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1 Introduction

In these notes we present the main ideas for the applications of finite-dimensional reduc-
tions to the study of some singularly perturbed elliptic equations. We will discuss the
following two problems

(NLS£) -s2Au + V(x)u = up inRn;

and

where A = X)ILi Jb? ^s * n e u s u a l Laplace operator, p > 1, and v is the outward unit
normal to Q.

Problem (NLS£) arises in the study of standing-waves in the semiclassical limit for the
Nonlinear Schrodinger equation. The function V(x) is the potential, while e is a small
positive parameter which represents the Planck constant h.

On the other hand, problem (Pe) models pattern-formation in some biological experi-
ments. More precisely, it is obtained from the study of stationary solutions of the system

I Ut = dxNU -U + ̂  in Q x (0, +oo);

Vt = d2AV - V + ^ in ft x (0, +oo);

= f = 0 onaQx(0,+oo),

proposed by Gierer and Meinhardt in 1972. Here the functions U, V represent the densities
of some chemicals and d i , ^ are diffusion coefficients. Problem (P£) is obtained from
(GM) letting d2 —> +oo. Then non-constant solutions appear, according to the so-called
Turing's instability.

Problems (NLS£) and (Pe) have many common features. They are both variational and
can often be treated with the same abstract approaches. They exhibit solutions ue which
scale roughly in the following way

ue(x) ~ u (-) ,

where u solves a suitable limit problem in Rn or in R™ (the half-space {xn > 0}).

Much work has been devoted to the study of spike-layer solutions, which concentrate at
single points of W1, or of D,. In the case of (NLS£), this happens at critical points of V,
which are equilibria of the classical Newtonian motion.



About problem (P£), is the geometry of O which determines the location of spike-
layers. At the boundary, concentration occurs at critical points of the mean curvature,
while at the interior it occurs, roughly, at critical points of the distance from 50.

Let us mention that both problems (NLSe) and (P£) possess multibump solutions
as well, namely solutions with multiple peaks. The techniques used to produce these
solutions are min-max theorems, Lyapunov-Schmidt reductions, penalization methods
and gluing procedures.

Very recently the phenomenon of concentration at curves or manifolds has been investi-
gated. Here we consider (NLS£) and (P£) under the assumption of spherical symmetry.
In this case the method of finite-dimensional reduction can still be applied, using suit-
able modifications. For both problems, new phenomena take place. Non-symmetric cases,
instead, require completely different methods, which go beyond the purpose of these notes.

The main references are the papers [1], [2], [3], which contain the motivations of this
study, together with complete proofs and detailed bibliography.



2 Notation and preliminary results

Consider the problem

in Rn ;I
u(x) —> 0 as \x\ —>• +00;where n > 1 and p > 1.

If V < S i (m the case n > 3), and if u <£ ^(W1), solutions of (Po) can be found as
critical points of the functional / : H 1(Rn) —> R defined as

p+1

Note that, by the Sobolev embedding theorem, / is well-defined (and is actually of class
C2) on i ^ R " ) . We have the following result.

Proposition 2.1 (Berestycki-Lions, Gidas-Ni-Nirenberg, Kwong). Assume p < ^ | (in
the case n > 3). Then there holds

(a) problem (Po) admits a radial decreasing solution u(r);

(b) there exists a positive constant an>p such that

u'(r)n-l

(2) lim r 2 eru(r) = anv; lim __. . = —1;
r+00 * r+00 u(r)

n ;

u(r)

(c) all the solutions of (Po) are of the form u{\x — £\), for some £ G

(d) w(|ar|) G i i f^ l" ) , and is a mountain-pass critical point of I.

Remark 2.2 From the Pohozahev's identity (testing the equation in (Po) on (x, Vu)) and
from some decay estimates, it follows that problem (Po) admits no solution for p > ^ | .

It is essential to understand the spectral properties of the linearized equation at u, or
equivalently of the operator / (u), which is given by

(3) T(u)[vuv2] = f ((VvuVv2) + Vlv2) -p f nP~lvM vuv2e H\Rn).

With some abuse of notation, we will indifferently consider it defined on Rn or on R+ .
We have the following well-known result.

Proposition 2.3 Assume p < ^ | (in the case n > 3). Then I (u) is of the form
Identity — Compact, and has the following properties



(a) the first eigenvalue is — (p — 1), is simple, and the corresponding eigenfunction is u;

(b) the second eigenvalue is 0 with multiplicity n, and the corresponding eigenfunctions
are

du du
OCIT, \ h ctn-—,

where ai,... ,an are arbitrary real constants;

(c) t/ie remaining eigenvalues are bounded below by a positive constant.

We also need to consider the following variant of problem (Po), namely

inRn ;I
u{x) —> 0 as \x\ —> -foo;

u> 0,
where n > 1, A > 0, and p > 1. It is immediate to check from Proposition 2.1 and some
scaling argument that all the solutions of (P\) are the translates of the function uX} which
is given by

u\{x) ^ X^u (Xx); x £ Rn.
Of course, the complete analogues of Propositions 2.1 and 2.3 hold true for the function
u\ and the functional I\ : i?1(Rn) —>• R defined as
(4) lx(u) = \f {\Vu\

P + I

We conclude this section recalling the weak formulation of problems (NLS£) and (P£) in
the case p < ^z| . About the former, after the scaling x i—>• ££, solutions can be found as
critical points of the functional fe : i?1(Rn) —> R defined as

(5) fs(u) = \

About the latter, and using the same scaling, one is reduced to find non-negative critical
points of the functional I£ : H 1(fl£) —+ K.

(6) Ie(u) = \f [\Vu\2 + u2) - - 1 - / l^r1; ti G ff^a),
2 J^ P+Un

where Q,£ — |O. In the sequel, we will not distinguish between problems (NLS£), (P£)
and their scaled versions.

On the potential V, we will make the following assumptions

(VI) V E C2(Rn), and \\V\\C2{Rn) < +oo;
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(V2) V is bounded and X2
0 = infRn V > 0.

Throughout the notes, the constant C is allowed to vary from one formula to another,
also within the same line, assuming larger and larger values.
Below, we use the notation a ~ b if the quantities a and b are of the same order when
e —* 0. In the same way, we write a < b if the order of a is not larger that the order of b
when e —± 0.



3 Concentration at points for (NLSe

In this section we study concentration at points for (NLS£), and we present the general
procedure to reduce singularly perturbed problems to finite-dimensional ones. The idea,
see Proposition 3.1, is to find an n-dimensional manifold Z£ of pseudo-critical points,
which can be perturbed to obtain a natural constraint Ze for fe. This means that a
critical point of f£ restricted to Z£ is also a critical point for f£. Throughout this section,
we always assume that p is subcritical, namely p < ^ | .

3.1 A Lyapunov-Schmidt type reduction
We set

(7) z#(x) = a(e0u(j3(e0x); £ 6 Rn,

where

Then we define

When there is no possible misunderstanding, we will write z, resp. Z, instead of zf^, resp
ZE. We will also use the notation z% to denote the function z^(x) := z£^(x — £). Obviously
all the functions in z% G Z are solutions of (P\) or, equivalently, critical points of I\, with
A = /?(e£). For future reference, let us point out some estimates. First of all, we evaluate

0) + ea(e£)p(et)v!(0(eO(x - 0) - a(eO

Recalling the definition of a, f3 one finds:

(8) dtz*(x - £) = -dxz*(x - 0 + 0(s\VV(sO\).

The main result of this section is the following proposition.

Proposition 3.1 Let V satisfy the assumptions (VI), (V2). Then for s > 0 small and
|£l < £ there exists a unique w = w(e,£) E (T^Z)1- such that Vfs(z^ + w) G TZ%Z. The
function w(e,£) is of class C2 (resp. C1>p~1) with respect to £7 provided that p>2 (resp.
1 < p < 2). Moreover, the functional 3>e(£) = fe(z£ + w(s,£)) has the same regularity of
w and satisfies

$>) = 0 ==• V/£ (ziQ + w(e, Co)) - 0.

In order to prove this proposition, we need some gradient estimates, and the invertibility
of f'J on the orthogonal complement of TZ.



3.1.1 Gradient estimates

The next Lemma shows that Vf£(z^) is close to zero when e is small, namely z% is an
approximate solution of (NLSe).

Lemma 3.2 Assume (VI), (V2) hold, then for all ( G R n and all e > 0 small, one has

||V/e(^)|| < C (e|VV(eOI + e2), C>0 .

PROOF. Since

fe(u) = 7x(u) + \ [ [V(ex) - V(sO] u2dx- A2 = V{e^

and since z^ is a critical point of I\, one has

zs)\v) = (VIx{zt)\v)+ [ [V{ex)-V(e£)]z<:vdx

[V{ex)-V{e£)]zzvdx.

Using the Holder inequality, one finds

(9) l(V/ete)|i;)|2 < ||V|||a / \V{ex) - V(eO\2zjdx.

From the assumption that |D2V(x)| < C, one infers

V{ex) - V(sO\ < Ce\W(e£)\\x - C| + Ce2

This implies

f \V(ex)-V(e£)\2z1dx<

(10) Ce?\\7V(e£)\2 f \x - £\2z2(x - £)dx + Ce4 f \x -

Recalling Proposition 2.1 and (7), a direct calculation yields

\y\2u2

x -

2p-n~2 'W < C.= a2p

From this (and a similar calculation for the last integral in the above formula) one derives

(11)

Putting together (9) and (11), the lemma follows.

8



2f on TZ±3.1.2 Invertibility of D2f£ on TZ

In this section we will show that D2f£ is invertible on TZ1-. This will be the main tool
to perform the finite dimensional reduction.

Let L££ : (Tz Z
6)1- —> (Tz Z

6)1- denote the operator defined by duality as (L£^v\w) —
D2f£(z^)[v, w]. We want to show the following.

Lemma 3.3 Under the assumptions (VI), (V2) there exists C > 0 such that for e small
enough one has that

(12) \{Le£v\v)\ > C-'WvW2, V [«e|, V v e (z^T^Z^.

PROOF. From (8) it follows that every element £ E TZ^Z can be written in the form
C, — —dxz

e^[x — £) + O(e). As a consequence,

(*) it suffices to prove (12) for all v E span{^, 0}, where (f> ± span{^, dxz
e^{x —

Precisely we shall prove that there exist C > 0 such that for all e > 0 small one has

(13) (LeAZtfa) < - C - ^ 0 ;
(14) ( L e ^ W > C ' 2

It is clear that the Lemma immediately follows from (*), (13) and (14).

Proof of (13). First let us recall that, by Proposition 2.3, one has

(15) D2lx(z^, zs) = - ( p - 1) < -C-1 < 0.

There holds

( L £ , e ^ e ) = D27x(zc)[z^ z^} + / [V(ex) - V(eO] z2dx.

The last integral can be estimated as in (11) yielding

(16) (£e ,e^k) < D2lx(z^)[z0z^} + Ce\VV(eO\ + Ce2.

From (15) and (16) the inequality in (13) follows.

Proof of (14). As before, by Proposition 2.3, we have

(17) D2lx{z^4>]>C-1Uf.

Let R^$> 1 and consider a radial smooth function %i : ]Rn i-̂ - R such that

= l, for\x\<R; XiM = 0, for \x\ > 2R;

< | , for R < \x\ < 2R



We also set X2(%) = 1 — Xi(x)- Given <f> let us consider the functions

A straight computation yields

[
n JRn

f
and hence

Letting / denote the last integral, one immediately finds

7 =

Due to the definition of %, the two integrals I' and I" reduce to integrals in {R < \x\ <
2i?}, and thus they are of order Oij(l)||0||2. As a consequence we have

(18) \\4>\\2 — \\(f>i\\2 + ||02||2 + 27^ + Oi?(l)||0||2,

After these preliminaries, let us evaluate the three terms in the equation below

+2 (Le*<L

cri

One has

(19) 0"!

In order to use (17), we introduce the function ^ = <fii — ip, where

ij; - (0i

Then we have

(20) ^ 2 / A [ 0 I , ^ I ] = £>2/A[

Let us explicitly point out that (f>x ± span{^, dxz
e^{x — £)} and hence (17) implies

(21) D ^ ^ ^ ' 2

10



On the other side, since {(f>\z^) = 0 it follows that

(f>2^dx

Since X2{%) — 0 for all \x\ < R, and since z(x) —> 0 as |x| = R —>• oo, we infer (0i |^) —
Oie(l)||0||. Similarly one shows ( ^ l l ^ ^ ) — Oij(l)||^>||, and it follows that

(22) IWI=o«(l)W.

We are now in position to estimate the last two terms in (20). Actually, using (22) we get

(23)

The same arguments readily imply

(24) D27SiM = &M + V

p [ zf1^ = oR(l)\\<f>\\2.

- p = oR(l)\\cf>\\

Putting together (21), (23) and (24) we infer

(25) D 2 7 A [ 0 I , 0 I ] > | | 0 I f + oR(l)||0||2.

Using arguments already carried out before, one has

\V{sx)-V(ei)\(j)\dx < C f

<

This and (25) yield

(26) (7! = (LeMfa) >

Let us now estimate <72. One finds

- eCU\\2 + oR(l)\\4>\

a2
V(ex)$-p [ z

and therefore, using (V2),

11



As before, 4>2{x) = 0 for all \x\ < R and z{x) —> 0 as \x\ — R —> oo imply

(27) cr^C-^f + 2

In a similar way one shows that

(28) ^>C-% + o

Finally, (26), (27), (28) and the fact that 1$ > 0 yield

Recalling (18) we infer that

Taking e small and R large, equation (14) follows. This completes the proof of Lemma
3.3. •

3.1.3 Proof of Proposition 3.1

Let P — P££ denote the projection onto (T^Z)1-. We want to find a solution w G (T^Z)1-
of the equation PV f£{z^ + w) — 0. One has

Vf£(z + w) = Vfe(z) + D2f£(z)[w] + R(z, w),

with

(29) \\R(z,w)\\ = o(\\w\\), and \\R(z,Wl - w2)\\ = w2\\,

uniformly with respect to z — z%. Using the notation introduced in subsection 3.1.2, we
are led to the equation

LeAw + PVfe(z) + PR(z, w) - 0.

According to Lemma 3.3, this is equivalent to

w - N£tz(w), where Ne4(w) = -L~\ (PVf£(z) + PR(z, w)).

From Lemma 3.2 and the first inequality in (29) it follows that

(30)

By the second inequality in (29) there holds

o(\\w\\).

(31) = o(|KJ - w2\

Then one readily checks that N£^ is a contraction on some ball in (T^Z)1- provided that
e > 0 is small enough. Then there exists a unique w such that w = N£^(w). Let us point

12



out that we cannot use the Implicit Function Theorem to find w(e,£), because the map
(s,u) i—» PVf£(u) fails to be C2. However, fixed e > 0 small, we can apply the Implicit
Function Theorem to the map (£,w) i—> PV'f£(z£ + w)- Then, in particular, the function
w(e, £) turns out to be of class C1 with respect to £.

The final assertion in the proposition is proved as follows. Studying the derivative of
w(e,£) with respect to £, one can verify that

TZiZ ~ TZi+w(e£)Z for £ small,

where Z — {z + w}. Suppose z%Q + w(£,£o) is a critical point of / e [^ . Then V/ e (^ 0 +
w(s, £o)) is perpendicular to Tz^ +W(£^O)Z, and hence almost perpendicular to TZtL Z. Since,

by construction of Z, it is V / e ( ^ 0 -\-w(s, £o)) ^ TZ( Z, it must be Vf£(z^0 + w(e, £o)) — 0.
This concludes the proof.

Remark 3.4 From (30) it immediately follows that

(32) \\w\\<C{e\VV(eO\ + e2),

where C > 0.

3.2 Study of the reduced functional and applications
The main purpose of this subsection is to use the estimates on w established above to find
an expansion of 3>e(£) and V<E>£(£), where $e(£) = /e(<% + w(e,£)). In the sequel, to be
short, we will often write z instead of z$ and w instead of w(s, ^). It is always understood
that e is taken so small that all the results discussed in the preceding subsection hold.

We have

f
P

Since — Az + V(s£)z — zp we infer that

P||2 = -v(e£) f z2+ f

(z\w) = -V(e£) f zw+ f
JW1 JRn

zp+1;

zpw.

Then we find

13



Since z(x) = a(e£)u((3(e£)x), where a = V1/{p~^ and /? - V1/2, see (7), it follows that

/ zp+1dx = Com)*, <?„

Letting d - C0[l/2 - 1/0 + 1)] one has

— I I

MO = [V(ex)-V(eO]z2+ f [V(ex) - V(e£)] zw
Jm.n

(33)
V

one has

Ci>0, 9 =
p+1 n
p-l~ 2 '

The function $ e can be estimated as follows.

Lemma 3.5 Let a(e£) - 9C1V{e^f-1

where |pe(f)| < C(e |W(ef ) l + e2)

(35) V$e(£) =

where \R£{^)\ < C and 7 = min{l,p — 1}.

PROOF. The first four error terms in (33) can be estimated as in Lemma 3.2, using the
Holder inequality and (32). Let us focus on the last term. Using the uniform boundedness
of z and some elementary inequalities one finds

\(z + w)p+1 - zp+1 - {p + l)zpw\ < C (\w\2 + \w\p+1) .

Hence, from the Sobolev inequality we deduce

f {{z-tw)p+1-zp+1-{p+l)zpw\

Then, using (32), we obtain (34). We do not treat (35) here, details are given in [3]. •

As an application of the previous results, we give the following theorem, regarding con-
centration at non-degenerate critical points of V.

Theorem 3.6 Assume (VI) and (V2) hold, and suppose £0 is a non-degenerate critical
point ofV, namely for which D2V{^Q) is non-singular. Then there exists a solution u£ of
(NLS£) which concentrates at £0-

14



P R O O F . Using a Taylor expansion for V, one can find a small positive number So such
that

(36) VV ^ 0 on &Bfc(6>) and deg(VV, 0, dB6o(^)) = ( - l ))sgn

For t e [0,1], consider the function **(£) - £$£(£) + (1 - t ) a ( £ 0 M O - F r o m (35) a n d

the first part of (36) one deduces that V$* ^ 0 on dB$0(£0) for all t e [0,1]. By the
homotopy property of the degree, it follows that

deg(V#e, 0, dBSo(Zo)) - deg(a(£o) W , 0, dB^fa)) - deg(VV, 0, dBSo(^)) + 0.

As a consequence 3>£ possesses a critical point in Bg0(^o) and hence, by Proposition 3.1,
fe has a critical point of the form z^0 + o(l). Scaling back in the variable x, we obtain the
conclusion. •

15



4 Concentration at spheres for (NLSe

In this section we study concentration at spheres for (NLS£). We assume that V is radial,
namely V(x) — V(\x\), and we will work in the space H} of radial functions in if1(Rn).
Using this space, the Euler functional f£ becomes, up to a constant factor

1 r°° i r°°
(37) fJu) = - / {{u!f + v(sr)u2) rn~ldr / \u\p+1rn-ldr- ueHl.

2 Jo P + 1 Jo
To give an idea why (NLS£) might possess solutions concentrating on a sphere, let us
make the following heuristic considerations. A concentrated solution of (NLS£) carries
a potential energy due to V and a volume energy. The former would lead the region
of concentration to approach the minima of V. On the other hand, unlike for the case
of spike-layer solutions where the volume energy does not depend on the location, the
volume energy of solutions concentrating on spheres tends to shrink the sphere. In the
region where V is decreasing, there could possibly be a balance, that gives rise to solutions
concentrating on a sphere. This phenomenon is quantitatively reflected by an auxiliary
weighted potential M defined as follows. Let

and define M by setting
M(r) = rn-1V9(r).

We have the following result.

Theorem 4.1 Let (VI) — (V2) hold, let p > 1 and suppose that M has a point of local
strict maximum or minimum at r — r. Then, for £ > 0 small enough, (NLS£) has a
radial solution which concentrates near the sphere \x\ —r.

This existence results is complemented by showing that concentration at spheres neces-
sarily occurs on stationary points of M.

Theorem 4.2 Suppose that, for all s > 0 small, (NLS£) has a radial solution u£ con-
centrating on the sphere \x\ — r~, in the sense that V<5 > 0, 3e0 > 0 and R > 0 such
that

(38) u£{r) < 5, fore < £o, and \r — f] > eR.

Then u£ has a unique maximum at r — r£, r£^>-rr and M'(r) — 0.

Theorem 4.2 is the counterpart of known results dealing with necessary conditions for
concentration of spikes.

In the case n — 1 one obviously has M'(r) = 0 iff V'(r) — 0. Otherwise, when n > 1 one
has

M'{r) - rn-2Ve-\r) \{n - l)V(r) + 0rV'{r)\.

Therefore, critical points of M belong to the region V < 0, as remarked before.

16



Remark 4.3 Note that in Theorem 4-1 we do not require any upper bound on the exponent
p, namely we can deal with the supercritical case as well. Roughly, the reason is the
following. The asymptotic profile of a radial concentrating function is the the solution of
(P\) forn — 1 (and a suitable X). In this case there is no restriction on p for the existence
of a solution.

4.1 The finite-dimensional reduction
Setting Stat(M) = {r > 0 : M'{r) = 0}, let us fix p0 > 0 with 8p0 < min Stat(M) and
let 4>£(r) denote a smooth non-decreasing function such that

' l f r - S ' A 1fi2

I#M|<-, \€{r)\<^~.
, if r > ^ . P° P°

For p > 4PQ/S, set

(39) Zpfi(r) = Mr) Mr ~ p)\ A2 - V(ep).

Fixed £ > f, see Theorem 4.1, consider the compact interval T£ — [4e'~1p0, e"1^] and let

Recall that Proposition 2.1 yields

z(r) < Ce-x^r-p\ (Xl = inf{F(r) : r G M+}).

Choose r] > 0 such that
-, ^ Ao
Ai := Ao - T) > —min{p, 2} '

Given a positive constants 7 > 0 (to be fixed later), we define

(40) C£ - {w G K : \\W\\HI < je\\z\\Hi, \w(r)\ <ie~
x^-^ for r G [0,p]} ,

We will look for critical points of f£ of the form

u — z + w, z — zPt£ G Z, w A. TZZ, w G C£.

We have indeed the following Proposition.

Proposition 4.4 For e sufficiently small there exists a positive constant 7 such that for
p €%, there exists and a function w — W(ZPJ£) £W— (TzZ)1- satisfying Pf'£(z + w) — 0
and

i) w G C£ = {w G Hi : ||iu|| < 7e||^||, \w(r)\ < je~Xl^r~^ forr G [0,p]};

ii) \\w\\<C\\f'£(zp)\\.

17



Setting

if, for some s <C 1, pe is stationary point of &£, then u£ — zPs £ + wPs £ is a critical point
Offs-

The reason for the introduction of the set C£ is the following. The norm of the function
zPt£ and of the gradient I'e{zPi£) may diverge as e goes to zero, see (42) and Lemma 4.6.
For this reason it is not possible to perform the contraction argument using only norm
estimates, as in the proof of Proposition 3.1. By means of the set Ce we keep the function
w small in L°°, see (44), and the function z + w concentrated near \x\ — p.

Let us recall that, by the Strauss Lemma, if u G Hi one has

(41) u{ \u\ t), r > 1.

Lemma 4.5 For e > 0 small, w £ C£, p E% and r > 0 one foas

(42)

(43)

(44)

_(3-n)/2.

ti)(r)|<Ce, Vr>0,

where C depends only on n, p, V and the constant 7 in the definition of C£.

PROOF. By the exponential decay of zp>£ we have

"P,e HI /
Jo

V{er)z2)dr - pn~\

Since p G T£, then p ~ £• 1 and (42) follows. Equation (43) is an immediate consequence
of (42) and of the fact that w G C£. To estimate \w(r)\ we first recall that, taking s such
that po/e > 1 and using (41) we get

\w(r)\ < C

Then (43) implies

C all r > po/e.

\w(r)\ < C e for all r > po/e.

Furthermore, according to the definition of C£, and recalling that p G % implies p >
we have

\w(r)\ < je~Xlip~r) < 7e~ 3 ^ < Ce, for all r < po/e.

Hence (44) follows. •

18



4.1.1 Gradient estimates and invertibility

Lemma 4.6 For p £ % there holds

Proof of (El). For all v £ H} one has

/

+0O />+0O

u(rn-V)'dr + / rn-x (V(er)zv - zpv) dr
Jo

rn~Vf;dr- /
. J o

rn~lz"vdr+ pv) dr,

A0(v)

Using the Holder inequality we get

A1{v)

+oo

Since z decays exponentially away from r — p and since p £ %, it follows that

«+OO /"+0O

_
r"2 • rr

Then, using (42) we find

(45) : \\v Hx e \\z\

To estimate -Ai(v) we recall that, by definition, z — 4> • u\(r — p) and hence

"+0O

'0
A1(v) = = f

Jo

y+oo

I
A2(v)

/-+0O

V(er)(f>Uv - (<pU)pv) dr - rn~~lcf>U"vdr,
Jo

A3(v)

where U stands for u\(r — p). Since the support of <f>' is the interval [po/2£,po/s} and U
decays exponentially to zero as r —> CXD we get

(46) : \\V\\HI < 1} ~ e
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Finally, using equation (56) we infer

Az(v) =
/•+00 />+oo

/ rn~l {V(er) - V(ep)) (f)Uvdr = / rn~l (V(er) - V(ep)) zvdr.
Jo Jo

Since V is bounded,

a+oo 1/2

m <

and hence, in view of (42),

(47) sup{|yl3(?

Putting together (45), (46) and (47), we find (El), m

Proof of (E2). For i; e i/J we get
/*+oo

\f'J(z + sw)[v,v]\ — I rn~x (|?/|2 + v2 + V(er)v2 — p\z
Jo

dr

<
/

+OO

z + sw
p 1v2dr

According to (44) one has that \z(r) + sw(r)\ < C and thus
"+OO

+ sw P~1v2dr < c \\v\Hi-

Then \f'e'(z + sw)[v,v]\ < c \\v\\%, and (E2) follows. •

As in the previous section, with only minor modifications, one can prove the following
result.

Lemma 4.7 There exists a positive constant C such that, for every p £ % and for e
sufficiently small there holds

f"(z)[v, v] > C^IMI2 , for all v _L {tz} © TZZ.

4.1.2 Decay estimates

In this section we just give a brief motivation of the choice of the set C£, and in particular
of the number Ai. The function w is obtained as a fixed point of a map N£jP. If w — N£jPw,
with w € C£, then w satisfies the equation

—AwJrV(sr)w — pzp~1w — — ((z + w)p — zp — pzp~1w) + j3(—Ai + V(er)z)

(48) + (-Az + V(er)z-zp), in Rn,

where (3 is a real number with |/?| < £, and where z — |^, see [1]. From the decay of w
and some elementary inequalities we have

\(yA.qn\P yP n-yP"1!!) (v\ < C TYIfl Y-f III) \P 1I}\2\ < H p~(2AP) A l \P~ \X\ I < C C

The function on the right-hand side has a decay comparable to that of z.
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4.2 Proof of Theorem 4.1

First of all we expand the functional $e.

Lemma 4.8 For e > 0 small, there is a constant Co > 0 such that:

e^Mzp* + «V) = C0M(£p) + 0(e2), p £ %.

PROOF. For brevity, we write z instead of ZPJ£ and it; instead of wp>£. One has

Using (43), (El) and (E2) we infer

On the other hand, recall that by definition zp>£(r) = 4>£(r)u\(r — p). Then z concentrates
near p and one finds

7TT> 2

We recall that
ux(r) = A2/(p-1%(Ar), A2 = V(ep).

It follows by a straightforward calculation that

where ^ and Co have been defined in the previous section. Substituting into the preceding
equations we find

fe(z + W)= CoP^V' S

Recalling the definition of M we get

f£(z + w) = ^ {spf-^iep) + 0{e*~n) = %• M(ep) + O(s^n),

and the lemma follows. •

Proof of Theorem J^.l completed. Let us first consider the case p £ (l, ^ | ] . By Lemma
4.8, if r is a maximum (resp. minimum) of M then $£(p) — fs{zPe,e + wp^£) will possess a
maximum (resp. minimum) at some p£ ~ r/e, with p£ G T£. Using Proposition 4.4, such
a stationary point of #£ gives rise to a critical point u£ — zPe>£ + wPe>£, which is a (radial)
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solution of (NLS£). Since u£(r) ~ u\(r — p£) ~ u\(r — r/s), then ue{r) ~ u\((r — r)fe)
and hence u£, rescaled in r, concentrates near the sphere \x\ — f.

Let us now consider the case p > ^ | . The proof is done using some truncation for
the nonlinear term, and then proving a-priori L°° estimates on the solutions. We list the
modifications to the above proof which are necessary to handle this case.

For K > 0, we define a smooth positive function FK '• R —>• R such that

FK(t) - \t\p+1 for \t\ < K; FK(t) = (K + l)p+1 for \t\ > K + 1.

Let /£)JK- : Hi —> M be the functional obtained substituting |wjp+1 with FK(u) in /e , and

let Ko — (sup V)?^1. Since the non-linear term in fe>K is sub-critical, this is a well-defined
functional on H}.

We note that by the definition of U\ and zP}£, it is ||^P)£|| < Ko for all p E T£ and £
sufficiently small.

In the above notation, if K > Ko, the operator Pf"K(z) remains invertible and its
inverse A£ has uniformly bounded norm, independent of K. In fact, Lemmas 4.5, 4.6,
4.7 and Proposition 4.4 are based on local arguments and remain unchanged. Moreover,
if K > Ko + 7 (see the definition (40) of CE) and using the pointwise bounds on \w{r)\
stated in equation (44), one readily checks that the estimates (El) — (E2) involving f'£(z)
and f"(z + w) are also independent of K. Hence the above method produces a solution
u£ of f'eK — 0 for which ||we||oo ^ K. Hence u£ also solves (NLS£). This completes the
proof of Theorem 4.1. •

We remark that, since &£ depends only on one variable, it is not necessary to study its
derivative with respect to p in order to get critical points.

4.3 Bifurcation of non-radial solutions
In this section we study bifurcation of non-radial solutions from a family of radial solutions
concentrating on spheres. We will assume first that the exponent p lies in the range
(l, ^ | ] , so all the functional involved are well-defined. The general case p > ^ | will be
handled by a truncation procedure as before.

Proposition 4.9 Let u£ be the family of solutions radial solutions u£ of (NLS£) having
the form

u£ = zPey£ + wPeiE, for some p£ ~ —,

where wPsjS e C£ (see equation (40)j. Then the Morse index of ue in Jtf1(M.n) tends to
infinity as e goes to zero.

PROOF. Let {(fj}j,j £ N denote the eigenfunctions of —A on Sn~1 with eigenvalues
{fij}j, where the ^ ' s are chosen to be non-decreasing in j . In particular we have

(49) /
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Recalling the definition of the cutoff function (f>e in Section 2, let us define Vj G i?1(Rn)
in the following way

vj(r,0)=ue(r)<l>e{r)<pj(9),

We note that, in polar coordinates

)' (r) \

Sn~\j > 1.

eue)' (r), \ue(r)<f>e(r)Vsn-iips{e)\ ,(50)

and hence we deduce

(51) (vi, Vj) — 0 for i ^ j .

Moreover it turns out that

(52)

where

)£ f <p2

Cv =
1 (fan,)')2 + Jrn-1V(er)(<f>eue)

2-pJrn-1d?1<

I

From the estimates of the previous sections one easily finds

From (49) and the last equations it follows that, for any fixed j > 1, for e small one has

I"(ue) [v^ Vi] < -Un-x (—) Iv,ro) [Ti\, u\] < 0, for all i < j ,

where A2 = V(ro). Hence setting

M,j — s p a n {vi : i — l , . . . , j } ,

from the orthogonality relation (51) it follows that I'J(u£) is negative-definite on M.j for
e sufficiently small. This concludes the proof. •

With some delicate analysis of the small eigenvalues of f'/u£), one can prove the following
result.

Proposition 4.10 Suppose M"{TQ) ^ 0, and suppose u£ is a solution concentrating at
\x\ = r0 constructed with the above method. Then, for £ small, u£ is non-degenerate in
Hi.
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By means of these two propositions, we can prove the following result.

Theorem 4.11 Suppose that, in addition to the assumption of Theorem 1^.1, the potential
V is smooth and that at a point f > 0 of local strict maximum or minimum of M there
holds

(53) M"(f) ± 0.

Then there exists s0 G (0, e) such that A = A7>£0 is a smooth curve. Moreover, there exist
a sequence Sj J. 0 such that from each u£j G A bifurcates a family of non-radial solutions
of (NLSe).

PROOF. By Proposition 4.10 the solution u£ — !zw + w of (NLSS) is non-degenerate and
locally unique in the class of radial functions. This implies that the set A in Theorem 4.11
is a smooth curve. By Proposition 4.9 the Morse index of f'J(us), in the space i?1(Rn),
diverges as s —* 0. To obtain the conclusion it is sufficient to apply a bifurcation result
of Kielhofer. When p > ^- l̂ it is sufficient to consider a cutoff function FK as in the
proof of Theorem 4.1. The above argument yields bifurcation of non-radial solutions of
f'eK — 0. The L°° bounds on the radial solutions and standard regularity results imply
that non-radial solutions which are sufficiently close to the radial ones (in i/1(Rn)) are
also uniformly bounded. Hence these critical points are also solutions of (NLS£). •
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5 Concentration at spheres for (P£

In this section we study concentration at spheres for (P£) in the case of the unit ball
fl — B\ — {x £ M.n : \x\ < 1}, highlighting that new phenomena take place, due to the
imposed boundary conditions. Our main result on problem (N) is the following theorem.

Theorem 5.1 Let p > 1, and consider the problem

(N)
—£2Au->rU — up, in B\,

l? = 0ondBly u>0.

Then there exists a family of radial solutions ue of (N) concentrating on \x\ — re, where
re is a local maximum point of ue for which 1 — r£ ~ e\ logs|.

A similar result holds in the case of the annulus, O = {a < \x\ < 1}, with a E (0,1). Also,
related phenomena occur in annuli when one imposes Dirichlet boundary conditions, see

[2]-
As before, it is convenient to scale the problem to the set Oe = \B\, and to use the

functional Ie introduced above

u
p+\ u e Hi.

5.1 Abstract setting and preliminary estimates

For any r$ < | , let (f>£(r) be a smooth cutoff function such that

(54)

0 for r e [0, g] ;

W£{r)\<Cs forre[g,g];
\€(r)\<Ce* forre[g,g].

We define ZN to be the following manifold

(55) ZN = [^ (zp + a^e-d-^e-^-) : = {z? = <f>£ (zp p>

Here a^p is the constant in Proposition 2.1 for n — 1, and zp(r) — u(r — p). The range
of p will be chosen appropriately later. The function zN has been chosen in such a way
that it has a small normal derivative at dQ£. In fact, we have the following estimate

(56)

(57)

N\f
(*")

= Z,
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The difference between zN and z can be heuristically viewed as an addition of a virtual
spike outside fi.

We need first the following lemma, which can be proved by reasoning as in [1], Section 3.

Lemma 5.2 Let ZN be as above, and let w € C£. Then the following properties hold true

(El) | | / ; ( ^ + s « ; ) | | < C , ( 0 < « < l ) ;

(E2) \\I'J(z^ + sw) - Ie(tf)\\ < Cmax {Woo, I IHI^} , (0 < s < 1) ;

The same arguments of [1] Section 4, with some minor modifications, yield the following
result.

Proposition 5.3 There exists a positive constant \x with the following property. For s
sufficiently small, and for all p G [^, \ — fi] there exist a function w(z^) — w^ satisfying

i) I'e(z» + «/«)) = < § < /

ii) w(z?)±Tx*ZN;

iii) \\w(z?)\\ < C\\I'e(z»)\\;

iv) |M<)||oo<

where a^ G R and C is a positive constant depending only on n,p and \i. Moreover, if
for some s <C 1, p£ is stationary point o/\fe(p) — h{z^ + w^), then u£ — z^£ + w^£ is a
critical point of I£.

Proposition 5.3 is proved using the Contraction Mapping Theorem in the set Ce. The
condition p E [^, \ — /i], for fi sufficiently large and for e sufficiently small, makes the
functional I'J(z^) qualitatively similar to / (u) and allows to conclude

T"(vN\\fi 7)1 > rs\ <?>ll2- fr»r nil 7> I ?N ffi T AT 7N

for some (5 > 0, as in [1], Lemma 4.1.

We note that in the case Q = A the functions in H} belong to L°°. The argument carries
over directly in H^ and there is no need to introduce the set Ce.

For proving Theorem 5.1 we need to be careful in the expansion of \I/e, since we want to
consider values of p which are close to the exterior boundary of Oe. In the next Lemma
we estimate the quantity | | /e(^) | | , which by iii) is an upper bound for
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nrN
ZJ

Lemma 5.4 Let Z be defined in (55). Then there holds

\\T'(zN)\\ < CF1^ (F 4- O (P~(S~P)}} for everv z1

for some constant C depending only and n and p.

PROOF. In the proof we will often omit the index p in zp and vp. Since zp = u{-
and vp satisfy respectively the equations —z"p + zp — zp and —v"p + vp — 0, we have

— p)

I£(z
N)[u)

n-l

£1-n{zN)'{lle)u{lls) -(n-l) I ^

k1 (y 4 - 7 ! V J - ffy"'(y _L 7; ^ 7/

From formulas (41) and (56) we find

(58) e^K*"

On the other hand, since the function ZN is supported in {r > | ^ } , one has also

(59) \Jl(zN)'«
From the exponential decay of zp and vp, from the fact that (j)£, (f>" have support in
and from p> j - , one deduces the estimates

(60) < use 2 e

Let us consider now the term J {(KzN)p — <t>£z
v
p) u. We can write

(zNY - fcz* = <%{(z + vf -

Since z is uniformly bounded, we have

\(z + u)p - £p - p ^ -

It follows that

f[(z + v)p-zp}u <p zv~lv u +C f \u\me&{\v\2,\v\p}

Again from the Holder inequality we obtain

M p\u\ <e p . " J e u
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We have also f zp 1v\u\\ < (Jz2(p ^v2)2 \\u\\. We divide the last integral in the two

regions r < P+IT and r > p+e~ . When r < pJre~ , v satifies v < and hence

'£ 2

On the other hand when r > £±f—, z satisfies \z(r)\ < so we have

We have also the estimate

j (fez
p
p - cj>£z

p

The above estimates yield

(61)

u

J
Hence (58)-(61) imply

This concludes the proof of the lemma.

v\

\u\ u

u\\.

5.2 Expansion of /£ on ZN

In this subsection we expand Ie{zf?) as a function of p and £•. Integrating by parts and
using the equations satisfied by z and v (see the proof of Lemma 5.4), we find

n - 1
yN\p+l

(62)
n-1 r , f I,

J
Let us estimate each of the seven terms in the last expression. From equations (2) and
(56) we deduce

(63) e1-
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To estimate the second and the third term, we can write

1 1

2 p+1

(64)

We have

J
p+l

zp(z + v)-\J <g+1zpv

(\z + v\p+1 - zp+1 - (p + l)zpv) .

«n jn-1

r>l/e
[
[0,l/e]

[0,1/e]

Using a Taylor expansion for the function rn~1 — pn~x and the fact that r < C(ro)p (since
P > ro/e), we obtain

On the other hand, from (2) we get

f
r>l/e

[0,1/e]

Hence from the last three equations we deduce

(65) +1zp+1cffs
+1z ) .

The term J 0f+1 (\z + v\p+1 — zp+1 — (p + l)2;pv) in (64) can be estimated as follows. From
the inequality

(p C , \v\p+1},

one finds
f f

i lw+1 w + 1 ( i i \ v ^ s~i I v—1 2 i s~i I f I l3 I I B 4 - 1 T

z + v\p^ — zp^ — [p+ l)zpv < C z v +C I max{|v| , \v\p^ }.
' [0,1/e] ^[0,1/e] •/[0,1/E]

The first integral in the last expression can be estimated dividing the domain in the two
regions r < p+£~ and r > p+e,~ , as before, while for the second it is sufficient to use the
explicit expression of v. In this way we find

(66) (\z + v\p+1 - zp+1 - (p + l)zpv)
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The term JA (f)P+1zpv in (64) turns out to be of order g-1 ne 2^e p). We need to have a
rather precise expansion of this term, so we treat it in some detail. There holds

f (ff£
+1zpv =

J[0,l/e]
T?er

TiP{r-/
r>l/e

pn~l)zpv - l)zpv.

Reasoning as above, we obtain

r>l/e

[
[O,l/e] J[O,l/e]

Hence the last three equations and the expression of u imply

(67)
1e-2(7-'O /

J M.

uper

for e small. The fourth term in (62) can be estimated as for (59), and gives

(zN)'zN

(68) < C£2~n.

The fifth and the sixth terms in (62) can be estimated in the following way

(69) < (z <

From (63)-(69) we deduce the following result.

Lemma 5.5 Let zN be defined in (55). Then one has

1 1 \

for dip E HA]-
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5.3 Proof of Theorem 5.1

For s £ [0,1], using (El) and (E2) in Lemma 5.2, we have

l'e(z
N + swN) - I'£(z

N)\\ < \\I>:(zN)[swN]\\ + f (l's'(z
N + CswN) - f£>(zN)) [w]dC

Jo
= O(\\wN\\) + O (max w

N\\p}) .

Hence using property iii) in Proposition 5.3 and the smallness of jl/^z^)!!, we deduce

= I£(z
N) + O (\\I'£(z

N)f).

Hence from Lemmas 5.4 and 5.5 it turns out that

(70) Ie(z? + w?) = pn-1[a-pe-2^-p)]+O(e2-n) + s1-nc

where

(71) a p+1.

We are going to show that the function p
with

+ w^) possesses a critical point p£

•̂  | log sr|. We give first an heuristic argument, which justifies the choice

of the numbers /?0)£, Pi,£ and p2j£ below. The main term in (70) is pn~l \a — (3e~ \e~p) .

Differentiating with respect to p we obtain

(n - l)pn~2 \a - [3e~2X(i~p)~\ - 2ppn~1e~2^~p\

Since \ — pe ~ I log er|, the term e~ \^~p! converges to 0 as £ goes to 0, hence to get a
critical point we must require, roughly

v " areTaking the logarithm, and using the fact that all the terms except e and e
uniformly bounded from above and from below by positive constants, we obtain the
condition

(72) log, 2 | I -
£

1 | fog!

We now begin our justification of the above arguments. Given Co > 0 (to be fixed later
sufficiently large), consider the three numbers

(73) - - -
C £

1 o, - 1 CJWI
P2,e — ~ ^01 l o g & I •

£
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By condition (72) we expect po,e to be almost critical for the function p i—
I£(z^ + w^). Using Lemma 5.5 and some elementary computations, one finds

We have g l 1 - 1 ^ ) = £^+o{e\ioge\) = 5 a n d h e n c e

o(e\logs\)).

On the other hand, there holds

^e(pl,e) = e*~™ (1 + o(e\loge\)) a — j3e v co

0 = £yc0+o(e\ioge\) =

a

+

If Co > 2, we use the estimate eK1

to obtain

For the third term, we can write

If Co > | , We Obtain £2Co(l-Coe|loge|) = £2C0+O(e\loge\) _

hence

l o g £ | ?

g | l o g e | , and

for e sufficiently small. If Co is chosen sufficiently large, the last three equations imply

SUp
[P2,e,Pl,e

SUp
9[p2,e,Pl,e

Hence it follows that the reduced functional \I/e possesses a critical point (maximum) p in
the interval I | — Co| loge|, ~ ~~ ^~| logs| 1. By Proposition 5.3, we obtain a critical point
of I£ with the desired asymptotic profile. By construction, this solution is close in L°° to
a positive function. Then from the maximum principle it is easy to conclude that ue is
strictly positive. This concludes the proof of the theorem.

(N)

Considering a more general equation, with a radial potential V

s2Au + V(\x\)u^up inO;

g - 0 on dft, u>0mQ,

the above result admits the following extension.
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Theorem 5.6 Let (VI) - (V2) hold, p > 1 and let O C Rn be the ball Bx (resp. the
annulus A). Suppose that the function M satisfies the condition

(74) 0 (resp. M'(a) < 0).

Then there exists a family of radial solutions u£ of (N) concentrating on \x\ — re, where
r£ is a local maximum for ue such that 1 — re ~ e| loge| (resp. r£ — a ~ s\ logs\).
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