

(D)

international atomic energy agency the abdus salam

international centre for theoretical physics

SMR1486/11

Workshop and Conference on Recent Trends in Nonlinear Variational Problems

(22 April - 9 May 2003)

Topology and Sobolev spaces Part II: Higher dimensions

P. Mironescu

Laboratoire de Mathématiques Université Paris-Sud Bâtiment 425 F-91405 Orsay France

These are preliminary lecture notes, intended only for distribution to participants

strada costiera, 11 - 34014 trieste italy - tel. +39 0402240111 fax +39 040224163 - sci_info@ictp.trieste.it - www.ictp.trieste.it

Topology and Sobolev spaces Part II : Higher dimensions Petru MIRONESCU

Abstract. This course further continues the study of S^1 -valued maps. Two questions are detailed : existence of a lifting and density of smooth maps.

I. The main problems

We consider maps from a domain $\Omega \subset \mathbb{R}^N$, $N \geq 2$, into the unit circle S^1 . To start with, we consider the simplest possible domains, e.g., balls or cubes. More complicated domains will be examined later. However, Ω will always be assumed **connected**. We consider that these maps have some Sobolev regularity, i.e., that they belong to some (integer or fractional) Sobolev space $W^{s,p}(\Omega; S^1)$, $0 < s < \infty$, 1 (for the definition of thesespaces when s is not an integer, see [1]). We address two questions :

(i) (Lifting) Given an S^1 -valued map $u \in W^{s,p}(\Omega; S^1)$, can one find a real-valued map $f \in W^{s,p}(\Omega; \mathbb{R})$ such that $u = e^{if}$? If so, is f unique modulo constants in $2\pi\mathbb{Z}$?

(ii) (**Density**) Given an S^1 -valued map $u \in W^{s,p}(\Omega; S^1)$, can one find a sequence of smooth maps $(u_n) \subset C^{\infty}(\overline{\Omega}; S^1)$ such that $u_n \to u$ in $W^{s,p}$?

Comments

a) These questions have been completely settled in the papers [2] and [3]. See the references therein for previous results concerning the same questions. We will sketch below part of the proofs. Sections II-VI deal with the relatively simple cases. The delicate cases are discussed, without proofs, in Sections VII-VIII. Some details about how the proof goes in these cases will be given during the lecture.

b) Question (i) for **continuous** maps is a well known exercice. When Ω is, e.g., a ball (or, more generally, a simply connected domain), the answer is yes. However, for a general Ω , the answer may be no : consider, e.g., the case where Ω is a 2D-annulus. Thus, one may expect (and this turns out to be true), the answer to depend on the topology of Ω .

c) The key point in question (ii) is that we ask the maps u_n to be S^1 -valued. Indeed, any map $u \in W^{s,p}(\Omega; S^1)$ can be approximated by smooth maps : e.g., we mollify u. However, the sequence of smooth maps converging to u obtained in this way **needs not** be S^1 -valued. Actually, we will see that, in general, the answer is **no**.

II. Uniqueness

Assume we may write $u = e^{if} = e^{ig}$, with $f, g \in W^{s,p}(\Omega; \mathbb{R})$. Thus the map $k = (f - g)/(2\pi)$ belongs to $W^{s,p}(\Omega; \mathbb{R})$ and it is \mathbb{Z} -valued a.e. Therefore, uniqueness is equivalent to the following

Typeset by $\mathcal{A}_{\mathcal{M}}\!\mathcal{S}\text{-}T_{\mathrm{E}}\!X$

Question. Is every map $k \in W^{s,p}(\Omega; \mathbb{Z})$ constant a.e. ?

When sp < 1, the answer is **no**. Indeed, take Q any cube properly contained in Ω . It is easy to see that the map $k = \chi_Q$ is \mathbb{Z} -valued, not constant a.e., and belongs to $W^{s,p}(\Omega;\mathbb{Z})$. However, this is the only case of nonuniqueness.

Lemma 1. Assume $sp \ge 1$ and Ω connected. Then every map $k \in W^{s,p}(\Omega;\mathbb{Z})$ constant a.e.

Proof. Start with N = 1. Then, by the Sobolev embeddings, $W^{s,p} \,\subset W^{1/p,p} \,\subset VMO$. Approximate k by smooth (not necessarily Z-valued) maps, by mollifying k. The argument used in the Part I of this course for $VMO(S^1; S^1)$ maps shows that, for large n, k_n is almost Z-valued, i.e., $dist(k_n(x), \mathbb{Z}) \to 0$ uniformly in x. Take n_0 such that, for $n \geq n_0$, this distance is uniformly less than 1/3. Thus, for $n \geq n_0$, k_n takes values into $\bigcup_{m \in \mathbb{Z}} (m-1/3, m+1/3)$. Since k_n is continuous, there must be some integer m_n such that k_n takes its values into $(m_n - 1/3, m_n + 1/3)$. The sequence (m_n) is bounded. Indeed, on the one hand we have $m_n - 1/3 \leq \mathcal{J} k_n \leq m_n + 1/3$. On the other hand, we have $\mathcal{J} k_n \to \mathcal{J} k$, since convergence in $W^{s,p}$ implies convergence in L^1 . Up to a subsequence, we may thus assume $m_n \equiv m$. Since $k_n \to k$ a.e., we find that $k(x) \in (m - 1/3, m + 1/3)$ a.e., so that $k \equiv m$ a.e.

We now consider the case N = 2; the case $N \ge 2$ is identical. Since Ω is connected, it suffices to prove that k is locally constant a.e. We may thus assume Ω to be a square, e.g. the unit square $(0,1)^2$. For a.e. $x, y \in (0,1)$, the maps u(x,.) and u(.,y) belong to $W^{s,p}$ (see [1]). Thus, for any such x or y, these maps are constant a.e., by the case N = 1. Now write

$$|k(a,b) - k(c,d)| \le |k(a,b) - k(a,d)| + |k((a,d) - k(c,d)|$$

and integrate this inequality over a, b, c, d. For a.e. a, we have

$$\int \int |k(a,b) - k(a,d)| db \ dd = 0,$$

so that

$$\int \int \int \int |k(a,b)-k(a,d)| da \ db \ dc \ dd = 0.$$

Using a similar argument, we find that

$$\int \int \int \int |k(a,b) - k(c,d)| da \ db \ dc \ dd = 0,$$

so that k is constant a.e.

Final conclusion. Uniqueness holds if and only if $sp \ge 1$.

III. Case of continuous maps : sp > N

Recall that, when sp > N, then $W^{s,p} \subset C^0$, by the Sobolev embeddings. In particular, this implies the following simple

Lemma 2. Assume sp > N. Then smooth S^1 -valued maps are dense in $W^{s,p}(\Omega; S^1)$.

Proof. Approximate u by mollifying it. The sequence (u_n) obtained in this way converges to u in $W^{s,p}$, and in particularly in C^0 . Thus, in particular, $|u_n| \to |u| = 1$ uniformly. Consider the map $\Phi : \mathbb{R}^2 \setminus D_{1/2} \to \mathbb{R}^2$, $\Phi(z) = z/|z|$. Then Φ is smooth and, for large n, $\Phi(u_n)$ is well-defined. Using the following general result, due to Peetre [4],

Let $\Phi \in C^{\infty}$, sp > N. If $u \in W^{s,p}$, then $\Phi(u) \in W^{s,p}$. Moreover, if $u_n \to u$ in $W^{s,p}$, then $\Phi(u_n) \to \Phi(u)$ in $W^{s,p}$

we find that the sequence of smooth S^1 -valued maps $(\Phi(u_n))$ converges to u.

Concerning the existence of a lifting, it is easy to see that in general the answer is no.

Example. Take $\Omega = D_1 \setminus D_{1/2} \subset \mathbb{R}^2$ and u(z) = z/|z|. Let any s, p be such that sp > 2. The there is no $f \in W^{s,p}(\Omega; \mathbb{R})$ such that $u = e^{if}$.

Proof. First of all, $u \in W^{s,p}$, since u is smooth. For the nonexistence of f, argue by contradiction. Then f is continuous. Since $u = e^{if}$ a.e., we actually have $u = e^{if}$ everywhere. In particular u has a continuous lifting. But this is well known to be false.

However, we have

Lemma 3. Assume Ω simply connected. Let sp > N. Then every $u \in W^{s,p}(\Omega; S^1)$ has a lifting $f \in W^{s,p}(\Omega; \mathbb{R})$.

Proof. For simplicity, we prove the fact that $f \in W^{s,p}(K)$ for each K compact in Ω . By adapting the argument below, one may obtain the full Lemma. Recall that u, being continuous and S^1 -valued on a simply connected domain, has a **continuous** lifting f. We claim that this f is actually in $W^{s,p}$. Indeed, pick some $x_0 \in \Omega$. Assume, e.g., $u(x_0) = 1$. There is a ball $B \in x$ such that $|u(x) - 1| \leq 1$ for $x \in B$. Thus $-i \log u$ is well-defined, continuous, and clearly is a lifting of u in B. Therefore, up to a multiple of 2π , we have $f = -i \log u$ in B. By Peetre's result, we find that $f \in W^{s,p}(B)$. Thus f is locally in $W^{s,p}$.

IV. The bad case : $1 \le sp < 2$

This is the **no** situation : in **any** domain, there is, for a general u, no lifting, and smooth S^1 -valued maps are not dense. The following example concerns a specific domain. However, it can be adapted to the general case.

Example. Let Ω be the unit disc in \mathbb{R}^2 and $1 \leq sp < 2$. Let u(z) = z/|z|. Then $u \in W^{s,p}(\Omega; S^1)$. However,

a) there is no $f \in W^{s,p}(\Omega; \mathbb{R})$ such that $u = e^{if}$;

b) u cannot be approximated by smooth S^1 -valued maps.

Proof. The fact that $u \in W^{s,p}(\Omega; S^1)$ can be checked directly from the definition of $W^{s,p}$ (it is a rather long computation). To prove a), argue by contradiction. Then, for a.e. 1/2 < r < 1, we have that both $u_{|C_r|}$ and $f_{|C_r|}$ belong to $W^{s,p}(C_r)$ and that $u = e^{if}$ a.e. on C_r . Pick any such r. Then, on C_r , the VMO map u(z) = z/|z| has a VMO lifting f. Cf Part I, this contradicts the fact that, on C_r , we have deg u = 1.

The proof of b) follows also by contradiction. Assume that there is a sequence (u_n) of smooth S^1 -valued maps approximating u. Then, up to a subsequence, we may assume that, for a.e. r, we have $u_{n|C_r} \to u_{|C_r}$ in $W^{s,p}(C_r)$. Pick any such r. Then, in particular, $u_{n|C_r} \to u_{|C_r}$ in VMO $(C_r; S^1)$, so that deg $(u_{n|C_r}) \to deg (u_{|C_r})$. On the one hand, recall that deg $(u_{|C_r}) = 1$. On the other hand, we claim that deg $(u_{n|C_r}) = 0$. This will lead to a contrdiction. To justify the claim, note that Ω is simply connected, so that we may write $u_n = e^{if_n}$ for some smooth f_n . Taking restrictions to C_r , we find that $u_{n|C_r}$ has a continuous lifting, so that it has degree 0.

V. At least one derivative : $s \ge 1$, $sp \ge 2$ We start with the case of a simply connected domain Ω . We will turn later to the general case.

Theorem 1. Assume Ω simply connected, $s \ge 1$, $sp \ge 2$. Then : a) Every $u \in W^{s,p}(\Omega; S^1)$ can be written as $u = e^{if}$ for some $f \in W^{s,p}(\Omega; \mathbb{R})$; b) Smooth S^1 -valued maps are dense in $W^{s,p}(\Omega; S^1)$.

The proof is rather technical. However, the main idea, which originated in [5], is simple. We present it when s = 1. The general case is more involved.

Proof of a) when s = 1. The idea is to assume that f is known and to derive some consequences. Writing $u = u_1 + iu_2$, with $u_1 = \cos f$ and $u_2 = \sin f$, we have

$$Du_1 = -(\sin f)Df = -u_2Df$$

and

$$Du_2 = (\cos f)Df = u_1Df.$$

Hence

(1)
$$Df = u_1 D u_2 - u_2 D u_1.$$

The strategy is now to find f by solving (1) with the help of a generalized form of Poincaré's lemma,

Lemma 4. Let $1 \leq p < \infty$ and let $F \in L^p(\Omega; \mathbb{R}^N)$. The following properties are equivalent:

a) there is some $f \in W^{1,p}(\Omega; \mathbb{R})$ such that

$$F = Df,$$

b) one has

(2)
$$\frac{\partial F_i}{\partial x_j} = \frac{\partial F_j}{\partial x_i} \quad \forall \ i, j, \ 1 \le i, j \le n$$

in the sense of distributions, i.e.,

$$\int F_i \frac{\partial \psi}{\partial x_j} = \int F_j \frac{\partial \psi}{\partial x_i} \qquad \forall \ \psi \in C_0^\infty(\Omega).$$

We emphasize that the assumption that Ω is simply connected is needed in this lemma.

Proof of Lemma 4. The implication $a \Rightarrow b$ is obvious. To prove the converse, let \overline{F} be the extension of F by 0 outside Ω and let $\overline{F}_{\varepsilon} = \rho_{\varepsilon} \star \overline{F}$ where (ρ_{ε}) is a sequence of mollifiers. The $\overline{F}_{\varepsilon}$'s satisfy (2) on every compact subset of Ω (for ε sufficiently small). In particular, on every smooth simply connected domain $\omega \subset \Omega$ with compact closure in Ω , there is a function \tilde{f}_{ε} such that

$$D\tilde{f}_{arepsilon}=ar{F}_{arepsilon}\quad ext{in }\omega$$

(Here we have used the standard Poincaré lemma). Passing to the limit we obtain some $\tilde{f} \in W^{1,p}(\omega)$ such that $D\tilde{f} = F$ in ω . Finally, we write Ω as an increasing union of ω_n as above and obtain a corresponding sequence f_n . In the limit we find some $f \in L^1_{loc}(\Omega)$ with Df = F in Ω . Using the regularity of Ω and a standard property of Sobolev spaces (see e.g. Maz'ja [6], Corollary in Section 1.1.11) we conclude that $f \in W^{1,p}(\Omega)$.

Proof of a) for s = 1 completed. We will first verify condition b) of the lemma for

$$F = u_1 D u_2 - u_2 D u_1$$

i.e.,

$$F_i = u_1 \frac{\partial u_2}{\partial x_i} - u_2 \frac{\partial u_1}{\partial x_i}.$$

Formally, property (2) is clear. Indeed, if u_1 and u_2 are smooth, then

$$\frac{\partial F_i}{\partial x_j} - \frac{\partial F_j}{\partial x_i} = 2\left(\frac{\partial u_1}{\partial x_j}\frac{\partial u_2}{\partial x_i} - \frac{\partial u_1}{\partial x_i}\frac{\partial u_2}{\partial x_j}\right)$$

On the other hand, if we differentiate the relation

$$|u|^2 = u_1^2 + u_2^2 = 1$$

we find

(4)
$$u_1 \frac{\partial u_1}{\partial x_i} + u_2 \frac{\partial u_2}{\partial x_i} = 0 \quad \forall \ i = 1, 2, \dots, n.$$

Thus, in \mathbb{R}^2 , the vector $(\frac{\partial u_1}{\partial x_i}, \frac{\partial u_2}{\partial x_i})$ is orthogonal to (u_1, u_2) . It follows that the vectors $(\frac{\partial u_1}{\partial x_i}, \frac{\partial u_2}{\partial x_i})$ and $(\frac{\partial u_1}{\partial x_j}, \frac{\partial u_2}{\partial x_j})$ are collinear and therefore

(5)
$$\det \begin{pmatrix} \frac{\partial u_1}{\partial x_i} & \frac{\partial u_2}{\partial x_i} \\ \frac{\partial u_1}{\partial x_j} & \frac{\partial u_2}{\partial x_j} \end{pmatrix} = \frac{\partial u_1}{\partial x_i} \frac{\partial u_2}{\partial x_j} - \frac{\partial u_1}{\partial x_j} \frac{\partial u_2}{\partial x_i} = 0.$$

Hence (2) holds. To make this argument rigorous we rely on the density of smooth functions in the Sobolev space $W^{1,p}(\Omega; \mathbb{R})$: there are sequences (u_{1n}) and (u_{2n}) in $C^{\infty}(\overline{\Omega}; \mathbb{R})$ such that $u_{1n} \to u_1$ and $u_{2n} \to u_2$ in $W^{1,p}(\Omega; \mathbb{R})$ and $||u_{1n}||_{L^{\infty}} \leq 1, ||u_{2n}||_{L^{\infty}} \leq 1$.

[Warning: We do not claim that $u_n = (u_{1n}, u_{2n})$ takes its values in S^1 .] Set

$$F_n = u_{1n} D u_{2n} - u_{2n} D u_{1n},$$

so that

 $F_n \to F$ in L^p

and

(6)
$$\frac{\partial F_{in}}{\partial x_j} - \frac{\partial F_{jn}}{\partial x_i} = 2\left(\frac{\partial u_{1n}}{\partial x_j}\frac{\partial u_{2n}}{\partial x_i} - \frac{\partial u_{1n}}{\partial x_i}\frac{\partial u_{2n}}{\partial x_j}\right)$$

converges in $L^{p/2}$ to $2\left(\frac{\partial u_1}{\partial x_j}\frac{\partial u_2}{\partial x_i} - \frac{\partial u_1}{\partial x_i}\frac{\partial u_2}{\partial x_j}\right)$. Multiplying (6) by $\psi \in C_0^{\infty}(\Omega)$, integrating by parts and passing to the limit (using the fact that $p \ge 2$) we obtain

$$-\int_{\Omega} (f_i \frac{\partial \psi}{\partial x_j} - f_j \frac{\partial \psi}{\partial x_i}) = 2 \int_{\Omega} (\frac{\partial u_1}{\partial x_j} \frac{\partial u_2}{\partial x_i} - \frac{\partial u_1}{\partial x_i} \frac{\partial u_2}{\partial x_j}) \psi.$$

On the other hand (4) and (5) hold a.e. (even for any $u \in W^{1,p}(\Omega; S^1)$, $1 \leq p < \infty$). It follows that F satisfies b) of Lemma 3, and therefore there is some $\varphi \in W^{1,p}(\Omega; \mathbb{R})$ such that

$$F = Df.$$

We will now prove that this f is essentially the one we are looking for.

Recall that if $g, h \in W^{1,p}(\Omega) \cap L^{\infty}(\Omega)$ with $1 \leq p < \infty$, then $gh \in W^{1,p}$ and

$$\frac{\partial}{\partial x_i}(gh) = g\frac{\partial h}{\partial x_i} + h\frac{\partial g}{\partial x_i}.$$

 Set

$$v = ue^{-if},$$

so that $v \in W^{1,p}$ and

$$Dv = e^{-if}(Du - iDf) = ue^{-if}(\bar{u}Du - iDf)$$

= $ue^{-if}(\bar{u}Du - iF) = ue^{-if}(u_1Du_1 + u_2Du_2) = 0$ by (4)

We deduce that v is a constant and since |v| = 1 we may write $v = e^{iC}$ for some constant $C \in \mathbb{R}$. Hence $u = e^{i(f+C)}$ and the function f + C has the desired properties.

Idea of the proof of a) for a general $s \ge 1$. The strategy is the same, i.e., we consider the same vector field F. Using the Gagliardo-Nirenberg inequalities, one may see that Fverifies condition b) of Lemma 4. Moreover (this is the key and more delicate point), Fbelongs to $W^{s-1,p} \cap L^{sp}$. A variant of Lemma 4 implies that we may write F = Df for some $f \in W^{s,p} \cap W^{1,sp}$. As above, this f is essentially the one needed. This proof yields thus the following refined version of a)

Part a) sharpened. Any u has a lifting in $W^{s,p} \cap W^{1,sp}$.

Proof of b) when s = 1. Let $u \in W^{1,p}(\Omega; S^1)$ and let $f \in W^{1,p}(\Omega; \mathbb{R})$ be a lifting of u. Let (f_n) be a sequence of smooth real functions such that $f_n \to f$ in $W^{1,p}$. Using the following standard simple property

Let Φ be a C^1 functions such that Φ' is bounded. If $u \in W^{1,p}$, then $\Phi(f) \in W^{1,p}$. Moreover, if $f_n \to f$ in $W^{1,p}$, then $\Phi(f_n) \to \Phi(f)$ in $W^{1,p}$

it is obvious that the sequence (e^{if_n}) of smooth S¹-valued maps approximates u in $W^{1,p}$.

Idea of the proof of b) for a general $s \ge 1$. Big problem ! When f belongs to $W^{s,p}$, $\Phi(f)$ need not belong to $W^{s,p}$, even for very nice maps Φ . In particular, one can not use

Part a) anymore in order to prove Part b). Instead, one has to rely on the following much more delicate result ([7])

Let Φ be a C^{∞} function with bounded derivatives and let $s \geq 1$. If $f \in W^{s,p} \cap W^{1,sp}$, then $\Phi(f) \in W^{s,p}$. Moreover, if $f_n \to f$ in $W^{s,p} \cap W^{1,sp}$, then $\Phi(f_n) \to \Phi(f)$ in $W^{s,p}$

Thus Part b) follows from Part a) sharpened.

General domains. In general, one can not expect existence of a lifting. Consider, e.g., the 2D-annulus $\Omega' = D_1 \setminus D_{1/2}$ and the smooth map u(z) = z/|z|. Assume by contradiction that $u = e^{if}$ for some $f \in W^{s,p}(\Omega'; \mathbb{R})$. Then for a.e. r with 1/2 < r < 1 we have $u_{|C_r|} = e^{if_{|C_r|}}$ and, on C_r , u and f belong to $W^{s,p}$. For any such r, $u_{|C_r|}$ has thus a continuous lifting. This contradicts the fact that $u_{|C_r|}$ has degree 1. In higher dimension, a similar counterexample holds : consider, on $\Omega' \times (0, 1)^{N-2}$, the map u(z, x) = z/|z|. Then u has no lifting in $W^{s,p}$.

This time, the existence of a lifting is related to topological properties of Ω :

Theorem 2. Assume $s \ge 1$, $1 , <math>sp \ge 2$. Then : a) Every map $u \in W^{s,p}(\Omega; S^1)$ has a lifting $f \in W^{s,p}(\Omega; \mathbb{R})$ if and only if every continuous map $u \in C^0(\overline{\Omega}; S^1)$ has a continuous lifting $f \in C^0(\overline{\Omega}; \mathbb{R})$; b) Smooth S^1 -valued maps are dense in $W^{s,p}(\Omega; S^1)$.

Proof of Theorem 2 when s = 1. The main tool is the following

Lemma 5. Let $p \geq 2$. Then every $u \in W^{1,p}(\Omega; S^1)$ can be written as $u = ve^{if}$ for some $v \in C^{\infty}(\Omega; S^1)$ and $f \in W^{1,p}(\Omega; \mathbb{R})$.

Proof of Lemmma 5. Consider again the vector field $F \in L^p(\Omega; \mathbb{R}^N)$. Let f be the solution of

$$\Delta f = \operatorname{div} F \quad \operatorname{in} \Omega, \quad f = 0 \quad \operatorname{on} \partial \Omega.$$

Then $f \in W^{1,p}(\Omega; \mathbb{R})$ (see [8]). We claim that $v = ue^{-if} \in C^{\infty}$. Indeed, recall that, by the proof of Theorem 1, we may write, on each ball $B \subset \Omega$, $u = e^{ig}$, for some $g \in W^{1,p}(B; \mathbb{R})$ such that Dg = F on B. Then, in B, we have $v = e^{i(g-f)}$ and, clearly, $\Delta(g-f) = 0$ in B. Thus $g - f \in C^{\infty}$, by Weyl's Lemma. It follows that $v \in C^{\infty}$.

Proof of Theorem 2 when s = 1 completed. " \Rightarrow " Take $u \in C^0(\overline{\Omega}; S^1)$. By mollifying u, we may find some $v \in C^{\infty}(\overline{\Omega}; S^1)$ such that $|u\overline{v} - 1| < 1$. Thus we may write $u\overline{v} = e^{ik}$, wher k is the continuous map Arg $u\overline{v}$. On the other hand, $v = e^{ig}$ for some $g \in W^{1,p}(\Omega; \mathbb{R})$. Take B any ball in Ω . Then, on B, we may write the smooth map v as $v = e^{ih}$ for some smooth h. Thus, in B, the difference g - h is $2\pi\mathbb{Z}$ -valued and belongs to $W^{1,p}$. By Lemma

1, this difference must be constant a.e. Therefore, g is smooth. Finally, $u = e^{i(g+k)}$, with g + k continuous.

" \Leftarrow " We will make use of the following intuitively clear geometric property:

If $\varepsilon > 0$ is sufficiently small, the domains $\overline{\Omega}$ and $\overline{\Omega}_{\varepsilon} = \{x \in \Omega; \text{dist } (x, \partial \Omega) \leq \varepsilon \}$ are diffeomorphic through some smooth diffeomorphism Φ_{ε} . Moreover, assume, e.g. $0 \in \Omega$. Then we may construct Φ_{ε} such that $\Phi_{\varepsilon}(0) = 0$ for sufficiently small ε . Moreover, we may construct Φ_{ε} in order to have the additional properties $\Phi_{\varepsilon|\Omega_{2\varepsilon}} = \text{id and } \|D\Phi_{\varepsilon} - \text{id}\| \leq C\varepsilon$

Let $u \in W^{1,p}(\Omega; S^1)$ and write $u = ve^{if}$ as in Lemma 5. Since $v_{\varepsilon} = v_{|\overline{\Omega}_{\varepsilon}} \circ \Phi_{\varepsilon}$ is S^1 -valued and continuous, we may write $v_{\varepsilon} = e^{ig_{\varepsilon}}$ for some continuous g_{ε} . Assume, e.g., v(0) = 1. Then, for small ε , $v_{\varepsilon}(0) = 1$ and we may assume $g_{\varepsilon}(0) = 0$. Let now $0 < \varepsilon < \delta$ be sufficiently small. Then clearly on the connected domain Ω_{δ} we have $g_{\varepsilon} - g_{\delta} \equiv \text{const}$, and this constant must be 0, by our normalization condition $g_{\varepsilon}(0) = 0$. Thus the map $g(x) = g_{\varepsilon}(x)$ if $x \in \Omega_{\varepsilon}$ is well-defined and continuous, and $v = e^{ig}$. Actually, we even have $g \in C^{\infty}$, by an argument already used above. In particular, |Dg| = |Dv|. On the other hand, recall that $v = ue^{-if}$, so that $|Dv| \leq |Du| + |D(e^{-if})| = |Du| + |Df| \in L^p$. Therefore, $g \in W^{1,p}$. Finally, $u = e^{i(f+g)}$, with $f + g \in W^{1,p}$.

Proof of b) Recall that we already proved that e^{if} can be approximated by smooth S^1 -valued maps. The idea is to make use of the following property of $W^{1,p}$

If
$$f_n \to f$$
, $g_n \to g$ in $W^{1,p}$ and $||f_n||_{L^{\infty}} \leq C$, $||g_n||_{L^{\infty}} \leq C$, then $f_n g_n \to fg$ in $W^{1,p}$

In view of this property, it suffices to write $u = ve^{if}$ as in Lemma 5 and approximate v with smooth S^1 -valued maps. [Warning : v need not be smooth up to the boundary.] By the above arguments, we have $v \in C^{\infty}(\Omega; S^1) \cap W^{1,p}(\Omega; S^1)$. Let v_{ε} be as above, so that clearly v_{ε} is S^1 -valued and smooth up to the boundary. We claim that $v_{\varepsilon} \to v$ in $W^{1,p}$. Clearly, $v_{\varepsilon} \to$ uniformly on compacts and thus in L^1_{loc} (actually, convergence holds also in L^1 , since the maps are uniformly bounded). Therefore, it suffices to prove that $|Dv_{\varepsilon} - Dv| \to 0$ in L^p . Now clearly

$$\int\limits_{\Omega} |Dv_arepsilon - Dv|^p dx = \int\limits_{\Omega\setminus\Omega_{2arepsilon}} |Dv_arepsilon - Dv|^p dx \leq C \int\limits_{\Omega\setminus\Omega_{2arepsilon}} |Dv|^p dx o 0 \quad ext{ as } arepsilon o 0.$$

Idea of the proof for a general $s \ge 1$. The proof goes along the same lines. One has to use instead of Lemma 5 its following straightforward variant

Lemma 5'. Let $s \ge 1$, $sp \ge 2$. Then every $u \in W^{s,p}(\Omega; S^1)$ can be written as $u = ve^{if}$ for some $v \in C^{\infty}(\Omega; S^1)$ and $f \in W^{s,p}(\Omega; \mathbb{R}) \cap W^{1,sp}(\Omega; \mathbb{R})$.

As for the property of products, one has to rely instead on the following variant, usually named " $W^{s,p} \cap L^{\infty}$ is an algebra":

If $f,g \in W^{s,p} \cap L^{\infty}$, then $fg \in W^{s,p}$. Moreover, if $f_n \to f$, $g_n \to g$ in $W^{s,p}$ and $\|f_n\|_{L^{\infty}} \leq C$, $\|g_n\|_{L^{\infty}} \leq C$, then $f_n g_n \to fg$ in $W^{s,p}$

VI. Lifting when we have less than one derivative : 0 < s < 1, $2 \le sp < N$

Lemma 6. Assume 0 < s < 1, $2 \leq sp < N$. Then there is somme $u \in W^{s,p}(\Omega; S^1)$ which can not be lifted, i.e., such that there is no $f \in W^{s,p}(\Omega; \mathbb{R})$ with $u = e^{if}$ a.e.

Proof of Lemma 6. Assume, e.g., that the unit ball B is contained in Ω . Let $u(x) = e^{2i\pi/|x|^a}$ in B, extended with the value 1 outside B. Here, a > 0 is to be determined later. It is easy to see that $u \in W^{1,q}$ provided (a+1)q < N. Using the following

Gagliardo-Nirenberg type inequality. If $u \in W^{r,q} \cap L^{\infty}$ and 0 < t < 1, then $u \in W^{tr,q/t}$

(a proof of the full scale of the Gagliardo-Nirenberg inequalities may be foung, e.g., in [7]), we find that $u \in W^{s,q/s}$. Thus $u \in W^{s,p}$ as soon as (a + 1)sp < N. On the other hand, a straightforward but long computation shows that the map $g(x) = 2\pi/|x|^a$ in B, extended with the value 2π outside B, belongs to $W^{s,p}$ if and only of (a + s)p < N. On the other hand, we have $g \in W^{s,p}_{loc}(\Omega \setminus \{0\})$. Pick now some a such that (a + 1)sp < N, but $(a + s)p \ge N$ (there is enough room !) and consider the corresponding u. We claim that this u can not be lifted. Argue by contradiction, i.e., assume that $u = e^{if}$ for some $f \in W^{s,p}(\Omega; \mathbb{R})$. Take Q be any cube such that $\overline{Q} \subset \Omega \setminus \{0\}$). Then, on Q, we have $f - g \in W^{s,p}$ is a $2\pi\mathbb{Z}$ -valued map. By Lemma 1, this function must be constant a.e. Since $\Omega \setminus \{0\}$ is connected, we find that $f \equiv g + \text{ const}$ a.e. However, we have $f \in W^{s,p}$ and $g \notin W^{s,p}$. Contradiction !

VI. Lifting when we have little regularity : sp < 1

This is the really difficult case.

Theorem 3. Assume sp < 1. Then : a) Every $u \in W^{s,p}(\Omega; S^1)$ can be written as $u = e^{if}$ for some $f \in W^{s,p}(\Omega; \mathbb{R})$; b) Smooth S^1 -valued maps are dense in $W^{s,p}(\Omega; S^1)$.

The delicate part is a). We refer to [2] for details. Part b) is a trivial consequence of a) and of the following elementary property

Let Φ be a Lipschitz map and 0 < s < 1. If $f \in W^{s,p}$, then $\Phi(f) \in W^{s,p}$. Moreover, if $f_n \to f$ in $W^{s,p}$, then $\Phi(f_n) \to \Phi(f)$ in $W^{s,p}$

VII. Density in the remaining case : 0 < s < 1, $2 \le sp < N$

Recall that in this case there is no lfting, even in simply connected domains. Thus we may not use approximation of the phase f by smooth functions and some composition property in order to obtain density. However, we have the following

Theorem 4. Assume 0 < s < 1, $sp \ge 2$. Then smooth S^1 -valued maps are dense in $W^{s,p}(\Omega; S^1)$.

The proof is delicate; see [3].

References

[1] R. A. Adams, Sobolev spaces, Academic Press, 1975.

[2] J. Bourgain, H. Brezis, P. Mironescu, Lifting in Sobolev spaces, *Journal d'Analyse mathématique* <u>80</u> (2000), 37-86.

[3] J. Bourgain, H. Brezis, P. Mironescu, in preparation.

[4] J. Peetre, Interpolation of Lipschitz operators and metric spaces, *Mathematica (Cluj)* <u>12</u> (1970), 1-20.

[5] G. Carbou, Applications harmoniques à valeurs dans un cercle, C. R. Acad. Sci. Paris 1992, 359-362.

[6] V. Maz'ja, Sobolev spaces, Springer, 1985.

[7] H. Brezis, P. Mironescu, Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces, *Journal of Evolution Equations* <u>1</u> (2001), 387-404.

[8] D. Gilbarg, N. S. Trudinger, *Elliptic Partial Differential Equations of Second Order*, Springer, 1998.