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[Mirror Symmetry and N=1 Supersymmetry J

Part 1 W.Lerche, Trieste Spring School 2003

@Exactly computable quantities are typically “BPS”:
holomorphic objects protected by SUSY

N=2: prepotential F (+ infin sequence F )

@Recent progress:

N=1: superpotential W, gauge coupling 7
(+ infin sequence Fy1 )

Non-pert. exact results for string and YM theories !
(matrix theory, Chern-Simons, mirror symmetry....)

—

Reminds of the well-known computation of F for N=2 SUSY:

” 11 7 13

“special geometry”, “TFT", “geometric engineering”

@ We will show how to put the computation of N=1
superpotentials on an analogous footing:

[ N=1 Special Geometry ]

(main new ingredient: D-branes)
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[ Motivation: Quantum Geometry of D-branes J

@ Notions of classical geometry (eg., “branes
wrapping p-cycles, with gauge bundles on top”)
make sense only at large radius/weak coupling

oduli space

instanton corrections wipe out
classical geometry

“Gepner point”: rational CFT description

@ Monodromy:
brane configuration maps into “different” one

involving “other” branes and

fluxes

brane- G
antibrane pair rane-
brane pair

@ Stability:
brane configuration may become unstable



@ To address such problems, we need to have full
analytical control of F,W, over the full parameter
space ....which is more than just a series expansion
at weak coupling !

@ Note however:
N=2 SUSY: moduli space

N=1 SUSY: W = obstruction to moduli space



[ Overview J
@ Part 1

Recap: N=2 special geometry and mirror symmetry

@ Type Il strings on Calabi-Yau manifolds

@ Mirror map
® Topological field theory
@ Hodge variation and DEQ for period integrals

@ Part 2
Fluxes and D-branes on Calabi-Yau manifolds

@ Superpotentials from fluxes
@ Mirror symmetry and D-branes
@ Quantum D-geometry
@ Part3
N=1 SUSY and open string mirror symmetry

@ Superpotentials from D-branes
@ Relative cohomology and mixed Hodge variations

@ Differential equations for exact superpotentials
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[ Recap: Type |l Strings on Calabi-Yau 3-folds ]

@ For preserving N=2 SUSY in d=4, the compact
6dim manifold X should be Kahler and moreover, a

[ ¢1(R) =0
Calabi-Yau manifold { Holonomy group SU(3)
global holom 3-form Q(3:%)

\

metric g;; = 8;0,K  Kahler potential

Kahler (1,1) form J&Y = ig-dzdz’

@ The string compactification is described by a 2dim
N=(2,2) superconformal sigma model on X with
c=9, plus a free space-time sector

@ The induced N=2 SUSY effective action in d=4
contains massless fields, including hyper- and
vector supermultiplets

“decoupling™:

Its bosonic sector gives a sigma model with
target space

M = My X Mg

(special Kahler) (quaternionic)



@ These massless scalar fields correspond to
deformation parameters (moduli) of the CY, X.

These are associated with (p,q) differential forms

wP = . - sd2t AL d2P AdFOA ... dF

’I/]_,...,'I;p,']]_,...,]q

which are closed but not exact, ie., are non-
trivial elements of the cohomology groups

{wP9|§wP9) = 0}
{nPa)|nPa9 = §pra—1}

H(X,C) =

These give zero modes of Laplacian: A5 = 99" + 99
(massless fields in 4d)

@ There are two sorts of moduli:

Kahler moduli (size parameters)

ti ~ wiY, i=1,...,h"" =dimH"!
Complex structure moduli (shape parameters)
Za ™~ wéz’l), a=1,..h"=dimH>!

(hP9 = “Hodge numbers”)

@ How do the moduli map to the fields in the effective
Lagrangian ?



[ Mirror Symmetry of CY threefolds ]

@ For “every” Calabi-Yau X, there exists a mirror X
such that the Kahler and complex structure
sectors are exchanged:

H"(X)
H*'(X)

H2’1(5(\)
Hl,l(j(\)

e 11

.e., hP9(X) = R PI(X)

@ The physical meaning is:

Type llA strings compactified onX are
indistinguishable from Type Il strings
compactified on the mirror of X

ITA/X +— IIB/X

(-dilaton) —
My = Mcs(X) = MKs(X)
My =  Mgs(X) = Mcs(X)

(We will consider here only the vector
supermultiplet moduli space)



Why is mirror symmetry useful ?

... basic idea:

Type lIA B S Type |IB

size of 2-cycles ’Yiz size of 3-cycles ’Yi’x
governed by Kahler governed by CS
param ¢; param z,

Important quantities: quantum volumes ("periods™) 114

(AJENYE L = 11, = / QG0
721: ,73
~ tF+ O(e™) ~ In(2)* + O(2)
world sheet instantons no instantons can
wrapping 'yz-z wrap !

“A-model’: “B-model’:
corrected exact !




@ Significance:
The periods are the building blocks of the prepotential.

Pick an integral basis of homology 3-cycles with

intersection metric X = (_01 (1)) Sp(2h*' + 2, Z)
structure

Thus one can split: {74} — {Ya, Y5}
and write:

Mi(2) = (X, ) = / QE0), / 06) (2)

a

In terms of these “symplectic sections”, one has
for the prepotential:

[ﬂz) — ;Xaf%z)]

What remains to do is to insert the mirror map:

ti(z) = —In(zq) +... — 2o = qi(1 4+ O(q))
— —t
which gives: (g=e™)
1 ° n n
{f(t) = g—cmkt%ﬂt’w > Ny Lis(qi™...q,™) ]
classical instanton
corrections q"
Integers counting maps Lis(q) = P

Pl - X k
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[ Special Geometry of the N=2 Vector-Moduli space ]

The prepotential F can be understood from three
inter-related viewpoints:

A)as 4d N=2 space-time effective
Lagrangian of vector supermultiplets

gauge couplings T:i(t) = 0;0;F (t)
“Yukawa” couplings c;;r(t) = 0;0;0,LF (1)
Kahler potential K(t,t) = —In[X,F® — X, F]

B) 2d world-sheet topological field theory
F = generating function of TFT correlators

Cijk(t) — <OZO]Ok> = 818]3]4?(12)

OPE: [Oi -0j = Zcijk(t)ak: “chiral ring” ’R]
k

chiral, primary chiral fields:
Gj—L1/2Oi|O>NS — G$1/2Oi|O>NS = 0

From N=2 algebra follows:
{GT,,5,G1,}0il0)ns = (2Lo — Jo)Oi|0)ns = O

Thus: h(O;) = 1/2|q(0O;)| (no pole in OPE)

@ However: need consider pairing of left-, right-moving
sectors .... (c,c) and (a,c) rings
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[ Topological Sigma-Model on Calabi-Yau Manifold J

1 , _
S=—— | d°z [1/29mn8Xm8X"—|—
4o’ »

+i g N DN + i g Dap? + Rygjzp "' AN
N=(2,2) supercharges:
Qi = pawiox’ Q. = §gguiox
Q+ — j{gig)‘ing Q- ]{gig)‘ing

Topological twist:
Redefine spins such that two of these supercharges
become scalars to serve as BRST operator with

Qprst> = 0

This condition projects to a finite number of
physical states in the TFT

@ Idea: the physical spectrum corresponds to the non-
trivial cohomology elements on X, via

QBrst — d = 0+ 0

Ambiguity in choosing which supercharges
correspond to 9, 0!

There are 2 inequivalent possibilities:

“A-model”: QersTt = Qi+ + Q-_
“B-model”: @BRrsT Q.+ Q.+
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@ A-Model: Qprst = Q.+ +Q_

Observables: Off’q) — “’rgfi?i)ﬁ...j A\ Aip¢31...¢3q

correspond to differential forms on X via:
Ao s dzt, i s dZ

BRST non-trivial operators Off’q)correspond to
cohomology classes Hg’q(/\PT*) a Hg’q(X)

The Kahler moduli correspond to
o) = Wiyl € HY

and generate the (c,c) chiral ring via the OPE:

c,c) . 1,1 1,1) 2,2
R ; Og,i)-Og,j) = D cif' 01(4,14)
k

The 3-point correlators look:
1,1 1,1 —2,—2
Cije(t) = <Of4,i )Of4,j )Of4,k )>
. (1,1) (1,1) (1,1) classical
/X Wi AW; T AWE T sintersection”

_|_Ze—fu*J/u*wz(1,1) /U*W§1’1)/u*w,il’1)
{u}

Instanton corrections

{u} = holomorphic rational maps P! — X
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@ B-Model: Qprst = Qi + Q.

Observables: Og”q) — w(p’q)il"'ip)\il...Aiptp;l...@b;q

Jl---]q
correspond to differential forms on X via:
Ai = g N — d/dzt, P o dF
BRST non-trivial operators og"” correspond to
cohomology classes HY(APT) = H;P(X)
[ Note: a negative degree can be converted to

a positive via contraction with the holom 3-form:
0Bo) . () _, ,B8-p9)

The complex structure moduli correspond to
01(8—1,1) _ w(—1,1)%)\i¢3 c H-U' >~ g21
and generate the (a,c) chiral ring via the OPE:

R(aac) . O(B_,;,l) . O(B_,[;l’l) — Z Cabc O(B—,6272)

The 3-point correlators look:

—1,1 —1,1 2,—2
cave(z) = (05 V05O

»C

_ / (QE0 1D p (1D A (1Y A E0)
X

This is an exact, classical result !
(constant maps only)
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[Recap: Classical and quantum cohomology rings J

@ B-Model: (complex structure moduli)

(a,c) chiral ring O( L), ( e Z Cab® O](B_,cz’z)
is isomorphic to the classical cohomology ring

H*'(X)Uu H*(X) — H"“*(X)
@ A-Model: (Kahler moduli)

(c,c) chiral ring O(1 1) 0,(41,}1) — Z mk 0(2 2)
k
is isomorphic to a quantum deformation of the

cohomology ring
H"(X)u H"(X) — H**(X)

because of the instanton corrections

@ Mirror symmetry:

[ A model on X is equivalent to the B-model on X ]

REI(X) = R@I(X) = Hy(X)
quantum 5 Do B classical
corrected A Za02p0Z: (B)
t) = t
zgkz( ) Z Btz 815]' 8t abc(z( ))

[
8;0;0:F (t)
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C) Viewpoint of variation of Hodge structures

Consider in B-model the variation of the
holomorphic 3-form under deformations of
the complex structure:

Q*0(z) € HY (notion of complex
5.039(2) ¢ HGY g HGD structure changes)
(5Z)2Q(3,0)(Z) c H(3,0) D H(2,1) D H(1’2)
(5z)3Q(3,0)(z) - H(3,0) an H(2,1) P H(1,2) D H(0’3)

Sequence terminates when H? is exhausted,
so higher derivatives are not independent

Fixing a basis of H3, we can thus write a matrix DEQ:
(true modulo exact pieces) Q(3,0)
wC(L2,1)
C‘,6(111,2)

0(0,3)

Ve = |0, — Ag(2) |- = 0

Y
]

Recursive elimination of the higher components
gives a set of higher order “Picard-Fuchs” operators”
acting on integrals of the holom 3-form:

ﬁa'/ Q(S’O) — ,CaHA =0
i

The solutions are thus nothing but the periods
we were looking for !
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@ Flatness of moduli space:

The matrix first oder operator can be decomposed:

V., = 8, — Au(2) = 9, — T, — C,

% 1

Fa: * % Ca,: (Ca)bc
% ¥ % 1
% % %k

“Gauss-Manin”-connection chiral ring structure
constants

One can show that | V,, V| = 0

which means that there are “flat” coordinates,
for which the connection vanishes, I', = 0

These flat coordinates are precisely the Kahler
parameter of the associated A-model, t;(z,)!

For these coordinates one has:
Ma(2(8) = (Xo, Xi, 7, F°) (2(2))
— (1, t;, 8;F, 2F — tjajj-')

~ (1, t, t2 + O(e™), 3 + (’)(e_t))

soindeed: F(t) = %Xa]-'“(z(t))
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[Periods and DEQs for toric Calabi-Yau manifolds]

|dea: describe 2d superconformal non-linear sigma-
models as IR limits of a linear sigma model (A)
or Landau-Ginzburg model (B)

Type lIAon X Type IIB on X
Linear Sigma Model Landau-Ginzburg
(LSM) S . > Model (LG)
mirror
IR IR
non-linear Sigma non-linear Sigma
A-type Model S _ > B-type Model
mirror

@ A-Model on X:
LSM = 2d U(1) gauge theory with fields ¢», chargesq’,
D-term potential: V = D?,
D = Yot = o0

Fayet-lliopoulos parameters = Kahler moduli of X
(i =1,..., A" (X))

The charge vectors q are the most basic data of
“toric” Calabi-Yau’'s X: LSM formulation is canonical
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@ B-Model on X :

Mirror geometry is described by IR limit of a 2d
Landau-Ginzbug (LG) model, which is defined entirely
in terms of the charge vectors q,, of the A-model !

LG superpotential: Wie = Zanyn

with constraint: Hyn%‘i — 1

The {a,} parametrize the complex structure deformations

of X via .
H ap," = z,4 (@=1,..,h%(X) = h"(X))
n

2, ~ e ‘4 ... (mirror map)

C ifX compact
@ Note: Yn € x e T _
C* if Xnon-compact (y,, = e #")

We will consider only non-compact CY in the following

dy

n e_WLG(yaa')

n

@ holomorphic 3-form  Q®%(a(z)) = |]

n

satisfies Picard-Fuchs equation:
e R

L, 080 = { 1] 0
_

9(3?0) =0

n 0 \a,
(3an)q B H (3an)q
n|qe>0

n|q2<0

All what remains to do is to change variables a -> z(a)

PF equations immediate once the defining toric data
(charge vectors q) of the Calabi-Yau are given !
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[Example: normal bundle on PZJ

@ linear sigma model on P?: g = (1,1,1)
linear sigma model on O(-3)P?: g =(-3,1,1,1)

add extra non- /

compact coo to get CY ¢1 ~ Z qn =0

@ B-model LG potential:
3

Yo
Wie = aoyo + a1y1 + asy2 + as
Y1Y2
have used constraint y1y23y3 —1
Yo
® PF tor: L 0 9 9 ( 9 )3
operator: = — [—
P ! Oai0as0as Oay
- . aijasas
rewriting in terms of z = . gives:
0

Li(z) = 6°4320(1 4+ 30)(2 + 30)

...is of generalized hypergeometric type (6 = z9/9=z)

@ Solutions for the periods:
t(z) ~In(z) +3> (—)"(3n — 1)!(n!) 32"
0.F(z) ~ Gyi(—=[1/3) + Gi(—=|[2/3) ~ In(2)* +
invert t(z) and insert, integrate:

F(t) = —1/18t> + Y N,Liz(e ™)

indeed integers... counting world-sheet instantons in P2
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[ Recap: N=2 Special Geometry and Mirror Symmetry)

@ Quantity of interest: N=2 prepotential of
type Il compactifications on CY threefolds

1
Ft) = JXaF(2(1))
@ Building blocks: periods
Da(z) = (Xa, F°) = / Q30 (2)
Vi

in practice obtained as solution of PF diff egs;
these are obtained directly from the toric CY data

® (A-model)
Bzajc’)k]-'(t) = Cijk(t) =
(0) L, am"™
%Jk+;l S ! kl_qumnm
(classical) (instanton corrections)

~ deformed chiral ring structure constants
R(c’c) . Oz . Oj = Zcijk(t)ak
k

@ Mirror symmetry implies

RE(X) = R@I(X) = Hy(X)
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[ Recap: N=2 Special Geometry and Mirror SymmetryJ

@ Quantity of interest: N=2 prepotential of
type Il compactifications on CY threefolds

1
Ft) = JXaF(2(1))
@ Building blocks: periods
Da(z) = (Xa, F°) = / Q30 (2)
Vi

in practice obtained as solution of PF diff egs;
these are obtained directly from the toric CY data

@ 3-point correlators:

Bzajc’)k]-'(t) — Cijk(t) ==

= 9 + g N, ;Mg L1 gm™
Y ny J 1— Hm qmnm

instanton corrections

~ deformed chiral ring structure constants
R : OZ . Oj = Z Cijk(t)Ok
k

@ Mirror symmetry implies

RE(X) = R@I(X) = Hy(X)
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[ Fluxes and D-branes on Calabi-Yau manifolds J

Part 2 W.Lerche, Trieste Spring School 2003

@ Physical motivation:
reduce SUSY from N=2 to N=1

old X

4

«<— D-brane wraps p-cycle and
Flux though p-cycle extends over space-time

S~

N=1 SUSY on 3+1d world volume

What are the effective superpotential W,
and the effective gauge couplings ?

@ New feature: open string instantons



[ Turning on fluxes J

@ The 10d Type |l strings have various
massless antisymmetric, (p-1)-form tensor

fields CP-Y), coupling to (p-2)-branes.
Field strengths: H(P) — 4C®—1

Hns H
Type lIA: p= 3,7 2,4,6,8
Type lIB: p= 1,3,7 1,3,5,7,9

@ In a CY compactification, various H’s can be “turned
on”, ie, the H-flux through a p-cycle is non-zero:

/ H® £ 0
~P

We will mainly consider only (quantized) RR-fluxes,
corresponding to D-branes

@ 10d action: non-vanishing flux will typically induce
non-zero potentials and SUSY breaking

S ~ /H(p)/\*H(p)
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[ Type |IB string on three-fold X with 3-form flux ]

@ It can be shown that upon turning on H® flux, N=2
SUSY is broken to N=1 SUSY with superpotential:

—

_ 3,0 7 (3
WIIB/X\_ /XQ( 'AH®

H® = 1 Hgns + Hpp

7

Type lIB coupling: T = CO 4 ;e %

set in the following H](\:;’)SNS — 0

@ Denote 3-cycle dual to flux H® by 13

and expand in integral symplectic basis of 3-cycles:

I’ = N3+ Ny} N e Zz
Then
WIIB/)?(Z) = A39(3’0)(z)
= N°X, + N,F* = NATI4(2)

where II4 = (X,, F?) are nothing but the period
integrals !



[ Type llIA string on three-fold X with fluxes ]

@ Rule: replace period by volume integrals
... will be corrected by world-sheet instantons

3
—k
Wira/x(t) = / STHED (ATED)TE 4L
X p=1

= NO L ND¢ 4 N2 L NO 4 O(e™?)

flux numbers

@ A priori, it would be hard to compute the instanton
corrections, but mirror symmetry predicts

( Wrra/x(t) = WIIB/_;?(Z) = ZNAHA(Z(t))J

Da(2(t) = (X F°) = (1,4, 0,F,2F — t,0;,F)

@ Thus, the superpotential is completely determined by
the “bulk” geometry: spont. broken N=2 SUSY

Note that flux appears as auxiliary field in N=2 eff action
d =t+60°H® + ...
Thus, if (H®) = N® +£0

then [d*0F(®) — [d?0NPLZF(®) =W

as above !
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[A first glimpse of Quantum Geometry: monodromy)

Periods IT4 = (X,, F?): sections valued in Sp(2r*>'+2, Z)

Non-trivial loops in the moduli space Mcg(X)
will thus induce monodromy

Iy, — II4-R, Rec Sp(2h*'+2,2)

2mat

@ Consider eg looping around z ~ e — 0

In the semi-classical, large volume regime:
t~.tInz —- t41

Thus
Z = NO© L N@Wg

— (NO £+ N® £ )+ (N + )t + ...

@ Looping generic (non-perturbative) singularities will
typically mix all fluxes which each other:

N4 - R.NA4

Since
N4 = H®4)

yPA

the dimensions of p-cycles loose their invariant meaning !



[ D-Branes on Calabi-Yau manifolds J

Various manifestations:

CY 3-folds X

..

p-branes wrapping p-cycles
/ appear as particle excitations

N=2 eff theory
world volume
3+1d N=1 SUSY “brane world”

@ The eff space-time physics depends on the
properties of the wrapped internal part of the brane

@ We are interested in BPS configurations that break
1/2 of the SUSY (N=2 -> N=1)

Condition for “SUSY p-cycles”:
covariantly constant spinor 1, with (1 — I'")np = 0

1
T = _€a1---ap+18a1Xm1. O me+1Fm1.

— \/E *tH i »Mpt1
induced metric pull-back to 10d Gamma
world-vol matrices

@ Two classes of solutions:

“ ” . . ; —3
A-type” branes: wrap special lagrangian cycles Ef}f )
“B-type” branes: wrap holomorphic cycles 2{#=%2%9)




[ A-type branes J

@ Wrap “special lagrangian” cycles X 4

dim(Z4) = 1/2dim(X) = 3

@ f*JY = 0

Pull-back of Kahler form vanishes; f : Y4 — X

© f*(Im ewﬂ(?”o)) =0
Pull-back of holom 3-form vanishes

@F =0
U(1) gauge field on world-volume must be flat

@ What are the moduli of the brane ?
A priori:
d’l:mR(MgA) = bl(ZA)

which can be odd ...
but we need complex fields for SUSY reasons

=) Pair up with “Wilson line” moduli of the flat U(1)
gauge connection to get complexified moduli
fields:

A

£, i=1,..,dimc(Msx,, WL) = b;(Z4)



[ B-type D-branes J

@ Wrap holomorphic submanifolds: 2(p), p=0,2,4,6

@ Apart from the holomorphic embedding geometry,
f : X — X, there is more structure:
the gauge field configuration, “U(N) bundle V”
(if N branes coincide)

Eg for D6 branes (wrapping all of X), SUSY requires
that the gauge bundle V is holomorphic:

(NB: further “stability” requirements)

@ Important correspondence:

[Gauge field configuration V. <=> brane bound states]

...due to anomalous world-volume couplings:

Swz = /Eg)XRC; A T'r[eF] A \/A‘(\R)‘pﬂform

RR tensor fields Dirac genus

Type llA: k=odd AR) =1+ 1/24R* + ...

c= C(k){ o
” Type lIB: k=even Chern

character of V
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@ Example: D4-brane

SWZZ/ %C(l)/\F/\F—F...
ES)XR

so if there is an instanton configuration V such that ; /F/\F =n
then there is an induced coupling

n /C(l) = source term for n DO-branes !

@ More generally:

n gauge instantons on p-brane
— bound state of the p- with
n (p-4)-D-branes

@ Even more generally:

A brane configuration of r D6 branes on CY X
is characterized by the “generalized Mukai” charge
vector Q:

Q = Tr[ef] A/ A(R)

= (Trl, TrF,}(TrF)* — TrF*+ LTrR?...)

Thus /XQ _

= (r(V),c1(V), cha(V) + zea(Ts,), chs(V) + 5e1(V)ea(Ts,))

= (M9, MW, M®, M) D-brane RR charges

This gives direct translation between gauge bundle data
(Chern classes of V) and D-brane charge content
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[ Mirror symmetry and D-branes J

@ Recap mirror map:

Type ITA/X — Type ITB/X
RR fields:
{C(l), C(3), C(5),...} - {C(O), 0(2)’ C(4), }
Dp(=even) branes Dp(=o0dd) branes

Equivalence of non-perturbative theories implies
equivalence of

B-branes wrapped over A-branes wrapped over
holom. (0,2,4,6) cycles | <—> | special lagrangian 3-
of X cycles of X

@ This is reflected in the 2d string world-sheet boundary
conditions of the N=(2,2) superconformal currents:

B-type branes A-type branes

Jr, = Jr J, = —Jgr
Gi = +Gi Gi = FGi
T, = Tg T, = Tg

Mirror symmetry just switches Jp < —Jpg !
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[ Tension of wrapped D-branes ]

(particles in 4d N=2 SUSY)

@ Recall BPS mass formula: mpps = |Z|
Central charge Z in N=2 SUSY algebra
{@Q} =p-v+2Z
essentially given by volume of wrapped cycle

@ Recall factorization of CY moduli space:

Mx = MKs(t) X Mcs(z)
~ ...even ...odd cycles

The mass of wrapped B-branes depends only on the
Kahler moduli t, while the mass of the A-branes
depends only on the complex structure moduli z.

@ A-branes in Type IIB:
Zajip(z) = M4 f,yj QBGO(2) = MATI4(2)
@ B-branes in Type lIA:
ZB/rra(t) = fX e A Q + O(e™ ') (instanton corr)
=Qo+ [JEIVAQy+ 1L [JEVAJED A Q, +
=M + Mt + MY + MO 4 O(e™)

@ Mirror symmetry: [ZB/HA(t) = ZB/IIA(Z(t))]

= MO + M@t + MHo,F(t) + MO (2F — td,F)(t)
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[ Quantum Volume ]

@ Non-trivial identification:

MA [ QB0 (2) = MO+ M®t+ MW, F(t)+M O Fo(t)

3-cycles on X : 0,2,4,6-cycles on X
on equal footing on equal footing too !

@ Massless state in 4d:
Z =0: II4 — 0O forsome A

Example:
conifold singularity (strong coupling region)

M

Type lIB: 3-cycle ’)/i} — 0 == Type llA: Fy(t) — O
6-cycle quantum volume

(whole CY) X shrinks to
nothing!

However, the “embedded”
0,2,4 cycles do not have
vanishing quantum volume:

(17t7 6tl;1(t)) 7L> 0

The classical geometric picture is
swamped out by instanton corrections
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[ Monodromy of RR charges J

@ Recall that when encircling singularities in M¢s(X),
monodromies will be induced on the periods:

14 — HA°R, R € Sp(2h2’1—|—2,Z)

Thus, just as before the flux numbers NA, now the D-
brane charges M” will get mixed.

Ms(X) ha

4 1
(]
L[] (]
A '
~
4
e

@ Eg., encircling z ~ 2™ — 0 in M¢s(X)
induces t ->t+1, and

Z = MO + Mt 4 ...
— (M® + M 4 )+ (MDD 4+ )t + ...

ie., the DO brane number jumps

roughly: "tensoring V by a line bundle”: Z~ f el A ef

~ R
Again we see that the notion of p-cycles, and gauge

bundle configurations V on top of them, has no good

meaning away from the semi-classical large radius limit !
- y,
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[ Central charge and domain walls J

@ We have seen that in type [IB compactifications,
3-fluxes H®) induce an N=1 superpotential:

WNzl(Z) — NAHA(Z)

However the same expression gave the central charge
of a wrapped D3 A-type brane:

Z(z) = MATI4(2)

What is the significance ?

@ Replace fully wrapped D3 brane by a D5 brane:

s 4
Domain wall in 3+1d

Central charge of a
DW is known to be Z = AWn—1

However, the D5 brane tension is

still

Z =M | QB0 = MATI,
Y4

and it generates M” units of H®)

flux across the domain wall
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[ Moduli of D-brane configurations J

@ Consider 1/2 BPS configurations breaking to N=1 SUSY:

CY moduli ¢, z

brane (and bundle) moduli £, 2

~—4d N=1 SUSY eff action Scs¢(t, t, z, £)
depends how on moduli ?

@ Focus on
complex structure moduli:
z ~ ’Yf)il sizes of 3-cycles
2 ~ s, sizes of 3-chains
Kahler moduli:
t ~~? sizes of P's
t ~ 42 sizes of disks ending on D-brane

@ Decoupling theorems (from CFT):

B-branes { W(Zai)z z'(z,,%) holom. potentials
D(t,t*,t,t") FI D-term potential

A-branes { W (t,t), T(t,1) holom. potentials
D(z,z*,2,2%) FI D-term potential



[ Preview J

@ Next time: use mirror symmetry

Wara(t,t) = Wgrs(z(t), 2(t, 1))

and set up math framework for systematically
computing superpotentials for a large class of D-
brane geometries
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