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Topology and Sobolev spaces
Part II : Higher dimensions

Petru MIRONESCU

Abstract. This course further continues the study of 51-valued maps. Two questions are
detailed : existence of a lifting and density of smooth maps.

I. The main problems
We consider maps from a domainil C M.N, N > 2. into the unit circle S1. To start with,
we consider the simplest possible domains, e.g., balls or cubes. More complicated domains
will be examined later. However, O will always be assumed connected. We consider
that these maps have some Sobolev regularity, i.e., that they belong to some (integer or
fractional) Sobolev space WS'P(O; Sl), 0 < s < oc, 1 < p < oo (for the definition of these
spaces when s is not an integer, see [1]). We address two questions :
(i) (Lifting) Given an S^-valued map u G WSiP(O;51), can one find a real-valued map
/ G WS'P(Q;~M) such that u — e%^l If so, is / unique modulo constants in 2TTZ ?
(ii) (Density) Given an 51-valued map u G PFS'P(Q; S1), can one find a sequence of smooth
maps (un) C C°°(£2; S1) such that un ->• u in W8'p ?

Comments
a) These questions have been completely settled in the papers [2] and [3]. See the references
therein for previous results concerning the same questions. We will sketch below part of
the proofs. Sections II-VI deal with the relatively simple cases. The delicate cases arc
discussed, without proofs, in Sections VII-VIII. Some details about how the proof goes in
these cases will be given during the lecture.
b) Question (i) for continuous maps is a well known exercice. When Q is, e.g.. a ball (or,
more generally, a simply connected domain), the answer is yes. However, for a general Q.
the answer may be no : consider, e.g., the case where Q is a 2D-annulus. Thus, one may
expect (and this turns out to be true), the answer to depend on the topology of Q.
c) The key point in question (ii) is that we ask the maps un to be 5'1-valued. Indeed,
any map u G WS'P(Q; S1) can be approximated by smooth maps : e.g., we mollify u.
However, the sequence of smooth maps converging to u obtained in this way needs not
be ^-valued. Actually, we will see that, in general, the answer is no.

II. Uniqueness
Assume we may write u = e*f = e7'9, with f,g G W8 'p(fi;R). Thus the map k = (/ -
g)/(2n) belongs to WS>P(S1;R) and it is Z-valued a.e. Therefore, uniqueness is equivalent
to the following
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Question. Is every map k G Ws'p(£l: Z) constant a.e. ?
When sp < 1, the answer is no. Indeed, take Q any cube properly contained in fl. It is
easy to see that the map k — XQ is Z-valued, not constant a.e., and belongs to Ws'p(fl; Z).
However, this is the only case of nonuniqueness.

Lemma 1. Assume sp > 1 and i} connected. Then every map k G Ws'p(ihZ) constant
a.e.

Proof. Start with N = 1. Then, by the Sobolev embeddings, W>p C W1!™ CVMO.
Approximate k by smooth (not necesarily Z-valued) maps, by mollifying k. The argument
used in the Part I of this course for VM0(51;/S'1) maps shows that, for large n, kn is
almost Z-valued. i.e., dist(kn(x), Z) —> 0 uniformly in x. Take n0 such that, for n >
n0, this distance is uniformly less than 1/3. Thus, for n > n0, kn takes values into
U,nez("7, — 1/3,771 + 1/3). Since kn is continuous, there must be some integer mn such that
kn takes its values into (mn — 1/3, mn + 1/3). The secmence (mn) is bounded. Indeed,
on the one hand we have mn — 1/3 </f kn < mn + 1/3. On the other hand, we have
/f kn —>•// k, since convergence in Ws'p implies convergence in L1. Up to a subsequence,
we may thus assume m,n = m. Since kn —> k a.e., we find that k(x) e (m — 1/3, m + 1/3)
a.e., so that k = m a.e.
We now consider the case JV = 2 ; the case Ar > 2 is identical. Since Q is connected, it
suffices to prove that k is locally constant a.e. We may thus assume Q to be a square, e.g.
the unit square (0,1)2. For a.e. x,y G (0,1), the maps u(x. .) and u(..y) belong to WSjP

(see [1]). Thus, for any such x or y. these maps are constant a.e., by the case N = 1. Now
write

\k(a, b) - k{c, d)\ < \k(a, b) - k(a, d)\ + \k((a, d) - k(c, d)\

and integrate this inequality over a, b, c. d. For a.e. a, we have

f f \ k ( a , b ) - k ( a , d ) \ d b d d = O,

so that

\k(a,b) - k(a,d)\da db dc dd = 0.

Using a similar argument, we find that

i l l k(a> h) - fc(c' d)\da dh dc dd = °'
so that k is constant a.e.

Final conclusion. Uniqueness holds if and only if sp > 1.

III. Case of continuous maps : sp > N



Recall that, when sp > JV, then Ws'p C C°. by the Sobolev embeddings. In particular,
this implies the following simple

Lemma 2. Assume sp > N. Then smooth S'1-valued maps are dense in Ws'p(il: S1).

Proof. Approximate u by mollifying it. The sequence (un) obtained in this way converges
to u in Ws'p1 and in particularly in C°. Thus, in particular, \un\ —> \u\ — 1 uniformly.
Consider the map $ : R2 \ D 1 / 2 ->• R2, $(z) — z/\z\. Then $ is smooth and, for large n,
&(un) is well-defined. Using the following general result, due to Peetre [4],

Let $ eC°°, sp> N. Hue Ws'p, then $(u) G Ws>p. Moreover, if un ->• u in W*<p, then
$(«„)->• $(u) in VFS'P

we find that the sequence of smooth S1-valued maps ($(un)) converges to u.

Concerning the existence of a lifting, it is easy to see that in general the answer is no.

Example. Take O = D±\ Di/2 C R2 and u(z) = z/\z\. Let any s, p be such that sp > 2.
The there is no / e Ws>p(tt;R) such that u = e'1?.

Proof. First of all, u E Ws'p, since u is smooth. For the nonexistence of / , argue
by contradiction. Then / is continuous. Since u = e^ a.e, we actually have u = e1^
everywhere. In particular u has a continuous lifting. But this is wTell known to be false.

However, wo have

Lemma 3. Assume Q simply connected. Let sp > N. Then every u G Ws'p(fl; S1) has
a lifting / e Ws'p(n-,R).

Proof. For simplicity, we prove the fact that / E W9'P(K) for each K compact in O.
By adapting the argument below, one may obtain the full Lemma. Recall that u, being
continuous and 51-valued on a simply connected domain, has a continuous lifting / . We
claim that this / is actually in Ws'p. Indeed, pick some XQ G il. Assume, e.g., U(XQ) = 1.
There is a ball B G x such that \u(x) — 1| < 1 for x G B. Thus —ilogu is well-defined,
continuous, and clearly is a lifting of u in B. Therefore, up to a multiple of 2TT, we have
/ = -z log u in B. By Peetre's result, we find that / G W>P(B). Thus / is locally in W>p.

IV. The bad case : 1 < sp < 2
This is the no situation : in any domain, there is, for a general u, no lifting, and smooth
/S^-valued maps are not dense. The following example concerns a specific domain. However.
it can be adapted to the general case.



E x a m p l e . Let fi be the unit disc in M2 and 1 < sp < 2. Let u(z) = z/\z\. Then
ueWs^{yt-Sv). However,
a) there is no / £ Ws>p(tt; R) such that u = elf ;
b) u cannot be approximated by smooth 51-valued maps.

Proof. The fact that u e WS>P(Q; S1) can be checked directly from the definition of Ws>p

(it is a rather long computation). To prove a), argue by contradiction. Then, for a.e.
1/2 < r < 1, we have that both u\Cr and f\cr belong to Ws>p(Cr) and that u = e1? a.e.
on Cr. Pick any such r. Then, on Cr, the VMO map u(z) = z/\z\ has a VMO lifting / .
Cf Part I, this contradicts the fact that, on C r , we have deg u = 1.
The proof of b) follows also by contradiction. Assume that there is a sequence («„) of
smooth S11-valued maps approximating u. Then, up to a subsequence, we may assume
that, for a.e. r, we have UU\QT —>• u\cr in Ws'p(Cr). Pick any such r. Then, in particular,
un\cr ^^ u\cr

 m VMO (Cr; S
1), so that dog (un\cr) ~^~ ^eS (u\cr)- O n ^h0 o n c hand, recall

that deg (u\cr) — 1- On the other hand, we claim that deg (un\cr) — 0- This will lead
to a contrdiction. To justify the claim, note that Q is simply connected, so that we may
write un = el^n for some smooth fn. Taking restrictions to C r , we find that un\Qr has a
continuous lifting, so that, it has degree 0.

V. At least one derivative : s > 1, sp > 2
We start with the case of a simply connected domain 0. We will turn later to the
general case.

Theorem 1. Assume 0 simply connected, s > 1, sp > 2. Then :
a) Every u e W*<p{Sl; S1) can be written a s n = etf for some / e W8'P(Q: R) ;
b) Smooth S'1-valued maps are dense in Ws>p(f2; Sl).

The proof is rather technical. However, the main idea, which originated in [5]. is simple.
We present it when s — 1. The general case is more involved.

Proof of a) when 5 = 1. The idea is to assume that / is known and to derive some
consequences. Writing u — u\+iU2 , with u\ — cos / and u^ — s in / , we have

DUl =-(sin

and

= (cos f )D f = UlDf.

Hence

(1) Df = u\Du2 — U2DU1.



The strategy is now to find / by solving (1) with the help of a generalized form of Poincare's
lemma,

Lemma 4. Let 1 < p < oo and let F G LP(Q;~M^ ). The following properties are
equivalent:

a) there is some / £ W1'P(Q;R) such that

F = Df,

b) one has

^ — * dFJ w • • 1 ^ • • /

in the sense of distributions, i.e.,

We emphasize that the assumption that Q, is simply connected is needed in this lemma.

Proof of Lemma 4. The implication a) =>• b) is obvious. To prove the converse, let F be
the extension of .F by 0 outside £1 and let Fe = p£*F where (pe) is a sequence of molliflers.
The F£

Js satisfy (2) on every compact subset of fi (for e sufficiently small). In particular,
on every smooth simply connected domain w C O with compact closure in fi, there is a
function f£ such that

Dfe = Fe in a;

(Here we have used the standard Poincare lemma). Passing to the limit we obtain some
/ G W1'p(a;) such that Df = F in ui. Finally, we write O as an increasing union of uon

as above and obtain a corresponding sequence fn. In the limit we find some / G Lloc(Q)
with Df — F in Q. Using the regularity of O and a standard property of Sobolcv spaces
(sec e.g. Maz'ja [6], Corollary in Section 1.1.11) we conclude that / G WltP(£l).

Proof of a) for s — 1 completed. We will first verify condition b) of the lemma for

(3) F = u.\Du2 — U2D111

i.e.,
du2

F u2u2x
OXj OXj



Formally, property (2) is clear. Indeed, if u± and u^ are smooth, then

dx,j dx,i \ dxj dxi dx,j.

On the other hand, if we differentiate the relation

\u\2 — u\ + v\ — 1

we find

(4) U l ^ ! + U 2 ^ a = 0 V, = l , 2 , . . . , n .
OXi OXi

Thus, in M2, the vector (——, ——) is orthogonal to (u\.U2)- It follows that the vectors
OXi OXi '

din du2 , ,#«i du2-(——. ——) and (——, ——) are colmear and therefore
OXi OXi OXj OXj

d e t

Hence (2) holds. To make this argument rigorous we rely on the density of smooth functions
in the Sobolev space W1^^; R) : there are sequences (uin) and (u2n) in C°°(fi;]R) such
that uin —7- ui and U2n ~^ U2 m VF1'P(O:1R) and HuinlU00 ^ 15 H^nlU00 < 1-

[Warning: We do not claim that un = (uin,v.2n) takes its values in S1.]

Set
Fn —

n

so that
K, -)• F in Lv

and

dFin dFjn ^ duin du2n dulndu2n

converges in IP I2 to 2 [ ——•—— —-——— I. Multiplying (6) by ib G C^fQ), integrating
\ OXj OXi OXi OXj ) '

by parts and passing to the limit (using the fact that p > 2) wTe obtain

- f (f-— - f- — ) - 2 / t
J % Ox J Ox Of ) 2 /

Oxj J Oxi JQ Oxj Oxi Oxi O x j



On the other hand (4) and (5) hold a.e. (even for any u e W^^S1), 1 < p < oo). It
follows that F satisfies 6) of Lemma 3, and therefore there is some <p E V^l!P(fi;R) such
that

F = Df.

We will now prove that this / is essentially the one we are looking for.

Recall that if g, h € WrljP(fi) n L°°(O) with 1 < p < oo, then gh E W1'*3 and

d , , , dh 1 dg
(gh) g + hf

Set

so that v EW1^ and

v — ue l*,

Dv = e~%f(Du - iDf) = ue~tf(uDu - iDf)

= ue-tf(uDu - iF) = ue'^faDu! + u2Du2) = 0 by (4).

We deduce that v is a constant and since |^| — 1 we may write v — eiG for some constant
C e K . Hence u = e ^ + c ) and the function / + C has the desired properties.

Idea of the proof of a) for a general s > 1. The strategy is the same, i.e.. we consider
the same vector field F. Using the Gagliardo-Kirenberg inequalities, one may see that F
verifies condition b) of Lemma 4. Moreover (this is the key and more delicate point), F
belongs to W'S~1:P fl Lsp. A variant of Lemma 4 implies that we may write F — Df for
some / E Ws>p n W1<8p. As above, this / is essentially the one needed. This proof yields
thus the following refined version of a)

Part a) sharpened. Any u has a lifting in Ws>p n Wl>8p.

Proof of b) when s = 1. Let u E W^iQS1) and let / E W^^R) be a lifting of
u. Let (fn) be a sequence of smooth real functions such that fn —> f in W1}p. Using the
following standard simple property

Let $ be a C1 functions such that $ / is bounded. If u e Wx'p. then $(/) <= W1*.
Moreover, if fn ->• / in W1*, then $(/n) -> $(/) in W1*

it is obvious that the sequence (e1^) of smooth S^-valued maps approximates u in W1:P.

Idea of the proof of b) for a general s > 1. Big problem ! When / belongs to Ws'-P,
need not belong to Ws'p. even for very nice maps $. In particular, one can not use



Part a) anymore in order to prove Part b). Instead, one has to rely on the following much
more delicate result ([7])

Let $ be a C°° function with bounded derivatives and lot s > 1. If / G Ws'pDW1'fip, then
G Ws'p. Moreover, if fn -> / in W*s'p n W1'8*', then $(/n) -> $(/) in W*'p

Thus Part b) follows from Part a) sharpened.

General domains. In general, one can not expect existence of a lifting. Consider, e.g., the
2D-annulus il' = D\ \ -D1/2 and the smooth map u{z) = z/\z\. Assume by contradiction
that u = e** for some / G W8'P(Q';R). Then for a.e. r with 1/2 < r < 1 we have
u\cr = elf\°r and, on Cr, u and / belong to Ws'p. For any such r, u\cr has thus a
continuous lifting. This contradicts the fact that u\cr has degree 1. In higher dimension, a
similar counterexample holds : consider, on £1' x (0, l)Ar~2. the map u(z,x) — z/\z\. Then
u has no lifting in WS:P.

This time, the existence of a lifting is related to topological properties of Q :

Theorem 2. Assume s > 1. 1 < p < 00, sp > 2. Then :
a) Every map u G W8'P(Q; S1) has a lifting / G Ws'p(£l; M) if and only if every continuous
map u G C°(tt; S1) has a continuous lifting / G C°(H; R) ;
b) Smooth 5<1-valued maps are dense in Ws'p(£l; S1).

Proof of Theorem 2 when s = 1. The main tool is the following

Lemma 5. Let p > 2. Then every u G WlyP(Q; S1) can be written asn = ve*̂  for some
v E C°°(fi; 51) and / G W ^ f i ; R).

Proof of Lemmma 5. Consider again the vector field F G LP(Q;'RN). Let / be the
solution of

A/ = div F in O , / = 0 on

Then / G W1'p(i2: R) (see [8]). We claim that v = ue~lf G C°°. Indeed, recall that, by the
proof of Theorem 1, we may write, on each ball B C il, u = ew, for some g G W1<P(B; E)
such that Dg — F on B. Then, in B} we have v — eA9~^ and, clearly, A(g — / ) — 0 in B.
Thus g- f eC°°,by Weyl's Lemma. It follows that u G C°°.

Proof of Theorem 2 when s = 1 completed. "=^" Take u G C°(J2; S1). By mollifying
?i, we may find some v G C°°(Q,: S1) such that |?/TJ — 1| < 1. Thus we may write uv — e*'k.
wher k is the continuous map Arg uv. On the other hand, v — e1'9 for some g G Wl'p{Vt\ R).
Take B any ball in O. Then, on B, we may write the smooth map v as v = e'lh for some
smooth h. Thus, in B, the difference g — h is 27rZ-valued and belongs to W1>p. By Lemma



1, this difference must be constant a.e. Therefore, g is smooth. Finally, u = er(g+k^. with
g + k continuous.
"^=" We will make use of the following intuitively clear geometric property:

If e > 0 is sufficiently small, the domains O and Q£ — { x G Q;dist (x, dQ) < s} are
diffeomorphic through some smooth diffeomorphism <&e. Moreover, assume, e.g. 0 G Q.
Then we may construct 3>E such that <&e(0) = 0 for sufficiently small e. Moreover, we may
construct $ £ in order to have the additional properties &e\n?£ =id and ||£)$e—id|| < Ce

Let u G VT1'p(ri; S1) and write u — velf as in Lemma 5. Since v£ — t1,^ o $ e is 51-valued
and continuous, we may write ve — e*9- for some continuous pe. Assume, e.g., v(0) — 1.
Then, for small e, we(0) — 1 and we may assume g£(0) — 0. Let now 0 < £ < S be
sufficiently small. Then clearly on the connected domain Q§ we have ge — g$ = const,
and this constant must be 0, by our normalization condition g£(0) = 0. Thus the map
g{x) — g£(x) if x G Qe is well-defined and continuous, and v — e1'9. Actually, we even
have g G C°°, by an argument already used above. In particular, \Dg\ — \Dv\. On the
other hand, recall that v = ue~tf, so that \Dv\ < \Du\ + \D(e-tf)\ = \Du\ + \Df\ G Lp.
Therefore, g G W1*. Finally, u = e<f+v\ with / + g G W1*.
Proof of b) Recall that we already proved that elf can be approximated by smooth S"1-
valued maps. The idea is to make use of the following property of Wl>p

If fn - • / , 9n ^ 9 in W1* and \\fn\\L- < C, \\gn\\Loo < C, then fngn ^ fg in W1*

In view of this property, it suffices to write u = ve%* as in Lemma 5 and approximate v
with smooth 5<1-valued maps. [Warning : v need not be smooth up to the boundary.]
By the above arguments, we have v G COO(Q;S'1) fl W1 >p(Q; S1). Let v£ be as above, so
that clearly ve is S'1-valued and smooth up to the boundary. We claim that ve —> v in
W1'13. Clearly, v£ —> uniformly on compacts and thus in L\oc (actually, convergence holds
also in L1, since the maps are uniformly bounded). Therefore, it suffices to prove that
\Dve - Dv\ ->• 0 in Lp. Now clearly

I \Dv£ - Dv\pdx = I \Dv£ - Dv\pdx < C I \Dv\pdx^0 as e -> 0.

Idea of the proof for a general s > 1. The proof goes along the same lines. One has
to use instead of Lemma 5 its following straightforward variant

Lemma 5'. Let s > 1, sp > 2. Then every u G WS'P(Q; S1) can be written as u = ve%f
for some v G C°°(Q: S1) and / G W8<p(Sl; R) n Wl>sp(Q: E).

As for the property of products, one has to rely instead on the following variant, usually
named " Ws<p n L°° is an algebra" :



If f,g G Ws>p n L°°, then fg G W'p. Moreover, if /„ ->• / , gn ->• # in VT8'P and
11/nlU- < C, ||5n||Loo < C, then / n 5 n -> fg in W *

VI. Lifting when we have less than one derivative : 0 < s < 1, 2 < sp < N

Lemma 6. Assume 0 < s < 1, 2 < sp < N. Then there is somme u G WS'P(Q; Sl) which
can not be lifted, i.e.. such that there is no / G WS'P(Q;'R) with u — e%f a.e.

Proof of Lemma 6. Assume, e.g., that the unit ball B is contained in Q.. Let u[x) =
e2tir/\x\ m g extended with the value 1 outside B. Here, a > 0 is to be determined later.
It is easy to see that u G W1<q provided (a + \)q < N. Using the following

Gagliardo-Nirenberg type inequality. If u G WrA n L°° and 0 < t < 1, then u G

(a proof of the full scale of the Gagliardo-Nirenberg inequalities may be foung, e.g., in
[7]), we find that u G Ws-q/s. Thus u G W* as soon as (a + l)sp < N. On the other
hand, a straightforward but long computation shows that the map g(x) = 2TIj\x\a in B,
extended with the value 2TT outside B, belongs to W8:P if and only of (a + s)p < N. On
the other hand, we have g G W^(Cl \ {0}). Pick now some a such that (a + l)sp < N.
but (a + s)p > N (there is enough room !) and consider the corresponding u. We claim
that this u can not be lifted. Argue by contradiction, i.e, assume that u = e^ for some
/ G Wr's'p(Q;E). Take Q be any cube such that Q C fi \ {0}). Then, on Q, we have
/ — g G WSlP is a 27rZ-valued map. By Lemma 1, this function must be constant a.e. Since
£l \ {0} is connected, we find that / = g+ const a.e. However, we have / G Ws>p and
g ^ Ws>p. Contradiction !

VI. Lifting when we have little regularity : sp < 1
This is the really difficult case.

Theorem 3. Assume sp < 1. Then :
a) Every u G WS>P(Q; S1) can be written as u = e'f for some / G Ws'p(il: M) ;
b) Smooth 5<1-valued maps are dense in Ws'p(£l; S1).

The delicate part is a). We refer to [2] for details. Part b) is a trivial consequence of a)
and of the following elementary property

Let $ be a Lipschitz map and 0 < s < 1. If / G W*'p, then $ ( / ) G W<p. Moreover, if
/„ -> / in Ws<p, then $( /„) ->• $ ( / ) in W s 'p

10



VII. Density in the remaining case : 0 < s < 1, 2 < sp < AT

Recall that in this case there is no lfting, even in simply connected domains. Thus we may
not use approximation of the phase / by smooth functions and some composition property
in order to obtain density. However, we have the following

Theorem 4. Assume 0 < s < 1, sp > 2. Then smooth 5ll-valued maps arc dense in

The proof is delicate ; see [3].
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