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Mirror Symmetry and N=1 Supersymmetry

Exactly computable quantities are typically “BPS”:
holomorphic objects protected by SUSY

N=2:  prepotential                (+ infin sequence       ) 

N=1:  superpotential     ,  gauge coupling       
                                        (+ infin sequence          ) 

Non-pert. exact results for string and YM theories !
(matrix theory, Chern-Simons, mirror symmetry....)

Reminds of the well-known computation of F for N=2 SUSY:
“special geometry”, “TFT”, “geometric engineering”

We will show how to put the computation of N=1 
superpotentials on an analogous footing:

                         
           N=1 Special Geometry

(main new ingredient: D-branes)

Recent progress:

τW

F Fg

Fg,h

W.Lerche, Trieste Spring School 2003Part 1
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Motivation: Quantum Geometry of D-branes

Notions of classical geometry (eg., “branes 
wrapping p-cycles, with gauge bundles on top”) 
make sense only at large radius/weak coupling

instanton corrections wipe out
classical geometry

Moduli space

“Gepner point”:  rational CFT description

Monodromy:
brane configuration maps into “different” one

involving “other” branes and 
fluxes

Stability:
brane configuration may become unstable

brane-
antibrane pair brane-

brane pair
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To address such problems, we need to have full
analytical control of F,W, over the full parameter
space ....which is more than just a series expansion
at weak coupling !

Note however:

N=2 SUSY:       moduli space

N=1 SUSY:       W = obstruction to moduli space
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Overview

Part 1   
Recap: N=2 special geometry and mirror symmetry

Type II strings on Calabi-Yau manifolds

Mirror map

Topological field theory

Hodge variation and DEQ for period integrals

Part 2   
Fluxes and D-branes on Calabi-Yau manifolds

Superpotentials from fluxes

Mirror symmetry and D-branes

Quantum D-geometry

Part 3   
N=1 SUSY and open string mirror symmetry

Superpotentials from D-branes

Relative cohomology and mixed Hodge variations

Differential equations for exact superpotentials
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Recap: Type II Strings on Calabi-Yau 3-folds

For preserving N=2 SUSY in d=4, the compact 
6dim manifold X should be Kahler and moreover, a{

c1(R) = 0
Holonomy group SU(3)
global holom 3-form  Ω(3,0)

Calabi-Yau manifold

gij̄ = ∂i∂̄jKmetric Kahler potential

The string compactification is described by a 2dim
N=(2,2) superconformal sigma model on X with
c=9, plus a free space-time sector

The induced N=2 SUSY effective action in d=4 
contains massless fields, including hyper- and
vector supermultiplets

Its bosonic sector gives a sigma model with 
target space

M = MV × MH

“decoupling”:

(special Kahler) (quaternionic)

J (1,1) = igij̄dzidz̄j̄Kahler (1,1) form
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These massless scalar fields correspond to
deformation parameters (moduli) of the CY, X.

Kahler moduli (size parameters)

There are two sorts of moduli:

These are associated with (p,q) differential forms

which are closed but not exact, ie., are non-
trivial elements of the cohomology groups

Hp,q
∂̄

(X, C) ≡ {ω(p,q)|∂̄ω(p,q) = 0}
{η(p,q)|η(p,q) = ∂̄ρ(p,q−1)}

How do the moduli map to the fields in the effective
Lagrangian ?

Complex structure moduli (shape parameters)

(hp,q = “Hodge numbers”)

ω(p,q) ≡ ωi1,...,ip,j̄1,...,j̄q
dzi1 ∧ . . . dzip ∧ dz̄j̄1 ∧ . . . dz̄j̄q

These give zero modes of Laplacian: ∆∂̄ = ∂̄∂̄† + ∂̄†∂̄

ti ∼ ω(1,1)
i , i = 1, ..., h1,1 ≡ dimH1,1

za ∼ ω(2,1)
a , a = 1, ..., h2,1 ≡ dimH2,1

(massless fields in 4d)
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Mirror Symmetry of CY threefolds

For “every” Calabi-Yau    , there exists a mirror    
such that the Kahler and complex structure
sectors are exchanged:

H1,1(X) ∼= H2,1(X̂)

H2,1(X) ∼= H1,1(X̂)

The physical meaning is:

Type IIA strings compactified on    are
indistinguishable from Type II strings 
compactified on the mirror of  

IIA / X ←→ IIB / X̂

MH = MCS(X) = MKS(X̂)

MV = MKS(X) = MCS(X̂)

(We will consider here only the vector 
supermultiplet moduli space)

X

X̂

X X̂

i.e., hp,q(X) = h3−p,q(X̂)

(-dilaton)
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size of 2-cycles 
governed by Kahler 
param  

Type IIA Type IIB 

X̂X

world sheet instantons
wrapping 

size of 3-cycles 
governed by CS 
param  

γ2
i

γ2
i

ti za

Important quantities: quantum volumes (”periods”)

no instantons can
wrap !

Why is mirror symmetry useful ?

... basic idea:

“A-model”:
 corrected

“B-model”:
 exact !

ΠA

γ2
i

∼ tk + O(e−t) ∼ ln(z)k + O(z)

γ3
A

γ3
A

∫
γ2k

(∧J (1,1))k + ... = ΠA =

∫
γ3

Ω(3,0)
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Significance:
The periods are the building blocks of the prepotential.

Pick an integral basis of homology 3-cycles with

intersection metric
                                                      structure

Thus one can split:         

and write:

In terms of these ‘’symplectic sections”, one has
for the prepotential:

What remains to do is to insert the mirror map:

which gives:

Σ =

(
0 1

−1 0

)

ti(z) = − ln(za) + . . . → za = qi(1 + O(q))

Lis(q) ≡
∑

k

qk

ks

︸ ︷︷ ︸ ︸ ︷︷ ︸
classical instanton 

corrections

Integers counting maps
P 1 → X

(q ≡ e−t)

F(t) =
1

3!
c0

ijkt
itjtk +

∑
n1...nr

Nn1...nrLi3(q1
n1...qr

nr)

Sp(2h2,1 + 2, Z)

{γA} → {γa, γb}

ΠA(z) =
(
Xa, Fb

)
≡

( ∫
γ3

a

Ω(3,0),

∫
γ3

b

Ω(3,0)
)
(z)

F(z) =
1

2
XaFa(z)
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Special Geometry of the N=2 Vector-Moduli space

The prepotential F can be understood from three 
inter-related viewpoints:

as 4d N=2 space-time effective 
Lagrangian  of vector supermultiplets

A)

gauge couplings
“Yukawa” couplings
Kahler potential

τij(t) = ∂i∂jF(t)
cijk(t) = ∂i∂j∂kF(t)

2d world-sheet topological field theoryB)

 F = generating function of TFT correlators

cijk(t) ≡ 〈OiOjOk〉 = ∂i∂j∂kF(t)

Oi · Oj =
∑

k

cij
k(t)OkOPE: “chiral ring”

chiral,              primary        chiral fields:
G+

−1/2Oi|0〉NS = G±
+1/2Oi|0〉NS = 0

{G+
−1/2, G−

1/2}Oi|0〉NS = (2L0 − J0)Oi|0〉NS = 0

From N=2 algebra follows:

h(Oi) = 1/2|q(Oi)|Thus: (no pole in OPE)

K(t, t̄) = − ln[X̄aFa − XaF̄a]

R

However: need consider pairing of left-, right-moving 
sectors ....  (c,c)  and (a,c) rings
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Topological Sigma-Model on Calabi-Yau Manifold

N=(2,2) supercharges:

Topological twist:
Redefine spins such that two of these supercharges
become scalars to serve as BRST operator with

S =
1

4πα′

∫
Σ

d2z
[
1/2gmn∂Xm∂̄Xn+

+i gījλ
īDzλ

j + i gījψ
īDz̄ψ

j + Rīijj̄ψ
iψīλjλj̄

¯
Q+ = gjlXj Q

¯−
= giliX

QBRST
2 = 0

This condition projects to a finite number of 
physical states in the TFT

Idea: the physical spectrum corresponds to the non-
trivial cohomology elements on X, via

QBRST ↔ d = ∂ + ∂̄

Ambiguity in choosing which supercharges 
correspond to          !
    There are 2 inequivalent possibilities:

“A-model”:

“B-model”:

∂, ∂̄

QBRST = Q+ + Q̄−
QBRST = Q+ + Q̄+

Q+ =

∮
gījψ

ī∂Xj Q− =

∮
gij̄ψ

i∂Xj̄

Q̄+ =

∮
gījλ

ī∂̄Xj Q̄− =

∮
gij̄λ

i∂̄Xj̄
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A-Model:

Observables:

The Kahler moduli correspond to

correspond to differential forms on X via:

λi ↔ dzi, ψj̄ ↔ dz̄j̄

BRST non-trivial operators           correspond to 
cohomology classes

O(p,q)
A

H0,q
∂̄

(∧pT ∗) ∼= Hp,q
∂̄

(X)

O(1,1)
A = ω(1,1)

ij̄
λiψj̄ ∈ H1,1

and generate the (c,c) chiral ring via the OPE:

QBRST = Q+ + Q̄−

The 3-point correlators look:

=

∫
X

ω(1,1)
i ∧ ω(1,1)

j ∧ ω(1,1)
k

 classical 
“intersection”

Instanton corrections

{u} = holomorphic rational maps 

+
∑
{u}

e− ∫
u∗J

∫
u∗ω(1,1)

i

∫
u∗ω(1,1)

j

∫
u∗ω(1,1)

k

P 1 → X

O(p,q)
A = ω(p,q)

i1...ipj̄1...j̄q
λi1...λipψj̄1...ψj̄q

cijk(t) = 〈O(1,1)
A,i O(1,1)

A,j O(−2,−2)
A,k 〉

R(c,c) : O(1,1)
A,i · O(1,1)

A,j =
∑

k

cij
k O(2,2)

A,k
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B-Model:

Observables:

The complex structure moduli correspond to

correspond to differential forms on X via:

BRST non-trivial operators           correspond to 
cohomology classes

and generate the (a,c) chiral ring via the OPE:

The 3-point correlators look:

QBRST = Q+ + Q̄+

λi ≡ gij̄λ
j̄ ↔ d/dzi, ψj̄ ↔ dz̄j̄

O(p,q)
B

H0,q
∂̄

(∧pT ) ∼= H−p,q
∂̄

(X)

O(−1,1)
B = ω(−1,1)i

j̄λiψ
j̄ ∈ H−1,1 ∼= H2,1

=

∫
X
(Ω(3,0)ω(−1,1)

a ∧ ω(−1,1)
b ∧ ω(−1,1)

c ) ∧ Ω(3,0)

This is an exact, classical result !  
(constant maps only)

Note: a negative degree can be converted to
a positive via contraction with the holom 3-form:

Ω(3,0) : ω(−p,q) → ω(3−p,q)

[ ]

O(p,q)
B = ω(p,q)i1...ip

j̄1...j̄q
λi1...λipψ

j̄1...ψj̄q

R(a,c) : O(−1,1)
B,a · O(−1,1)

B,b =
∑

c

cab
c O(−2,2)

B,c

cabc(z) = 〈O(−1,1)
B,a O(−1,1)

B,b O(2,−2)
B,c 〉
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Recap: Classical and quantum cohomology rings

B-Model:

(a,c) chiral ring 

is isomorphic to the classical cohomology ring

O(−1,1)
B,a · O(−1,1)

B,b =
∑

c

cab
c O(−2,2)

B,c

H2,1(X) ∪ H2,1(X) → H1,2(X)

A-Model:

(c,c) chiral ring 

is isomorphic to a quantum deformation of the 
cohomology ring

O(1,1)
A,i · O(1,1)

A,j =
∑

k

cij
k O(2,2)

A,k

H1,1(X) ∪ H1,1(X) → H2,2(X)

because of the instanton corrections

Mirror symmetry:

A model on     is equivalent to the B-model on  X X̂

c(A)
ijk (t) =

∑ ∂za

∂ti

∂zb

∂tj

∂zc

∂tk
c(B)

abc(z(t))

classical

∂i∂j∂kF(t)

=

quantum 
corrected

R(c,c)(X) ∼= R(a,c)(X̂) ∼= H3
∂̄(X̂)

(complex structure moduli)

(Kahler moduli)
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C)

Consider in B-model the variation of the 
holomorphic 3-form under deformations of
the complex structure:

Viewpoint of variation of Hodge structures

Ω(3,0)(z) ∈ H(3,0)

δzΩ
(3,0)(z) ∈ H(3,0) ⊕ H(2,1)

(δz)
2Ω(3,0)(z) ∈ H(3,0) ⊕ H(2,1) ⊕ H(1,2)

(δz)
3Ω(3,0)(z) ∈ H(3,0) ⊕ H(2,1) ⊕ H(1,2) ⊕ H(0,3)

(notion of complex 
     structure changes)

Sequence terminates when H3 is exhausted,
so higher derivatives are not independent    

Fixing a basis of H3, we can thus write a matrix DEQ:

Recursive elimination of the higher components
gives a set of higher order “Picard-Fuchs” operators”
acting on integrals of the holom 3-form:

(true modulo exact pieces)

La ·
∫

γ3
A

Ω(3,0) ≡ LaΠA = 0

The solutions are thus nothing but the periods
we were looking for !

! ≡


Ω(3,0)

ω(2,1)
a

ω(1,2)
a

Ω(0,3)

∇a! ≡
[
∂za − Aa(z)

]
· ! = 0
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Flatness of moduli space:

The matrix first oder operator can be decomposed:

Γa =


∗
∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗



One can show that 
[ ∇a, ∇b

]
= 0

“Gauss-Manin”-connection chiral ring structure 
constants

which means that there are “flat” coordinates,
for which the connection vanishes, Γa = 0

These flat coordinates are precisely the Kahler
parameter of the associated A-model,          !

For these coordinates one has:

ti(za)

=
(
1, ti, ∂iF , 2F − tj∂jF

)

so indeed:

∇a ≡ ∂za − Aa(z) = ∂za − Γa − Ca

Ca =


1
(ca)bc

1



F(t) =
1

2
XaFa(z(t))

ΠA(z(t)) =
(
X0, Xi, F i, F0

)
(z(t))

∼
(
1, t, t2 + O(e−t), t3 + O(e−t)

)
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The charge vectors q are the most basic data of 
“toric” Calabi-Yau’s  X: LSM formulation is canonical

Idea: describe 2d superconformal non-linear sigma-
models as IR limits of a linear sigma model (A)
or Landau-Ginzburg model (B)

A-Model on    :

LSM = 2d U(1) gauge theory with fields      ,  charges

D-term potential: V = D2,

φn

Fayet-Iliopoulos parameters = Kahler moduli of X

X

qi
n

D =
∑

n

qi
n|φn|2 − ti = 0

Periods and DEQs for toric Calabi-Yau manifolds

Linear Sigma Model
(LSM)

Landau-Ginzburg 
Model (LG)

non-linear Sigma 
A-type Model  

non-linear Sigma 
B-type Model  

Type IIA on   X Type IIB on   ̂X

IR IR

mirror

mirror

(i = 1, ..., h1,1(X))
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B-Model on     :

Mirror geometry is described by IR limit of a 2d
Landau-Ginzbug (LG) model, which is defined entirely
in terms of the charge vectors      of the A-model !

X̂

LG superpotential:

qi
n

with constraint:

(a = 1, ..., h2,1(X̂) ≡ h1,1(X))

za ∼ e−ta + ...

WLG =
∑

n

anyn∏
n

yn
qa

n = 1

X̂

The {an} parametrize the complex structure deformations 
of       via ∏

n

an
qa

n = za

(mirror map)

Note: yn ∈
{

C X̂  if      compact

  if     non-compactC∗ X̂ (yn = e−ϕn)

We will consider only non-compact CY in the following

holomorphic 3-form Ω(3,0)(a(z)) =
∏
n

dyn

yn
e−WLG(y,a)

satisfies Picard-Fuchs equation:

La Ω(3,0) ≡
 ∏

n|qa
n>0

( ∂

∂an

)qa
n−

∏
n|qa

n<0

( ∂

∂an

)qa
n

 Ω(3,0) = 0

All what remains to do is to change variables a -> z(a)

PF equations immediate once the defining toric data
(charge vectors q) of the Calabi-Yau are given ! 
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linear sigma model on P2:

Example: normal bundle on P2

linear sigma model on O(-3)P2:

q1
n = (1, 1, 1)

q1
n = (−3, 1, 1, 1)

add extra non-
compact coo to get CY

B-model LG potential:

WLG = a0y0 + a1y1 + a2y2 + a3
y0

3

y1y2

have used constraint

PF operator:

rewriting in terms of                    gives:              

y1y2y3

y0
3

= 1

z =
a1a2a3

a0
3

...is of generalized hypergeometric type

Solutions for the periods:

∂tF (z) ∼ G3,1
3,3(−z||1/3) + G3,1

3,3(−z||2/3) ∼ ln(z)2 + ...

invert t(z) and insert, integrate:

F(t) = −1/18t3 +
∑

n

NnLi3(e
−nt)

indeed integers... counting world-sheet instantons in P2

c1 ∼
∑

qn = 0

(θ ≡ z∂/∂z)

L1 =
∂

∂a1

∂

∂a2

∂

∂a2
−

( ∂

∂a0

)3

L1(z) = θ3 + 3zθ(1 + 3θ)(2 + 3θ)

t(z) ∼ ln(z) + 3
∑

(−)n(3n − 1)!(n!)−3zn
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Recap: N=2 Special Geometry and Mirror Symmetry

Quantity of interest:  N=2 prepotential of 
type II compactifications on CY threefolds

Building blocks: periods

(classical)

∂i∂j∂kF(t) = cijk(t) =

(instanton corrections)

~ deformed chiral ring structure constants

Mirror symmetry implies

R(c,c)(X) ∼= R(a,c)(X̂) ∼= H3
∂̄(X̂)

in practice obtained as solution of PF diff eqs;
these are obtained directly from the toric CY data

F(t) =
1

2
XaFa(z(t))

ΠA(z) ≡ (
Xa, Fb

)
=

∫
γ3

A

Ω(3,0)(z)

= c(0)
ijk +

∑
nl

Nninjnkninjnk

∏
m qm

nm

1 − ∏
m qm

nm

(A-model)

R(c,c) : Oi · Oj =
∑

k

cij
k(t)Ok
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Recap: N=2 Special Geometry and Mirror Symmetry

Quantity of interest:  N=2 prepotential of 
type II compactifications on CY threefolds

Building blocks: periods

3-point correlators:

∂i∂j∂kF(t) = cijk(t) =

instanton corrections

~ deformed chiral ring structure constants

Mirror symmetry implies

R : Oi · Oj =
∑

k

cij
k(t)Ok

R(c,c)(X) ∼= R(a,c)(X̂) ∼= H3
∂̄(X̂)

in practice obtained as solution of PF diff eqs;
these are obtained directly from the toric CY data

F(t) =
1

2
XaFa(z(t))

ΠA(z) ≡ (
Xa, Fb

)
=

∫
γ3

A

Ω(3,0)(z)

= c(0)
ijk +

∑
nl

Nninjnkninjnk

∏
m qm

nm

1 − ∏
m qm

nm
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Fluxes and D-branes on Calabi-Yau manifolds

Physical motivation:  
reduce SUSY from N=2 to N=1

Flux though p-cycle

CY 3-fold X

D-brane wraps p-cycle and 
extends over space-time

N=1 SUSY on 3+1d world volume

What are the effective superpotential W,
and the effective gauge couplings ?

New feature: open string instantons

W.Lerche, Trieste Spring School 2003Part 2
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Turning on fluxes

The 10d Type II strings have various 
massless antisymmetric, (p-1)-form tensor 
fields C(p-1), coupling to (p-2)-branes.

Field strengths:   

In a CY compactification, various H’s can be “turned 
on”, ie, the H-flux through a p-cycle is non-zero:

H(p)
NSNS H(p)

RR

Type IIA:  p=       3,7                  2,4,6,8

Type IIB:  p=      1,3,7               1,3,5,7,9

We will mainly consider only (quantized) RR-fluxes, 
corresponding to D-branes

10d action:   non-vanishing flux will typically induce 
                     non-zero potentials and SUSY breaking

∫
γp

H(p) != 0

H(p) = dC(p−1)

S ∼
∫

H(p) ∧ ∗H(p)
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Type IIB string on three-fold     with 3-form flux

It can be shown that upon turning on H(3) flux, N=2
SUSY is broken to N=1 SUSY with superpotential:

Denote 3-cycle dual to flux H(3) by    
and expand in integral symplectic basis of 3-cycles:

H̃(3) ≡ τ H(3)
NSNS + H(3)

RR

Type IIB coupling: 

set in the following H(3)
NSNS → 0

Γ3

Γ3 = Naγ3
a + Nbγ3

b

WIIB/X̂ =

∫
X̂

Ω(3,0) ∧ H̃(3)

= NaXa + NbFb ≡ NAΠA(z)

Then

where ΠA = (Xa, Fb) are nothing but the period
integrals !

X̂

WIIB/X̂(z) =

∫
Γ3

Ω(3,0)(z)

τ ≡ C(0) + i e−ϕ

Na ∈ Z
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Type IIA string on three-fold      with fluxes

Thus, the superpotential is completely determined by 
the “bulk” geometry:  spont. broken N=2 SUSY

Rule:  replace period by volume integrals
          ... will be corrected by world-sheet instantons

flux numbers

Note that flux appears as auxiliary field in N=2 eff action

A priori, it would be hard to compute the instanton 
corrections, but mirror symmetry predicts

X

ΠA(z(t)) = (Xa, Fb) =
(
1, ti, ∂iF , 2F − ti∂iF

)

Φ = t + θ2H(2) + ...

Thus, if

as above !

then 

= N (6) + N (4)t + N (2)t2 + N (0)t3 + O(e−t)

WIIA/X(t) = WIIB/X̂(z) =
∑

NAΠA(z(t))

〈H(2)〉 = N (2) #= 0∫
d4θF(Φ) → ∫

d2θN (2) ∂
∂Φ

F(Φ) ≡ W

WIIA/X(t) =

∫
X

3∑
k=1

H(2k)
RR

( ∧ J (1,1)
)3−k

+ ...
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A first glimpse of Quantum Geometry: monodromy

the dimensions of p-cycles loose their invariant meaning !  

Periods                            :  sections valued in 

Non-trivial loops in the moduli space 
will thus induce monodromy

ΠA = (Xa, Fb) Sp(2h2,1+2, Z)

ΠA → ΠA · R, R ∈ Sp(2h2,1+2, Z)

Consider eg looping around 
in the semi-classical, large volume regime:

z ∼ e2πit → 0

t ∼ 1
2πi

ln z → t + 1

Thus 

Looping generic (non-perturbative) singularities will
typically mix all fluxes which each other:

NA → R · NA

Since

NA =

∫
γpA

H(pA)

Z = N (6) + N (4)t + ...

→ (N (6) + N (4) + ...) + (N (4) + ...)t + ...

MCS(X̂)
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D-Branes on Calabi-Yau manifolds

The eff space-time physics depends on the
properties of the wrapped internal part of the brane   

induced metric

Various manifestations:

CY 3-folds X

world volume
3+1d  N=1 SUSY “brane world”

p-branes wrapping p-cycles 
appear as particle excitations in 
N=2 eff theory

Σ Σ

We are interested in BPS configurations that break 
1/2 of the SUSY  (N=2 -> N=1)

Condition for “SUSY p-cycles”: 
covariantly constant spinor    , with  η

Γ ≡ 1√
h

εα1...αp+1∂α1X
m1...∂αp+1X

mp+1Γm1...mp+1

(1 − Γ)η = 0

pull-back to 
world-vol

10d Gamma
matrices

Two classes of solutions:

“A-type” branes:  wrap special lagrangian cycles 

“B-type” branes:  wrap holomorphic cycles 

Σ(p=3)
A

Σ(p=0,2,4,6)
B
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A-type branes

Wrap “special lagrangian” cycles ΣA

dim(ΣA) = 1/2dim(X) = 3

f∗J (1,1) = 0

Pull-back of Kahler form vanishes;   f : ΣA → X

f∗(Im eiθΩ(3,0)) = 0

Pull-back of holom 3-form vanishes   

U(1) gauge field on world-volume must be flat
F = 0

What are the moduli of the brane ?
A priori:   

dimR(MΣA) = b1(ΣA)

which can be odd ... 
but we need complex fields for SUSY reasons

Pair up with “Wilson line” moduli of the flat U(1) 
gauge connection to get complexified moduli 
fields:

t̂i, i = 1, ..., dimC(MΣA, WL) = b1(ΣA)
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B-type D-branes

Wrap holomorphic submanifolds:       ,   p=0,2,4,6 

Apart from the holomorphic embedding geometry,                        
                      , there is more structure: 
the gauge field configuration, “U(N) bundle V”
(if N branes coincide)

Eg for D6 branes (wrapping all of X), SUSY requires
that the gauge bundle V is holomorphic:

Important correspondence:

(NB: further “stability” requirements)

Gauge field configuration V               brane bound states                            

...due to anomalous world-volume couplings:

f : ΣB → X

Fij̄ = 0

RR tensor fields Dirac genus

C ≡
⊕

k

C(k)

{
Â(R) = 1 + 1/24R2 + ...Type IIA: k=odd

Type IIB: k=even

Σ(p)
B

SWZ =

∫
Σ(p)

B ×R
C ∧ Tr[eF ] ∧

√
Â(R)

∣∣∣
p+1form

Chern 
character of V
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so if there is an instanton configuration V such that
then there is an induced coupling

                                   =  source term for n D0-branes !

Example: D4-brane

SWZ =

∫
Σ(4)

B ×R

1
2 C(1) ∧ F ∧ F + ...

More generally:

n gauge instantons on p-brane
bound state of the p- with 
n (p-4)-D-branes

n

∫
C(1)

Even more generally:

A brane configuration of r D6 branes on CY X
is characterized by the “generalized Mukai” charge 
vector Q:

Q = Tr[eF ] ∧
√

Â(R)

=
(
Tr1, T rF, 1

2(TrF )2 − TrF 2 + 1
24TrR2, ...

)
∫

X
Q =

=
(
r(V ), c1(V ), ch2(V ) + r

24c2(TΣB), ch3(V ) + r
24c1(V )c2(TΣB)

)
Thus

D-brane RR charges=
(
M (6), M (4), M (2), M (0)

)
This gives direct translation between gauge bundle data
(Chern classes of V) and D-brane charge content   

1
2

∫
F ∧F = n
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non-linear Sigma 
A-type Model  

non-linear Sigma 
A-type Model  

Mirror symmetry and D-branes

Recap mirror map:

B-branes wrapped over
holom. (0,2,4,6) cycles
of

RR fields:

Type IIA/X ←→ Type IIB/X̂

{
C(1), C(3), C(5), ...

} ←→ {
C(0), C(2), C(4), ...

}
Dp(=even) branes Dp(=odd) branes

Equivalence of non-perturbative theories implies
equivalence of

A-branes wrapped over
special lagrangian 3-
cycles of 

This is reflected in the 2d string world-sheet boundary 
conditions of the N=(2,2) superconformal currents:

B-type branes A-type branes

JL = JR

TL = TR

JL = −JR

G±
L = ±G±

R G±
L = ∓G±

R

TL = TR

Mirror symmetry just switches                      !JR ↔ −JR

X X̂
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Tension of wrapped D-branes

(particles in 4d N=2 SUSY)

Recall factorization of CY moduli space:

MX = MKS(t) × MCS(z)
~    ...even        ...odd     cycles

The mass of wrapped B-branes depends only on the 
Kahler moduli t, while the mass of the A-branes 
depends only on the complex structure moduli z.

Recall BPS mass formula: mBPS = |Z|
Central charge Z in N=2 SUSY algebra{
Q+, Q−}

= p · γ + Z

A-branes in Type IIB: 

essentially given by volume of wrapped cycle

B-branes in Type IIA:  

= Q0 +
∫

J (1,1) ∧ Q2 + 1
2

∫
J (1,1) ∧ J (1,1) ∧ Q4 + ...

(instanton corr)

Mirror symmetry:

= M (0) + M (2)t + M (4)∂tF (t) + M (6)(2F − t∂tF)(t)

= M (0) + M (2)t + M (4)t2 + M (6)t3 + O(e−t)

ZA/IIB(z) = MA
∫

γ3
A
Ω(3,0)(z) = MAΠA(z)

ZB/IIA(t) =
∫

X eJ (1,1) ∧ Q + O(e−t)

ZB/IIA(t) = ZB/IIA(z(t))
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Quantum Volume

Non-trivial identification:

MA
∫

γ3
A
Ω(3,0)(z) = M (0)+M (2)t+M (4)∂tF (t)+M (6)F0(t)

3-cycles on
on equal footing

0,2,4,6-cycles on
on equal footing too !

X X̂

Massless state in 4d:
for some AZ = 0 : ΠA → 0

Example: 
conifold singularity (strong coupling region)

Type IIB:   3-cycle Type IIA:   
6-cycle quantum volume 
(whole CY) X shrinks to 
nothing! 

However, the “embedded” 
0,2,4 cycles do not have 
vanishing quantum volume:

The classical geometric picture is 
swamped out by instanton corrections

MCS(X̂)

F0(t) → 0γ3
A → 0

(1, t, ∂tF (t)) !→ 0
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Again we see that the notion of p-cycles, and gauge 
bundle configurations V on top of them, has no good
meaning away from the semi-classical large radius limit !

Monodromy of RR charges

Recall that when encircling singularities in                ,
monodromies will be induced on the periods:

ΠA → ΠA · R, R ∈ Sp(2h2,1+2, Z)

Thus, just as before the flux numbers NA, now the D-
brane charges MA will get mixed.

Eg., encircling                           in z ∼ e2πit → 0 MCS(X̂)

induces  t -> t+1, and

Z = M (0) + M (2)t + ....

→ (M (0) + M (2) + ...) + (M (2) + ...)t + ...

ie., the D0 brane number jumps 

roughly: ”tensoring V by a line bundle”: Z∼ ∫
eJ (1,1) ∧ eF

MCS(X̂)

MCS(X̂)
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Central charge and domain walls 

What is the significance ?

We have seen that in type IIB compactifications, 
3-fluxes H(3) induce an N=1 superpotential:

WN=1(z) = NAΠA(z)

However the same expression gave the central charge
of a wrapped D3 A-type brane:

Replace fully wrapped D3 brane by a D5 brane:

X̂ X̂

Domain wall in 3+1d

Central charge of a 
DW is known to be Z = ∆WN=1

However, the D5 brane tension is 
still 

Z(z) = MAΠA(z)

γ3
A

γ3
A

Z = MA

∫
γ3

A

Ω(3,0) = MAΠA

and it generates MA units of H(3) 
flux across the domain wall
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Moduli of D-brane configurations

Consider 1/2 BPS configurations breaking to N=1 SUSY:

Σ

CY moduliX

brane (and bundle) moduli 

4d N=1 SUSY eff action
depends how on moduli ?

t, z

t̂, ẑ

Seff(t, t̂, z, ẑ)

Focus on
complex structure moduli:

z ∼ γ3
A

ẑ ∼ γ̂3
N

sizes of 3-cycles

sizes of 3-chains

Kahler moduli:

t ∼ γ2
i

t̂ ∼ γ̂2
n

sizes of P1's

sizes of disks ending on D-brane

Decoupling theorems (from CFT):

B-branes

A-branes

W (z, ẑ), τ (z, ẑ)
D(t, t∗, t̂, t̂∗)

W (t, t̂), τ (t, t̂)
D(z, z∗, ẑ, ẑ∗)

holom. potentials
FI D-term potential

holom. potentials

FI D-term potential

{
{
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Preview

Next time:  use mirror symmetry

and set up math framework for systematically 
computing superpotentials for a large class of D-
brane geometries

WA/IIA(t, t̂) = WB/IIB(z(t), ẑ(t, t̂))
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