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Topology and Sobolev spaces
Part II : Higher dimensions
Petru MIRONESCU

Abstract. This course further continues the study of S'-valued maps. Two questions are
detailed : existence of a lifting and density of smooth maps.

I. The main problems

We consider maps from a domainQ ¢ RY, N > 2, into the unit circle S*. To start with,
we consider the simplest possible domains, e.g., balls or cubes. More complicated domains
will be examined later. However, 2 will always be assumed connected. We consider
that these maps have some Sobolev regularity, i.e., that they belong to some (integer or
fractional) Sobolev space W#P(£2; S1), 0 < s < oc, 1 < p < oo (for the definition of these
spaces when s is not an integer, see [1]). We address two questions :

(i) (Lifting) Given an S'-valued map u € W*?(Q; S1), can one find a real-valued map
f € WP(Q; R) such that u = e’/ ? If so0, is f unique modulo constants in 277 ?

(ii) (Density) Given an S'-valued map v € W#?(£2; S1), can one find a sequence of smooth
maps (u,) C C°(Q;51) such that u, — u in WP ?

Comments

a) These questions have been completely settled in the papers [2] and [3]. See the references
therein for previous results concerning the same questions. We will sketeh below part of
the proofs. Secctions I11-VI deal with the relatively simple cases. The delicate cascs arc
discussed, without proofs, in Scctions VII-VIIL. Some details about how the proof goces in
these cases will be given during the lecture.

b) Question (i) for continuous maps is a well known exercice. When  is, e.g.. a ball (or,
more generally, a simply connected domain), the answer is yes. However, for a general €2,
the answer may be no : consider, e.g., the case where (2 is a 2D-annulus. Thus, one may
expect (and this turns out to be true), the answer to depend on the topology of 2.

¢) The key point in question (ii) is that we ask the maps u, to be § Lvalued. Indeed,
any map u € WP(£2;51) can be approximated by smooth maps : e.g., we mollify w.
However, the sequence of smmooth maps converging to u» obtained in this way needs not
be S'-valued. Actually, we will see that, in general, the answer is no.

I1I. Uniqueness
Assume we may write u = e = ¢, with f,g ¢ W*P(Q;R). Thus the map k = (f —
g)/(27) belongs to W*P({2; R) and it is Z-valued a.e. Therefore, uniqueness is equivalent
to the following
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Question. Is every map k& € W*P(Q; Z) constant a.e. ?

When sp < 1, the answer is no. Indeed, take () any cube properly contained in €. It is
easy to see that the map k = x¢ is Z-valued, not constant a.e., and belongs to W?*?(€}; Z).
However, this is the only case of nonuniqueness.

Lemma 1. Assume sp > 1 and 2 connected. Then every map k € W*P(Q; Z) constant
a.e.

Proof. Start with N = 1. Then, by the Sobolev embeddings, W*? ¢ W'/P» cVMO.
Approximate k by smooth (not necesarily Z-valued) maps, by mollifying &. The argument
used in the Part I of this course for VMO(S!; S?) maps shows that, for large n, k, is
almost Z-valued, i.e., dist(k,(z),Z) — 0 uniformly in x. Take ng such that, for n >
ng, this distance is uniformly less than 1/3. Thus, for n > ng, k, takes values into
Umez(m—1/3,m=+1/3). Since k,, is continuous, there must be some integer m,, such that
k, takes its values into (m, — 1/3,m, + 1/3). The sequence (m,,) is bounded. Indeed,
on the onc hand we have m,, —1/3 <[k, < m, + 1/3. On the other hand, we have
/f k, — /f k, since convergence in W*P implies convergence in L'. Up to a subsequence,
we may thus assume m,, = m. Since k, — k a.e., we find that k(x) € (m —1/3,m + 1/3)
a.e., so that k£ = m a.e.

We now consider the case N = 2 ; the case N > 2 ig identical. Since £ is connected, it
suffices to prove that & is locally constant a.c. We may thus assume €2 to be a square, c.g.
the unit square (0,1)2. For a.c. z,y € (0,1), the maps u(z,.) and u(.,y) belong to WP
(see [1]). Thus, for any such z or y, these maps are constant a.e., by the case N = 1. Now
write

Ik(a,b) — k(c,d)| < |k(a,b) — k(a,d)| + [k((a,d) — k(c,d)|

and integrate this inequality over a, b, ¢, d. For a.e. a, we have

,//'k(av”)—k(a,d)db dd = 0,

////k(a,b)k(a,d)|da db de dd = 0.

Using a similar argument, we find that

////|k(a,b)k(c,d)|dadb de dd = 0,

so that k is constant a.e.

so that

Final conclusion. Uniqueness holds if and only if sp > 1.

III. Case of continuous maps : sp > N



Recall that, when sp > N, then W*? C C°, by the Sobolev embeddings. In particular,
this implies the following simple

Lemma 2. Assume sp > N. Then smooth S!-valued maps are dense in W*?(Q; 51).

Proof. Approximate u by mollifying it. The sequence (u,,) obtained in this way converges
to u in W*? and in particularly in C?. Thus, in particular, |u,| — |u| = 1 uniformly.
Consider the map & : R? \ Dijy — R?, ®(2) = z/|z|. Then ® is smooth and, for large n,
®(uy,) is well-defined. Using the following general result, due to Peetre [4],

Let ® € C, sp > N. If u € W%P then ®(u) € W5P. Moreover, if u,, — v in WP, then
D (uy) — P(u) in WP

we find that the sequence of smooth S'-valued maps (®(u,,)) converges to u.
Concerning the existence of a lifting, it is easy to see that in general the answer is no.

Example. Take = Dy \ Dy C R? and u(z) = z/|2|. Let any s, p be such that sp > 2.
The there is no f € W*?({; R) such that u = e*/.

Proof. First of all, v € W?*P, since w is smooth. For the nonexistence of f, argue
by contradiction. Then f is continuous. Since u = e*f a.e, we actually have v = e*f
everywhere. In particular 4 has a continuous lifting., But this is well known to be false.

However, we have

Lemma 3. Assume () simply connected. Let sp > N. Then every u € W*?({); S') has
a lifting f € WP (2; R).

Proof. For simplicity, we prove the fact that f € W*P(K) for each K compact in €.
By adapting the argument below, one may obtain the full Lemma. Recall that u, being
continuous and S'-valued on a simply connected domain, has a continuous lifting f. We
claim that this f is actually in W#*?. Indeed, pick some zy € Q. Assume, e.g., u(zg) = 1.
There is a ball B € x such that |u(z) — 1| < 1 for € B. Thus —zlogwu is well-defined,
continuous, and clearly is a lifting of w in B. Therefore, up to a multiple of 27, we have
f = —tlogu in B. By Peetre’s result, we find that f € W*P(B). Thus f is locally in W?*7.

IV. The bad case : 1 <sp <2

This is the no situation : in any domain, there is, for a general «, no lifting, and smooth
Sl-valued maps are not dense. The following example concerns a specific domain. However,
it can be adapted to the general case.



Example. Let §2 be the unit disc in R? and 1 < sp < 2. Let u(z) = z/|z|. Then
u € W5P(Q; S1). However,

a) there is no f € WP({}; R) such that u = &'/ ;

b) u cannot be approximated by smooth S*-valued maps.

Proof. The fact that u € W*?({2; S!) can be checked directly from the definition of W*?
(it is a rather long computation). To prove a), argue by contradiction. Then, for a.e.
1/2 < r < 1, we have that both uc, and fig, belong to W*?(C,.) and that u = €'/ a.e.
on C,. Pick any such r. Then, on C,, the VMO map u(z) = z/|z| has a VMO lifting f.
Cf Part I, this contradicts the fact that, on C,., we have deg u = 1.

The proof of b) follows also by contradiction. Assume that there is a sequence (u,) of
smooth S'-valued maps approximating u. Then, up to a subsequence, we may assume
that, for a.e. r, we have u, o, — u|c, in W*P(C,.). Pick any such 7. Then, in particular,
Un|c, — U, in VMO (Cy; S1), so that deg (tn|c,) — deg (u)c, ). On the one hand, recall
that deg (u)c;,) = 1. On the other hand, we claim that deg (uyc,) = 0. This will lead
to a contrdiction. To justify the claim, note that € is simply connected, so that we may
write u, = e/ for some smooth f,,. Taking restrictions to C,, we find that Up|c, has a
continuous lifting, so that it has degree 0.

V. At least one derivative : s > 1, sp > 2
We start with the case of a simply connected domain 2. We will turn later to the
general case.

Theorem 1. Assume {2 simply connected, s > 1, sp > 2. Then :
a) Every u € W*P({); S1) can be written as u = e*/ for some f € W*P((;R) ;
b) Smooth Sl-valued maps are dense in W*P(; S1).

The proof is rather technical. However, the main idea, which originated in [5], is simple.
We present it when s = 1. The general case is more involved.

Proof of a) when s = 1. The idea is to assume that f is known and to derive some
consequences. Writing v = u; +1us , with uy = cos f and us = sin f, we have

Duy = —(sin f)Df = —usDf

and

Duy = (cos fYDf =u1 Df.
Hence
(1) Df = uiDus — usDu;.



The strategy is now to find f by solving (1) with the help of a generalized form of Poincaré’s
lemma,

Lemma 4. Let 1 < p < oo and let F € LP(Q;RY). The following properties are
equivalent:

a) there is some f € WIP(Q; R) such that

I'=Df,

b) one has

oF; OF; . .
(2) 5o 8:1"? Vi, g, 1<i,7<n
7 T

in the sense of distributions, i.e.,

Y R Y ,
/ o / Ve CR(Q)

J E‘)xz

We emphasize that the assumption that €2 is simply connected is needed in this lemma.

Proof of Lemma 4. The implication a) = b) is obvious. To prove the converse, let F' be
the extension of F by 0 outside 2 and let F, = p.x F' where (p.) is a sequence of mollifiers.
The F,’s satisfy (2) on every compact subset of Q (for e sufficiently small). In particular,
on every smooth simply connected domain w C £ with compact closure in €2, there is a
function f. such that

Dfe =F inw

(Here we have used the standard Poincaré lemma). Passing to the limit we obtain some
f € WHP(w) such that Df = F in w. Finally, we write Q as an increasing union of wy,
as above and obtain a corresponding sequence f,,. In the limit we find some f € L (Q)

with Df = F in Q. Using the regularity of 2 and a standard property of Sobolev spaces
(sce c.g. Maz'ja [6], Corollary in Section 1.1.11) we conclude that f € W17 (Q).

Proof of a) for s = 1 completed. We will first verify condition b) of the lemma for

(3) F = U-lDU,Q — u2Du1
i.e.,
8‘21,2 ()U,l
F,=u —u
t 3’[’,, 2 8’1“,,



Formally, property (2) is clear. Indeed, if 4; and us are smooth, then

OF; B or; 5 Juy Ous B Juq Ous
3$j 8$.L‘ N 8xj 8:51 81‘, 8:17j '

On the other hand, if we differentiate the relation

lu|? = uf +u3 =1

we find
8U1 8UQ .

4 =0 Vi=1,2,...,

() 0:1;'Z +uz ox; ! ‘ "

. 2 au1 8”2 .
Thus, in R*, the vector ( 5 ,8—) is orthogonal to (uy,us). It follows that the vectors
our Ou Ouy Ousy.

( 3?:;1’ f;:;j) and (8?—32’ %) are colinear and therefore
8u1 8’&2
dr. Ox. Ouy Ous  Ouy Ous

5 d t; ¢ ¢ = — —

( ) ¢ % % 81'1‘ aTJ 8:13'j 8:5,
E)a:j B:Uj

Hence (2) holds. To make this argument rigorous we rely on the density of smooth functions
in the Sobolev space WL1P(£;R) : there are sequences (u1,) and (uz,) in C°°(; R) such
that uy, — w1 and us, — ug in WHP(R) and ||uiy||ze < 1, ||ugn||oe < 1.

[Warning: We do not claim that w, = (u1,,, 42, ) takes its values in S*.]

Set,
Fn = ulnDUQn - u2nDul'na
so that
F,—-F inlL?
and

oFy,  O0F;,, | Ouy, Ousy  Quiy Ousy,

§ : — — =2 - — ,
( ) (‘9.’27]‘ Oxi (8%3 f):qu 8:1,7 0.%‘]' )

8’UJ1 a‘ltg Gul 8‘&2
by parts and passing to the limit (using the fact that p > 2) we obtain

9 8u1 t)ug 8u1 aug
gy g =2 [

converges in LP/? to 2 ( ) Multiplying (6) by v € C§°(£2), integrating

o e an ol W
da:j d:vz d.CL‘Z d.CEJ)



On the other hand (4) and (5) hold a.e. (even for any u € W1P(Q; 81), 1 < p < o). It
follows that F' satisfies b) of Lemma 3, and therefore there is some ¢ € WP(Q; R) such
that

F=DJ

We will now prove that this f is essentially the one we are looking for.

Recall that if g, h € WEP(Q) N L=(Q) with 1 < p < oo, then gh € W and

0 oh dg
h) = h .
ox; gh) gaxi + ox;
Set
v =ue

so that v € WHP and

Dv =e " (Du—1Df) = ue " (aDu —1Df)
= we~ Y (uDu — 1F) = ue™" (ugDuy + uzDug) =0 by (4).

We deduce that v is a constant and since |v| = 1 we may write v = ¢*“ for some constant
C € R. Hence u = ¢tf+©) and the function f + C has the desired properties.

Idea of the proof of a) for a general s > 1. The strategy is the same, i.e., we consider
the same vector field F. Using the Gagliardo-Nirenberg inequalities, one may see that F
verifies condition b) of Lemma 4. Morcover (this is the key and more delicate point), F
belongs to W=7 N L. A variant of Lemma 4 implics that we may write I = Df for
some f € WP N WL5P As above, this f is essentially the one needed. This proof yields
thus the following refined version of a)

Part a) sharpened. Any v has a lifting in W7 0 W1
Proof of b) when s = 1. Let u € WHP(Q; S1) and let f € WLP(€;R) be a lifting of
u. Let (f,) be a sequence of smooth real functions such that f,, — f in WP, Using the

following standard simple property

Let @ be a C! functions such that ® is bounded. If uw € W1P, then ®(f) € WP
Moreover, if f,, — f in WbHP then ®(f,,) — ®(f) in WbP

it is obvious that the sequence (e”ﬂ ") of smooth S'-valued maps approximates u in W',

Idea of the proof of b) for a general s > 1. Big problem ! When f belongs to W*P,
®(f) need not belong to WP, even for very nice maps ®. In particular, one can not use



Part a) anymore in order to prove Part b). Instead, one has to rely on the following much
more delicate result ([7])

Let @ be a C™ function with bounded derivatives and let s > 1. If f € WP AW 1P then
®(f) € W*P, Morcover, if f, — fin WP N WL then ®(f,) — ®(f) in WP

Thus Part b) follows from Part a) sharpened.

General domains. In general, one can not expect existence of a lifting. Consider, e.g., the
2D-annulus Q' = D1 \ Dy/9 and the smooth map u(z) = z/|z|. Assume by contradiction
that v = e/ for some f € WP(Q;R). Then for a.e. r with 1/2 < r < 1 we have
Uo, = etfior and, on Cr, u and J belong to W*P. For any such r, uc, has thus a
continuous lifting. This contradicts the fact that uc, has degree 1. In higher dimension, a
similar counterexample holds : consider, on €' x (0,1)™ 2, the map u(z,z) = 2/|z|. Then
© has no lifting in W*P.

This time, the existence of a lifting is related to topological properties of €2 :

Theorem 2. Assume s > 1,1 < p < oo, sp > 2. Then :

a) Every map u € W*P(£2; S1) has a lifting f € WP(Q; R) if and only if every continuous
map u € C°(Q; S') has a continuous lifting f € C°(Q;R) ;

b) Smooth Sl-valued maps are dense in W*P(; S1).

Proof of Theorem 2 when s = 1. The main tool is the following

Lemma 5. Let p > 2. Then every u € W1P(£2; S1) can be written as u = ve*/ for some
v e C®(Q;8) and f € WHP(Q:R).

Proof of Lemmma 5. Consider again the vector field F € LP(Q;RY). Let f be the
solution of

Af=divF inQ, f=0 on0f.

Then f € WHP(; R) (see [8]). We claim that v = ue™*f € C*°. Indeed, recall that, by the
proof of Theorem 1, we may write, on each ball B C €, u = €%, for some g € W1?(B;R)
such that Dg = F on B. Then, in B, we have v = ¢’@—f) and, clearly, A(g — f) = 0 in B.
Thus g — f € C°, by Weyl's Lemma. Tt follows that v € C°°.

Proof of Theorem 2 when s = 1 completed. "=" Take u € C°(2; S'). By mollifying
u, we may find some v € C>(Q; S1) such that |uw — 1| < 1. Thus we may write v = ',
wher k is the continuous map Arg «m. On the other hand, v = ¢'9 for some g € WHP(Q; R).
Take B any ball in Q. Then, on B, we may write the smooth map v as v = ¢** for some

smooth h. Thus, in B, the difference g — h is 2rZ-valued and belongs to WP, By Lemma



1, this difference must be constant a.e. Therefore, g is smooth. Finally, u = e'9t%), with
g + k continuous.
7<«=" We will make use of the following intuitively clear geometric property:

If € > 0 is sufficiently small, the domains Q and Q. = {2 € Qidist (z,09) < e} are
diffeomorphic through some smooth diffeomorphism ®.. Moreover, assume, e.g. 0 € €.
Then we may construct @, such that ®.(0) = 0 for sufficiently small e. Moreover, we may
construct @, in order to have the additional properties ®.|q, =id and [[D®.—id| < Ce

Let u € Wl’p(Q; Sl) and write u = ve' as in Lemma 5. Since v, = Vg, © . is S'-valued
and continuous, we may write v, = €*9= for some continuous g.. Assufne7 e.g., v(0) = 1.
Then, for small €, v.(0) = 1 and we may assume g.(0) = 0. Let now 0 < & < § be
sufficiently small. Then clearly on the connected domain €5 we have g. — gs = const,
and this constant must be 0, by our normalization condition g.(0) = 0. Thus the map
g(x) = ge(x) if z € Q. is well-defined and continuous, and v = ¢9. Actually, we cven
have g € C°°, by an argument alrcady used above. In particular, |Dg| = |Dv|. On the
other hand, recall that v = ue™/, so that |Dv| < |Du| + |D(e~*f)| = |Du| + |Df| € L”.
Therefore, g € WP, Finally, u = e*/19) with f + g € WP,

Proof of b) Recall that we already proved that e*f can be approximated by smooth S-
valued maps. The idea is to make use of the following property of WP

If f'n, — fa Gn — ¢ in T/Vl’p and anHL‘x' S Ca ||gn||L°° S Ca then fngn — fg in I’Vll’p

In view of this property, it suffices to write u = ve*f as in Lemma 5 and approximate v
with smooth S'-valued maps. [Warning : v need not be smooth up to the boundary.]
By the above arguments, we have v € C°(Q; S1) N WP(Q; S1). Let v, be as above, so
that clearly v, is S'-valued and smooth up to the boundary. We claim that v, — v in
WP, Clearly, v. — uniformly on compacts and thus in L (actually, convergence holds
also in L', since the maps arc uniformly bounded). Therefore, it suffices to prove that
|Dve — Dv| — 0 in LP. Now clearly

/ |Dv. — DvlPdz = / |Dv. — DvlPde < C / |Dv|Pdxr -0 ase — 0.
J .

O\, O\Qae
Idea of the proof for a general s > 1. The proof goes along the same lines. One has

to use instead of Lemma 5 its following straightforward variant

Lemma 5°. Let 5 > 1, sp > 2. Then every u € W*?(Q; S!) can be written as u = ve*/
for some v € C°°(£); S1) and f € W*P(Q; R) N WHsP(Q; R).

As for the property of products, one has to rely instead on the following variant, usually
named "W?#P N L is an algebra” :



If f,g € WP N L*>, then fg € W*%P. Moreover, if f,, — f, g, — g in W?*? and
||fn||LOo < C7 ||gnHL°° < C, then fngn — fg in W#?

VI. Lifting when we have less than one derivative : 0 < s <1,2<sp< N

Lemma 6. Assume 0 < s < 1, 2 < sp < N. Then there is somme u € W*?(£2; S) which
can not be lifted, i.e., such that there is no f € W*P(; R) with u = e a.e.

Proof of Lemma 6. Assume, e.g., that the unit ball B is contained in . Let u(z) =
e27/171" in B, extended with the value 1 outside B. Here, ¢ > 0 is to be determined later.
It is easy to see that v € W14 provided (a + 1)g < N. Using the following

Gagliardo-Nirenberg type inequality. If « € W™ N L* and 0 < t < 1, then u €
Wtr,q/t

(a proof of the full scale of the Gagliardo-Nirenberg incqualitics may be foung, c.g., in
[7]), we find that uw € W49/, Thus v € W*P as soon as (a + 1)sp < N. On the other
hand, a straightforward but long computation shows that the map g(z) = 27/|z|* in B,
extended with the value 27 outside B, belongs to WP if and only of (a + s)p < N. On
the other hand, we have g € W P(Q\ {0}). Pick now some a such that (a4 1)sp < N,
but (a 4 s)p > N (there is enough room !) and consider the corresponding u. We claim
that this u can not be lifted. Argue by contradiction, i.e, assume that u = e*/ for some
f € WsP(Q;R). Take Q be any cube such that @ € Q\ {0}). Then, on @, we have
f—g € W*Pis a 2nZ-valued map. By Lemma 1, this function must be constant a.c. Since
2\ {0} is connected, we find that f = g+ const a.e. However, we have f € WP and

g & W3P_ Contradiction !

VI. Lifting when we have little regularity : sp <1
This is the really difficult case.

Theorem 3. Assume sp < 1. Then :
a) BEvery u € W*?(Q; ) can be written as u = e/ for some f € WP(Q;R) ;
b) Smooth Sl-valued maps are dense in W*P(; S1).

The delicate part is a). We refer to [2] for details. Part b) is a trivial consequence of a)
and of the following elementary property

Let @ be a Lipschitz map and 0 < s < 1. If f € WP, then ®(f) € W*P. Moreover, if
fn — [ in WP then ®(f,) — ®(f) in WsP

10



VII. Density in the remaining case : 0 < s<1,2<sp< N

Recall that in this case there is no Ifting, even in simply connected domains. Thus we may
not use approximation of the phase f by smooth functions and some composition property
in order to obtain density. However, we have the following

Theorem 4. Assumc 0 < s < 1, sp > 2. Then smooth S'-valued maps arc densc in
WsP(Q; S1).

The proof is delicate ; see [3].
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