is an a lgebra since for g,h G Hl/2{S1

1 S1) we have

\g(x)h(x) - h(y)g(y)\2 < 2{\g(x) - g(y)\2 + \h(x) - h(y)\2), (7.7)

which leads to

\\gh\\2
Hl/2 < 2(\\g\\2

Hl/2 H

Moreover, if gn, hn G Hl/2(Sl, S1) satisfy gn —>• g and hn —> h in i/1//2, then gnhn —>•

gh in H1/2. Indeed, since we may assume after passing to a subsequence that

gn —>• g a.e. and hn —> h a.e., there exists a function B{x,y) G L2{Sl x 511) such

that,

< B(x,y), a.e. on 5"1 x 51 , Vn,
| a r -y | ' |a; - y\

see [6, Theoreme IV.9]. Therefore, by (7.7)

\gn(x)hn(x) -gn(y)hn(y)\
< 2B(x,y), a.e. on Sl x S\ Vn,

and we conclude by the dominated convergence theorem.

Next we claim that,

degL(gh) = degLg+ degLh, Wg,h G H1/2(S\ S1).

(7.8)

In fact, (7.8) is clear for smooth maps and the assertion concerning deg s follow by

density (see Lemma 7.1), Step 1 and the above discussion. On the other hand, the

assertion in (7.8) for degL is clear from the definition (7.2).

Let k — degLg, so that by (7.8), degL(#2;~fc) = 0. By Step 3 there exists

tjj G Hl/2(S\R) such that gz~k = e^. Therefore, by (7.8) we have,

degE(gz-k) = deg s ( (e^ n ) " ) = n d e g £ ( e ^ ) , Vn > 1.

This implies that degE(gz~k) = 0 since otherwise we would get that degE{eL^ln) ^ Z

for n large enough. Invoking once more (7.8) we finally obtain that k — deg s g —
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degFg.

Step 5: degEg = degvg, Wg G Hl/2(S\Sl).

Fix any g G if1//2(S<1, Sl). For £• > 0 small enough we have by definition, degy g =

degge. Since ge G C D i / 1 / 2 ^ 1 , S11), degEge = degge = degvg. Since #£ ->• 5 in

i^1/2 (by Lemma 7.1) and deg£ is continuous under H1/2 convergence (see Step 1)

we conclude that degy g — deg£ g. D

An immediate consequence is

Corollary 7.1. Every g G Hll2{Sl, Sl) of degree d can be written as

g(z) = zde^z\ zeS\

for some <j)eH1/2(S1,R).

We conclude with an application to the Dirichlet problem for S^-valued maps on

the unit disc D. For g G Hl/2(S\ Sl) we denote

Hl(D,R2) = {ueH1{D,R2) s.t. u = g on dD}

and

H](D,Sl) = {u G ^( .D,^ 2 ) s.t. \u\ = 1 a.e. in D}.

Theorem 5. Let g G tf1/2^1, S1). Then, H](D,Sl) ^$ if and only if degg = 0.

Proof. Assume first that H^D.S1) / 0 and take any u G Hl
g(D,Sl). Recall that

M^ A uy = 0 a.e. on D (see (5.9)). Therefore, by (7.3)

1 f
deg # = deg s g — — / ux Auydxdy — 0.

7T J D

Conversely, assume that deg # = 0. By Step 3 in the proof Theorem 4 there exists

G JH"1/2(5'1,R) such that g = e^. Let v G //J(D,R) be the harmonic extension of

. Then clearly u = eiv G #,}(£>, 511). D
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Finally we present the solution to the minimization problem for the Dirichlet

energy over Hg(D, Sl) when degg = 0 (by Theorem 5 this is the only case for which

the problem makes sense).

Theorem 6. Let g G i f 1 / 2 ^ 1 ,^ 1 ) with degg = 0. Let if) G H1/2^1^) be a lifting

for g, i.e. g — e^, and let v0 G H\(D,~K) denote its harmonic extension. Put

u0 = eivo. Then,

[ \Vuo\
2 = min{ [ \Vu\2 : u G Hl

g(D,S1)}. (7.9)
JD J D

Moreover, u0 is the unique minimizer in (7.9).

Proof. For each u G H]{D, Sl) there exists by Theorem 3 a <f> G Hl{D, R) such that

u = e^. Let $ G H1/2^1,^) denote the trace of </>. Then,

g = e^ =e^ on

Hence by Theorem 2, ^((f> - if)) G H1'2^1,!,) C FMO(S>1,Z). By Theorem 3.1 it

follows that for some k G Z we have, </> = if) + 2TTA;, a.e.. Therefore, u — el(^ with

(f)-27rk G #)(£>, M). Using |Vw| = |V0| = |V(0 -2TTA; ) | we deduce that,

min{ / | Vw|2 : u G #,}(£>, S1)} = min{ f \Vv\2 : v G ̂ (L>, S1)}, (7.10)

and any two minimizers, u to the problem on the l.h.s. of (7.10) and v to the

problem on the r.h.s., are related via u = ew. But it is well-known that the problem

on the r.h.s of (7.10) has a unique minimizer, namely i^-the harmonic extension of

if). Hence UQ is the unique minimizer for the problem on the l.h.s. of (7.10), i.e. for

(7.9). •

Remark 7.1. Consider a smooth g : dD —>• S*1 of degree d ^ 0. Since H^D^S1) is

empty the minimization problem (7.9) makes no sense. One may consider different

ways to "get around" this topological obstruction by relaxation. In their fundamen-

tal work [3], Bethuel, Brezis and Helein use the following approach. They denote

for each e > 0 by u£ a minimizer for the Ginzburg-Landau type energy

1 C
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over HUD, C), and study the asymptotic behavior of {u£} as s goes to 0.
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