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Chapter 1

Introduction

These notes report on recent mathematical work [33, 34, 35, 36, 37] which aim at describing
minimizers of the Ginzburg-Landau functional in the presence of an applied magnetic field in
terms of vortices. For some part these results were already known to be true by physicists and
applied mathematicians, but were only recently rigourously proved. Also the mathematical
approach has made the knowledge more accurate, and has clarified the validity regime of
certain formal calculations.

1.1 The Ginzburg-Landau model

The Ginzburg-Landau model was introduced in the 1950's as a semiphenomenological model
describing superconductivity, before the phenomenon of superconductivity was actually ex-
plained from first principles by the Bardeen-Cooper-Schrieffer (or BCS) theory. In the
Ginzburg-Landau (or GL) theory, superconductivity enters Maxwell's equations via an or-
der parameter u which is a complex-valued function that can be interpreted in terms of the
BCS theory as a condensed wave function of Cooper pairs. In a suitable normalization |tt|2

represents the local state of the material: |M| = 0 for a normal conductor and \u\ = 1 for a
superconductor.

For obvious reasons, much attention has been paid to the case where the superconducting
material occupies an infinite cylinder and is surrounded by a perfect insulator (think of a
wire). We may then assume translation invariance of the quantities involved along the axis
of the cylinder and study the model in two dimensions. Letting O denote the section of the
cylinder and using suitable units, the so-called Ginzburg-Landau energy assumes the form

-if 2

J{u, A) = -l\{V-iA) u\2 + \cm\A - hext\
2 + y ( l - \u\2)2 . (1.1)

Here u : O —> C is the order parameter, A : O —> M2 is the vector potential of the magnetic
field (we are dealing with a static situation where there is no electric field), h = d\A2 — c?2-̂ i
is the induced magnetic field. The covariant gradient (V — iA)u that we also write V^M is
the vector with complex coordinates

dfu = d\u — iA\u, d^u = d^u — 1A2U.

There are two parameters present in the functional. The first is hex^ E M. which represents
the intensity of the ambient magnetic field, assumed to be constant and oriented parallel to
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4 CHAPTER 1. INTRODUCTION

the axis of the cylinder. The second is the Ginzburg-Landau parameter n > 0 which depends
on the material considered.

Our interest will be in the phase diagram relative to those two parameters, i.e. in the de-
scription of the minimizers of (1.1) as hex% and K vary. We will concentrate on the description
of the mixed state (neither superconducting or normal) predicted in 1959 by Abrikosov.

1.2 Gauge invariance

An infinite dimensional group leaves the functional J{u, A) invariant, namely the group of
gauge transformations.

Definition 1. Two configurations (u,A), (v,B) G Hl(ft,C) xif1(H,]R2) are said to be gauge-
equivalent if there exists f G H2(£l,M) such that u — ve1^ and A — B + V / .

Proposition 1. If (u,A) and (v,B) are gauge-equivalent then J(u,A) — J(v,B).

Proof. Assume all the data is smooth, u = ve1^, A = B + V / , with smooth / . Then Vu =
(Vv + iVfv)eif thus

VAw = (Vv + iVfv)eif - i{B + Vf)v = (Vv - iBv)eif.

It follows that | V A « | 2 = \VBV\2- It is clear that \u\ = \v\ and that curl A = curl B. The
proposition follows for smooth data. For the general result, density arguments pose no diffi-
culty. •

1.3 Existence of minimizers.

Since J is a gauge invariant functional, a bound on J(u, A) gives no estimate of the norm of
u or A in a useful function space: a wild gauge transformation can airways be used to get
a gauge-equivalent configuration with arbitrarily large i?1-norm, for instance. However we
have

Proposition 2. Let Q be a bounded simply connected domain in M2. For any v G iy1(fi,C)
and any B G if1(Q,M2) there exists a gauge transformation f G -ff2(f2,M) such that, letting
u(x) — v(x) exp(if(x)) and A(x) — B(x) + Vf(x),

divA^O, in ft, A.v = 0ondQ. (1.2) | coul |

This transformation is unique modulo a constant and the gauge thus chosen is called the
Coulomb gauge.

Proof. Solve (see [10])
Af = -divB in O .. oN • ,
a t D on (1-3) coulbisdvf — -B.v on di\. ' '

This is possible since J^divi? = JQ^BM and the solution is unique modulo a constant. It
is easy to see that A — B + V / will solve (1.2) and reciprocally that if V / — A — B and A
solves (1.2) then / satisfies (1.3). •
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The Coulomb gauge is interesting because it allows to bound the Hl norm of the connec-
tion A in terms of the L2-norm of its curl.

Proposition 3. Let O be a bounded simply connected domain in R2. There exists C(fi) > 0
such that for any A e i?1(O,]R2) satisfying (1.2)

\\A\\m<C (h\

where h = curl A

Proof. Solve A / = h in Q and / = 0 on dQ. Then V x / = (-<%/, <9i/) satisfies div V±f = 0
and curlV-1/ = /i in 12 while V^f.v = 0 on <9Q therefore 4̂ = V-1/ and since the H2 norm
of / is controlled by the I? norm of h from standard elliptic theory (see for instance [11]) the
result follows. •

The above result is a simple instance of a general fact in the theory of connections on
vector bundles ([44]). It makes the Coulomb gauge an indispensable tool and in our case
yields the existence of minimizers for the Ginzburg-Landau functional.

existence Proposition 4. Let O be a smooth bounded domain in
there exists a minimizer of J over if1(f2,C) x Hl{i

Then for any value of hext, K

Proof. We only sketch the proof, see [10] for details. Take a minimizing sequence (un, -A
and assume the Coulomb gauge condition (1.2) is satisfied for each n. Then since hn = curl^4n

is bounded in L2 by the energy, and from the previous proposition, the sequence {An}ne^ is
bounded in Hl. The energy bound also yields a bound of \un\ in L4. Then the energy bounds
VAn

un in L2 which implies — since An is bounded in L4 by Sobolev imbedding, and un also
— that Vun is bounded in L2. Finally un and An are bounded in H1 and the result follows
by checking that J is weakly lower semicontinuous in H1. •

1.4 Euler-Lagrange equations

We will need the following identities which are the basis for calculus with gauge-invariant
quantities. We denote by (v,w) the scalar product of two complex numbers, i.e. 2(u, v) —
uv + uv.

Proposi t ion 5. For any u,v : fl —V C and any A : il —>• M2
; letting h = curl A,

di(u, v) = (df-u, v) + (w, dfv), {dfd£ - d£df)u - %hu. (1.4) [id]

The proof is left as an exercise.
We will also use the following notation

= (-^A)- (1-5)

Now we are ready to prove
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Proposition 6. A critical point (u,A) of (1.1) satisfies

(VA)2U = K2U(1 - \u\2) in 0

—V±h = (iu, V'AU) in fl

h — hext on Oil

= 0 on dfl.

(1.6) gi

Here we have written VA for the operator V — iA, h — curl A and v is the outward pointing
unit normal to dft.

be a variation of (u,A) then

iBu) + (h-he = 0.

Proof. Let (v, B) e

d
dt \t=o

Using (1.4), we find

hence integration by parts yields

((VA)2u + K2U(\ - \u\2),v) - I ((VAu, iu) + V^h) .B+ / (h-hext)B.r+ / (u.VAu, v) = 0.

J v ' J J

Since this is true for any v,B we get the result. •

1.5 Properties of critical points

Proposition 7 (regularity). Let Q be a smooth bounded domain in M2 and K,hext > 0. If
(u,A) is a critical point of J and if A satisfies the Coulomb gauge condition (1.2), then u, A
are smooth.

Sketch of the proof. Together with the Coulomb gauge condition, the Ginzburg-Landau equa-
tions (1.6) become

' -AU = K2U(1 - \u\2) -2i(A.V)u- \A\2u in tt

-AA = (iu, Vw - iAu) in fl

h — hext on dft

- o on on.

(1.7) glcoul

The first equation is obtained by expanding (VA)2W. TO obtain the second equation from
(1.6), note that

- V ^ = (d2(diA2 - ^ A i ) , -di(diA2 - <92Ai)). (1.8)

Differentiating d\A\ + d2A2 = 0 with respect to both variables we find d\2A2 = —dnAi and
d\2Ai = -522^2- Replacing in (1.8) yields -V^/ i = -AA and thus (1.7).

But (1.7) are a couple of elliptic equation for which we easily derive regularity by boot-
strapping arguments. Since (u,A) are both in H1, hence in every Lq, the right-hand side of
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the equations (1.6) are in IP for any p < 2 and therefore (u, A) are both in W2'p by standard
elliptic theory, and therefore in every W1^, etc...

Note that the above argument yields interior regularity, boundary regularity requires a
more careful inspection of the boundary conditions h = hext7 u.VAu = 0 supplemented by
AM = 0. See [10] for more details. •

Proposition 8. Let Q be a smooth bounded domain in K2 and e, hext > 0. If (u7 A) is acritical
point of J then \u\ < 1 in Q,.

Proof. This is a consequence of the maximum principle. Using (1.4) we find

2

JAN 2 =

Using (1.7) we find

and therefore

;A|-u

— A (1 - \u\2) + n2\u\2(l - \u\2) = \VAu\2.

We mult iply this equat ion by (1 — \u\2)- — min(l — |w|2 ,0) and integrate in !T2 to find

) K2\U\2 (1 - \u\2)(l - ) _ < 0.

Integrating by parts we get

- \u\2)-dv (1 2 0.

an
It is a well-known property of Sobolev functions that V / = 0 a.e. on any level set {/ = a}
therefore the above inequality may be rewritten

-i/(i-M2)-^(i-N2) +
on \u\

The Neumann boundary condition VAU.V = 0 implies, taking the scalar product with u that
du\u\ = 0 thus the above inequality implies { X G O | | M | > 1 } = 0 . D
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Chapter 2

Introduction to critical fields in R

We now return to our main interest, namely the phase diagram of the GL energy with respect
to the parameters K, hext. For simplicity we work in M2, and we summarize some of the
consideration which can be found in physics book (e.g. [43]) on the subject of critical fields.

2.1 First critical line

There are two trivial solutions to (1.6) in M2 (the boundary conditions becoming of course
irrelevant). The first is the superconducting solution or Meissner solution u = 1, A = 0. If
heXk is different from zero its energy is of course infinite, but its energy per unit area is

- 1h2

The second solution is the normal solution u = 0, A — hextAn, where An is any vector field
satisfying curl An — 1 in ]R2. It has infinite energy as soon as K > 0 but its energy per unit
area is

n = ~Z~"

We have therefore a so-called critical line hex^ = K / \ / 2 . If hex^ is higher the normal solution
is favorable in terms of energy and if it is lower the superconducting solution is favorable.

Fortunately our problem is not solved by these trivial considerations. Indeed these two
particular solutions need not be the only solutions, and the energy minimizer may be some-
thing completely different. This is indeed the discovery of Abrikosov, which was not very
seriously considered until it was verified experimentally.

2.2 A Second critical line

If one looks for perturbations of the normal solution, one may in first approximation consider
that for such a solution |w| is small and try to solve the linearized form of (1.6) and try to
evaluate wether these solutions are energetically more favorable than the normal and super-
conducting solutions, this was the approach of Abrikosov. It turns out that these linearized
equations can be solved exactly and yield a family of doubly periodic solutions in M2. Re-
cently M.Dutour ([19]) showed that to these linearized solutions correponded solutions of the
original equations).

9



10 CHAPTER 2. INTRODUCTION TO CRITICAL FIELDS IN R2

We will not describe these solutions further, let us just say that their existence implies
the existence of a second critical half-line K > 1/V%, hext — n2. When hext crosses this
line (from above) the normal solutions ceases to be energetically favorable compared to these
doubly peridic solutions. And this happens before hext decreases below the first critical line

êxt = «/\/2.

2.3 A Third critical line

If we believe the minimizer belongs to one of the solutions considered until now, the situation
is the following.

If K < 1/A/2 then for hext > nf\/7l the normal solution is minimizing, if hext < K/\/71 the
superconducting solutions is minimizing. We let

If K > l/-\/2 then for hext > K2 the normal solution is minimizing, if /iext < ft2 then the
Abrikosov-Dutour doubly periodic solutions are better than the normal solution. We let

HC2(K) — K2.

It follows from the above that when the normal solution ceases to be minimizing, the new
minimizer is not the normal solution. Therefore the superconducting solution ceases to be
minimizing (as hext increases) for a value of hext different (and smaller) then HC2. Let us call
HCl (K) this value. It seems that HCl should be computed by comparing the energy of the
superconducting solution and that of the Abrikosov-Dutour solutions. But another type of
solution exists that we have not considered yet which will yield the correct result, at least for
K large.

2.3.1 Another expression for VAU

It is good to keep in mind when studying the Ginzburg-Landau energy another expression
for VAU- Wherever M / 0, we may write

u(x) = p{x)eitf>W

where p is a positive function and ip is locally a well defined real valued function. Then we
have

VAu=(Vp + ip(V<p-A))eiip, (iu,VAu) = p2(V(p-A). (2.1) [polar

We leave this to check to the reader.

2.3.2 The vortex configuration

A natural way to find new solutions is to search for symmetric solutions. It is easy to convince
oneself the strongest symmetry which does not yield trivial configurations while leaving the
energy invariant is radial symmetry. A configuration is radially symmetric if, using polar
coordinates in R2, it is of the form

«(r,0) = / ( r ) e * , A(r,0) - g(r)(- sin0,cos0),
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for some real-valued functions / and g. A radially symmetric solution to (1.6) exists but we
will be satisfied with computing the energy of an approximate solution that we construct now.

if we assume K to be large, then |w| should be close to 1 outside a small area, so we take
f(r) — 1 for r > ro, where TQ > 0 is to be chosen later. For r < TQ we let f(r) — r/rQ.

To determine g(r) we come back to (1.6). The best A should solve - V 1 / ! = (JM,VAU).

Let us translate this when u(r,9) = f(r)el®. We have

(iu, VAu) = (ifei9, Vfei0 + fS79ie%e - Afieie) = f(V9 - A).

= f2(V9 — A) and taking the curl we findThe equation —W^h = (iu, V A « ) becomes
that outside the ball Bro — B(O,ro)

-Ah + h = 0.

On the other hand, assuming -V^A = (iu, VAU) in Bro

I -Ah + h= f A.r- v.Vh = f T.V9 = 2TT,

(2.2)

(2.3)

Br

where r is the unit tangent vector to dBro such that (T,U) is a direct frame. Grouping (2.2),
(2.3), we see that h approximately solves — Ah + h — 2TT5 in M2.

Then we define A to be the unique vector field of the form g(r)(— s'm9, cos6) such that
h — curl A satisfies — Ah + h — 2n5 in M2. The solution to this equation is very well known
it is a radial function h(r) and its behaviour at 0 and oo are

h(r) ~r->o I log r|, h(r) — O(e~r), as r tends to +oo.

Moreover, it is easy to check that A satisfies

V -Lf, — X7fl A (0 r\\
n — vp- j i . K^-0)

2.3.3 Energy of the vortex configuration

Since we wish to compare the vortex solution to the superconducting solution we will compute

1
A= lim JBR(u,A)--h2^t\BR\

1S

(2.6) | delta |

energy density of the supercon-where \BR\ is the area of the ball BR and ^ e
ducting solution integrated in the ball.

We first compute the contribution outside Bro, that we call Ai. Outside Bro we have
- V x / i = (m, V.4M) and |w| = 1 thus \VAu\2 = |Wi|2 and 1 - \u\2 = 0. Thus

A
1 ~

hlt\BR\B ro\ VAu\ - hext\
2f2

= 1 / h — 2hPyrfh.

(2.7)

BR\Bro
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Integrating by parts and using the fact that — Ah + h — 0 in BR \ Bro yields

Ai = \\ I (hu.Vh - 2hextA.r) + ̂  I (hu.Vh - 2h^tA.r),
dBR dBr

where v is the outward pointing normal to BR \ Bro and (r, u) is a direct frame. Since
A = V0 + V±h and since

r r
VO.T = -2ir

dBR

thus

A l = \
- 2/7extV

x.r).

dB ro

The asymptotics (2.4) then yield

We wish now to evaluate

A 2 - -TT^extl-^ro

(2.8)

\VAu\2 + \cm\A -
2f

) ' •

Br

We have 12 _ ( ft\2 , #2(/') + / |V0 — A\2 thus using (2.5) and the definition of / ( r ) we find

VAu
1 r 2

Vh

in Bro. It follows easily that as TQ -> 0

A2 = O (1 + ro
2^xt +

Choosing TQ — 1/K and assuming K is large, /iext <

A = . 1 ™ . JBR{U,A) - -h2
ext\BR\

(2.9)

find, combining (2.8),(2.9)

(2.10)

2.3.4 conclusion

We conclude that there is a critical line

log«
(2-11)

such that when /iext > i?Cl then the superconducting solution is no longer minimizing.



Chapter 3

Vortex analysis and H(

Here we try to define HCl and to compute it in a more satisfactory way. We have until now
computed by comparing the energy of two particular configurations. But the true energy
minimizer could have been a third configuration, and in fact "energy-minimizer" has no clear
meaning in B? since for /iext > 0 every configuration has infinite energy!

To obtain a mathematically well posed problem, we choose to work in a bounded smooth
and simply connected domain f2 and try to describe the minimizers of J(u, A) over the function
space JfiT

1(ri,C) x Jff
1(J7,M2) as n —V +00. The estimate (2.11) suggests that to capture the

transition from superconducting state to mixed state we should let hext tend to +00 with K.
From now on we choose to let

/lext — A log K. (3.1)

The first critical field is the field for which the creation of a vortex becomes energetically
favorable. To determine its value it is therefore necessary to estimate the energy of a vortexless
state (i.e. the energy of a solution to equations (1.6) that does not vanish). It is not our
goal here to prove that such a state actually exists or is stable, we will only rely on energy
comparisons and therefore we will be satisfied with a good guess on the energy of such a
vortexless state, which bounds from above the minimal energy.

3.1 Estimate of the minimal energy

The first a-priori bound on the infimum of the energy is given by

Proposition 9 (and definition). Assume O is simply connected. The infimum

inf

is achieved by a unique connection A, and moreover A = hextAQ, where AQ does not depend
on hext. The function ho — curl^4o solves the following problem

f -Ah0 + ho = 0 in n
I hg = 1 on dQ.

Proof. The proof of the existence of a minimizer follows the lines of Proposition 4. Take
a minimizing sequence (l,An). It is gauge-equivalent to (vn,Bn) where Bn satisfies the

13
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Coulomb gauge condition, which yields the weak H1 convergence of (vn,Bn) to a minimizer
(v,B). Since (vn,Bn) and (l,An) are gauge-equivalent then \vn\ — 1 in ft and therefore
\v\ — 1 in ft. Moreover (v,B) are smooth. Since ft is simply connected, there is a smooth
function ip such that v = el(p and thus (v,B) is gauge equivalent to a configuration (1,A).
Uniqueness follows from the fact that A —)• J ( l , A) is convex.

Now since A minimizes J(1,A) the configuration (1,A) satisfies the Ginzburg-Landau
equation and boundary conditions that express criticality with respect to variations of A,
i.e. — V^/i — —A in ft and h — /iext ° n dCl. Taking the curl of the first equation we find
—Ah + h = 0, hence the result.

•
Definition 2. We let

i r
(3.3)

We have

upper I Proposition 10. The following estimate holds

min J(w, A)

Proof. Defining Ao, ho as above we have V^/io — Ao and therefore

j(i,/iextA0) = ^r lv/l°l2 + (^ ~ x ) 2 -

D

3.2 Vortex balls

The heart of our analysis is to interpret the energy J(u, A) in terms of vortices. One should
think of a vortex of the configuration (u, A) as a point in ft near which (u, A) behaves not
too differently from the radial configuration we constructed above. The following proposition
gives a precise meaning to this, we denote by M(K) any function such that for any a > 0

2. For any x E ft \ UfBj, ||«(ar)| - 1| < 2/M(K).

3. If Bi C ft,

lo£f Hi

lim K~aM(K) = 0, lim — r r a = °> logM(«) = o(logrc) as K -> +co. (3.4) majb

For example M(K) = exp(v'log K) satisfies this.

Proposition 11. Let ficl2 be a bounded domain. We assume K > 1 and that J(u,A) <
KM(K). Then there exists disjoint balls B-\,..., Bn with Bi = B(a,i,ri) such that letting
ft = {x e n I dist(z, dtt) > 1/K}
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jac

(3-5) |minoboules

where d{ — deg(u,, dBi). The o(l) appearing in the lower hound is a function of K that goes
to zero when K —> +oo and which depends only on K.

The balls constructed above are called vortex balls associated to (u,A). They can be
associated to (u,A) under the assumption that J(u,A) < KM{K). In our case this is a
very mild assumption. Note that since hext is denned by (3.1) and from Proposition 10, a
minimizer of J satisfies the apriori bound

J(u,A) <C(\ogn)2.

Since from (3.4) the function M(K) dominates any power of log^c, Proposition 11 may be
applied to any minimizer of J.

We will not prove the above proposition, it relies on a construction introduced in [32] and
independantly in [23].

The vortex balls constructed above are related to the configuration (w, A) in a more direct
way. The proposition below appears in [24] and in a weaker form in [33].

Proposition 12. Under the hypothesis of Proposition 11 and using the same notations

cml(iu, h — <c
J{u,A)
M(K)

(3.6) jaco

where C depends only on the constant K in the bound J(u,A) < KM(k).

Here C\ denotes the space of C\ functions with compact support.

Sketch of the proof. To simplify the proof we assume that \u\ = 1 outside the vortex balls.
We define

fj, = 2TT 2~^ di5ai, ju = (iu, VAU), JU = curl(jw) + h. (3.7)

we have

(3-8)

Let £ be a smooth compactly supported function. Since |w| = 1 outside
Ju = 0 there, using (2.1). Therefore

J(JU=J(JU+Y:J ll'
Since £ vanishes on dO, and from the definition of Cl we find \£(x)\ < n 1M\\c°'l(n) f° r a n y
x G O \ fl. It is clear that \Ju\ < (\VAU\2 + h2) thus

h<c
J{u, A) + h2^

(3.9)

The second integral is taken care of in a similar way. From the definition of O and since
the radius of any ball is less than M ( K ) " 1 it follows that if Bi tf_ O and x G O fl B{ then
If 0*01 < U\\C^I/M(K). It follows that

(3.10)
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To deal with the third integral we define £ to be equal to £(aj) on Bi for any Bi — B(ai: TJ) C Jl
and £ = 0 elsewhere. Then letting A be the union of the I?;'s which are included in 0, we
have |£ - f | < ||f ||co,i/M(«) on A while

Ju =

where we have used the fact that |w| = 1 on <95j. Therefore

M{K)
(3.11) [13"

It follows from (2.6), (3.8), (3.9), (3.10) and (3.11) that for any compactly supported smooth

<C
J{u,A)
M{K)

Dand the proposition is proved.

This construction allows us to give the following definitions.

Definition 3. If(u,A) is a configuration satisfying the hypothesis of Proposition 11, we call

2TT

the vorticity measure associated to (u,A). We say (u,A) is vortex-less if this measure is 0.

3.3 Energy lower bound

We now prove an energy lower bound which results from the previous vortex construction

exp I Proposition 13. For any K > 0, there exist positive constants «o, C such that for any K > KQ
and any hext < KlogK, if (u,A) is a critical point of (1.6) satisfying J(u,A) < KM{K) and
{(a,i,di)} is an associated family of vortices then

J(u,A) > h2
extJQ + 7T f J ] \di\ I (log«

(3.12)

where we have written h = curl A and Jo, ho are defined by (3.3), (3.2).

Proof. It follows from -V±h = (m, V^it) and \u\ < 1 that | V A « | 2 > [V/i[2. Thus,

J(u,A) \h- hext\ (3.13) [20"
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where 12 — 12 \ Uj5j. Also, from Proposition 11,

JUiBi(u,A) > (3.14) f2T

and, letting h — heKtho + f

j \Vh\2 +\h l> h2
extJ0 + l\\ffHl{{l) + ft« t l)+f{ho-l). (3.15) [22;

Since the measure of UiBt is less than CM(K) 2,

h2
ext I {ho - I )2 = o(l). (3.16) [§[

Moreover, / = hextho — h and both h and /^xt^o are bounded in H1 norm and therefore in
L4 norm by C log K. Then, by Holder's inequality,

Also,

V/.V(/H) - 1) + f{ho - 1) <

(3.17) [24]

(3.18) [25"

From (3.13) - (3.18) we get

J(u,A) J \Vf\2 + ̂  J

(3.19) [26"

Moreover —A/ + / = — Ah + h — curl(m, V^w) + h therefore using Proposition 3.6

f(hG -

which, together with (3.19), proves (3.12).

cl | Corollary 1. Assume that hext(n) = AlogK with

1

•

A <
\hQ

Then for K large enough any minimizer of the functional J is vortexless.
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Indeed it is clear from (3.12) that in this case, if K is large enough and the vorticity
measure is not zero then </(«, A) is strictly greater than h^xtJo hence cannot be minimizing.
This proves in a weak form that the first critical field is greater than

2maxn \h0 -

Note that Proposition 13 also implies

| c2 | Corollary 2. Assume that hext{n) = AlogK for any A > 0. Then the energy of a vortexless
configuration (u, A) satisfies

J(u,A)>h2
extJ0-o(l).

3.4 Energy upper bound

To complete our estimate of the first critical filed, we need to construct an upper bound. We
prove the following

I upp I Proposition 14. Assume that hext(n) = AlogK with

1
A>

2maxn \ho —

Then for K large enough there exists a test configuration (u, A) with energy smaller than any
vortexless configuration.

Together with Corollaries 1 and 2 this implies

Theorem 1. The first critical field HCl{n), defined as the highest value value ofhextfor which
minimizing configuration are vortexless satisfies

HCI(K) _ 1

log K K °° 2maxft \ho — 1|

Note that the function h$ is equal to 1 on dVl but decays like exp(— dist(x, dVl)) inside Q.
Therefore if Q, is very large, the minimum of hg in Q, is close to 0 and therefore maxfl \JIQ — 1|
is close to 1. We then recover the value log K/2 for the first critical field that we computed in
TO2
IK .

The proof of Proposition (14) follows closely the construction we did in M2. The idea is
to let XQ be a point in O where h® achieves it minimum, then to solve

-Ah + h = 2ITS0

in fi together with the boundary condition h — hext on dil. Then we solve curl A = h, and
then — V±h = Vtp — A. This last equation is solved in 0 \ {xo}, the function <p plays the role
that 6 had in the radial case, it is defined modulo 2?r only. Finally we define p to be equal to
1 outside B(XQ, 1/K) and p(x) — K\X — XQ\ otherwise. Then the energy of the configuration
(u = rhoelip,A) can be estimated as in the case of R2 and is strictly less than that of a
vortexless configuration if K is large enough. In fact the computation yields

J(u7 A) < hl^Jo + IT log K + 2irhexi(h0 - l)(x0) + o(log k),

which is to the order of log K exactly the right-hand side of (3.12), for a single vortex of degree
1 located at XQ.
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Remark 1. Note that refining the techniques above, much sharper results can be deduced, we
refer to [38, 39, 37].
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