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[Very Preliminary Draft — M. Spradlin]

3 Light-Cone String Field Theory

Comments on the Neumann Coefficients
In the last lecture we wrote the cubic string vertex as a squeezed state in the three-string
Fock space:

(3(1)
Here f{pt>ptiPt> A4) is a measure factor which we have not yet determined and D is the di-
mensionality of space time. This enters the formula because one gets one factor of (det F)"1/2

for each dimension transverse to the light cone. Finally we have made the convenient defi-
nition
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V(auO2,a3) = - E E Nmnam(r)an(s), (2)
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where

Nmn = firS$mn ~ ^\/^m(r)^n(s){^ ^~lX^)mn, Wm(r) = Jm2 + (a'pt^fl)2, (3)
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The matrix element Nmr^ expresses the coupling between mode m on string r and mode n
on string 5. These coefficients are called Neumann coefficients, for reasons that will become
clear later in this lecture. Although the X matrices are independent of //, the matrix F
depends on /J, (and the three p+'s) in a highly nontrivial way. In the fi —> 0 limit, it is rather
easy to show that these Neumann coefficients reduce correctly to the flat space case, where
explicit formulas are known for Nmr{.

A huge technology has been developed towards obtaining explicit formulas for NmT{ as
a function of /i and pr

+. This material is too technical to present in detail, so I will just
summarize the current state of the art. Recall that the dual BMN gauge theory is believed
to be effectively perturbative in the parameter

So, in order to make contact with perturbative gauge theory calculations, we are particularly
interested in studying string interactions in the large /i limit. In this limit it can be shown
that

-̂ (13) _ _l_{-l)m+n+1 sm{irny)
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The first term encodes all orders in a power series expansion in A'. Specifically,

n-m/y
+ O(A') + + non — perturbative. (8)

It is intriguing that the nonperturbative corrections look like D-branes rather than instantons
(i.e. they are Oie'1^) rather than O(e-^g2)).

We have only written the Neumann coefficient JV , but in fact it is easily shown that
in the fi —> oo limit,

Af(13) = ,/£X (1 )T iV(23) = , / T ^ X ( 2 ) T (9)
ly mn yy^mn > i v mn V U^mn i V1)

while all other components are zero. This fact actually has a very nice interpretation in the
BMN gauge theory, so let me now present the following chart to explain how to think about
the correspondence:

'three-point' functions <—> matrix elements of \V)
at A' = 0 at (i — oo

\ \ /V

matrix elements of E,
splitting-joining operator

I will not propose to make sense of this identification when A' ^ 0. See next lecture.

The Consequence of Lorentz Invariance

Our vertex (1) still has an arbitrary function / of the light-cone momenta and //, and a
factor (det r)(2~D)/2, which is also a terribly complicated function of the light-cone momenta
and /i. In flat space (/i = 0), it was shown long ago that Lorentz-invariance of the vertex,
and in particular, the covariance of S-matrix elements under J+~ Lorentz transformations,
requires D = 26 and / = (detT)12.

This fact is nice for the oscillator representation since these factors then cancel and (1)
can simply be written as

\V) = 5(pt+pl+pZ)exp [^(0^,0^,0^)] |0(1))|0(2))|0(3)>, for fi = 0, (10)

with no additional factors (except perhaps some innocent overall factors like 2?r's which we
have not carefully kept track of).



However, in the functional representation this fact is quite mysterious! It means that the
correct, Lorentz-invariant string vertex in flat space,

# 3
r

= 92 /
J
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+pt)(detT)12A{xl((j) + x2(a) - x3{a)} J[ (dp+Dxr(a) $\p+,xr(a)]) ,
lr=l

(11)
has a very peculiar measure factor (detF)12 which would have been impossible to guess
purely from the functional approach.

The plane wave background with fi > 0 has fewer Lorentz symmetries than flat space.
In particular, it does not have the J+~ or J~J symmetries. This means that it is impossible
to use Mandelstam's method to determine what the corresponding measure factor is when
\i > 0. Our vertex for string interactions in the plane-wave background remains ambiguous
up to an overall (probably very complicated) function ofpi,p2,pt and \x.

We determined the form of the vertex by requiring continuity of the string worldsheet,
but evidently that is not enough to solve our problem. In the rest of this lecture we will
learn why light-cone string field theory works, and what the physics is that does completely
determine the light-cone vertex. To be precise: I should say that we will discuss the physics
which in principle determines the light-cone vertex uniquely. The actual calculation of what
this overall function is has not yet been performed, and is likely rather difficult.

The first step on this exciting journey into the why's and how's of string field theory will
be a look at the four-particle scattering amplitude.

A Four-Particle Amplitude

We consider a 2 —» 2 particle scattering process at tree level. This exercise will be useful for
showing how to use the formalism of light-cone string field theory to do actual calculations.
Without loss of generality we can choose to label the particles so that 1 and 2 are incoming
(positive p+) and 3 and 4 are outgoing (negative p+) and furthermore — p\ > P\ > pt > ~pt •
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Figure 1: The s-channel, l + 2->-5-»3 + 4.

The s-channel amplitude (see Fig (1)) is

As= [°°dT5 f5 A75 <0(B)|V(a4,«4,oJ)|0(3)>|0(4)>
Jo Jo _ •»

5->3+4
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Let us explain each ingredient. First of all, trivial overall p+-momentum conserving delta
functions are always understood but have not been written in order to save space. The
processes 1 —> 2 + 5 and 5 —> 3 + 4 are as indicated, making use of our vertex function V. In
between these two we have inserted the light-cone propagator for the intermediate string 5:

By iif(5) we mean of course the Hamiltonian for string 5:

1 00

% ) = T E wn(5)ai(5)an(5). (14)
n--oo

Finally, the integral over cr5 enforces the physical state condition on the intermediate string
by projecting onto those states which satisfy

oo

N{5) - N{5) = £ nal{5)an{5) = 0. (15)
n——oo

The full amplitude has two additional contributions. In the t-channel, we have first
1 -» 3 + 6, and then 6 + 2 -+ 4:

At = / dT6
OO

L, a^agJlOa^). (16)

Finally in the u-channel, 2 —> 3 + 7 and then 7 + 1 —> 4:

fP7 ^A* = f dT7 f
P7 ^ . ( 0 l ) 7 |y (a 1 ,a 7 ,4) |0 4 >

^ - o o 0̂ \pj\
EH)2i(NN)/t ^ of)|03>7>. (17)

What are these things? Well, each A is just a state in .T74, the fourth power of the string
Fock space. If we want to know the amplitude for scattering four particular external states,
then we just have to calculate

<3|<4|.A|1)|2) (18)

(summed over channels) to get a number (well, a function of pf and /i), namely the scattering
amplitude.

It should be emphasized that the harmonic oscillator algebra gives very complicated
functions of T and a which need to be integrated over. Actually performing this calculation
is far outside the scope of these lectures, but I wanted to make one very important point
about the general structure of this amplitude.



Figure 2: A schematic picture of the moduli map for the tree level 4-particle interaction.

Let us denote Hi = {(Tr,crr) : T € [0, oo), crr € [0,p+]}, which are the two dimensional
regions over which the quantities Ai must be integrated. There exists a particular map
z(Tr,crr)

1 from the coordinates (Tr, ar) which patches together these three integration regions
onto a sphere as shown in the above figure.

Let us define A(z) to be the image of the three individual As, At, and Au on the sphere,
patched together via the moduli map. It turns out that in flat space, precisely in the critical
dimension D = 26, the function A(z) on the sphere is continuous along the boundaries
between the images of Hi (that is, continuous along the dark lines in Figure (2)), which
means that the amplitude is given completely by

(19)/ dTidaiAi = / d2z A(z).
Jn; Js* y '

[Note: From my expressions from Ai it appears that they do not depend on the dimension.
I should explain why, in fact, they do.]

Why Light-Cone String Field Theory Works
The right hand side of (19) has a very familiar form. When most of us learned string theory,
we learned that in order to calculate a four-particle amplitude at tree level in closed string
theory, one inserts four vertex operators on the sphere. The positions of three vertex oper-
ators can be fixed using the conformal Killing vectors, and one is left with some amplitude
(depending on the particular vertex operators inserted) which must be integrated over z, the
position of the remaining vertex operator. The moduli space of a sphere with four marked
points (the positions of vertex operators) is therefore the sphere itself.

1I am not aware that any name has been given to this map in the literature. I will call it the 'moduli
map.' It should not be confused with the related moduli map, which is a conformal map from a light-cone
diagram with fixed moduli into the complex plane.



In fact, equation (19) expresses the precise equivalence between amplitudes calculated
in light-cone string field theory and amplitudes using the covariant Polyakov path integral.
This equivalence relies on two important facts:

(1) Consider all of the light-cone diagrams which contribute to an amplitude with g
closed string loops and n external particles. The diagrams will be labelled by 6g + 2n — 6
parameters: g 'p+-momentum fractions', 3g + n — 3 twist angles, and 2g + n — 3 interaction
times. The first important fact is that the moduli map provides a one-to-one map between
this 6g + 2n — 2-dimensional parameter space and the moduli space of Riemann surfaces of
genus g with n marked points (the locations of the vertex operators). A mathematical way
of saying this is that the light-cone vertex provides a triangulation of the moduli space M.g,n.

(2) The second important fact is that the integrand of the light-cone vertex, including
all of the complicated structure involving the Neumann matrices and determinants thereof,
maps under the moduli map to precisely the correct integration measure which arises from
the Polyakov path integral!

The proof of these remarkable facts would take us too far afield, but I cannot stress
enough the importance of these facts, which are deeply rooted in the underlying beautiful
consistency of string theory. In fact, this equivalence can be used to prove the unitarity
of the Polyakov path integral. Although the path integral is not manifestly unitary, it is
equivalent to the light-cone formalism, which is manifestly unitary!

We are now in a position to answer some questions which may have been bothering some
people since the last lecture: why is it sufficient to consider a cubic interaction between the
string fields, and why is it sufficient to consider the simplest possible cubic interaction, with
only a delta-functional (and, for example, no 5§[X{G)]/5x{o))7 Well, now we know that the
cubic interaction is sufficient because (1) the iterated cubic interaction covers precisely one
copy of moduli space and (2) the vertex we wrote down precisely reproduces the correct
integration measure on this moduli space. We are not allowed to add any interactions
besides the cubic one, because that would ruin our single cover of moduli space!

It is often said (even in papers that I have written) that the symmetry algebra (in par-
ticular, the supersymmetry algebra, for superstrings), 'uniquely' determines the interacting
string Hamiltonian to all orders in the string coupling. This is a little bit misleading2. For
example, in the supersymmetric theory one could take Q = (anything) and then define
H = (anything)2, and as long as (anything) commutes with rotations and translations, one
would have a realization of the symmetry algebra! The symmetry argument, for example,
provides no motivation for considering only a cubic interaction. The real physical principles
at work are the ones we explained in this section: (1) correctly covering moduli space, and
(2) getting the correct integration measure.

Contact Terms
Now, fact number (1), that the cubic delta-functional vertex covers moduli space precisely
once, is essentially a mathematical theorem about a particular cell decomposition of M.g,n
that holds quite generally. However, (2) can fail in subtle ways in certain circumstances.

2Those who are more direct may prefer the word 'wrong.'



In particular, it can happen that one or more of the A^s has singularities in moduli space.
A typical case might be for example that Ai(T, a) ~ ^3 near T = 0, which is not integrable.
This gives rise to divergences in string amplitudes, which need to be corrected by adding
new string interactions to the Hamiltonian. However, these interaction terms are always
delta-function supported on sets of measure zero (T = 0 in this example) in moduli space,
and therefore they do not spoil the beautiful triangulation that the cubic vertex provides.
As long as we don't add any interaction with finite measure, we are OK.

Definition. I will define a contact t e rm to be any additional interaction in the Hamilto-
nian, which necessarily lives on a set of measure zero in moduli space.

Corollary. All contact terms are divergent. Proof: If they were finite, and we integrate
them over a set of measure zero, then they would give zero, so there would be no point to
have them in the first place. :)

In flat space, it is known that the bosonic string requires no contact terms, while the
IIB superstring is widely (though not universally) believed to require an infinite number of
contact terms. The word 'believe' can be thought of in the following sense: since the purpose
of contact terms is to eliminate divergences (and indeed we will see how they arise from short-
distance singularities on the worldsheet), one can think of a contact term as a counterterm
in the sense of renormalization. Now, there are infinitely many such counter terms that one
can write down for the IIB string, and while some of them may have coefficients which are
equal to zero, it is widely believed that infinitely many of them will have nonzero coefficients.
We will see in tomorrow's lecture how these contact terms arise.

For strings in the plane wave background this question has not been addressed, mostly
because we do not have the analogue of the covariant Polyakov formalism in which we can
actually calculate anything. First we need to calculate this overall factor f{P\,P2iPti^)
and then see if there are any divergences which give rise to contact terms.

Any of the contact terms in IIB string theory in flat space will surely give rise to fi-
dependent contact terms in the plane wave background. In principle there could be new
contact terms introduced which go to zero in the limit \i —> 0. Certainly I do not know how
to disprove such a possibility, but I believe this is unlikely: contact terms may be thought
of as coming from short-distance singularities on the string worldsheet, but the addition of
a mass parameter \x on the worldsheet should not affect any of the short-distance behavior.

Superstrings

Let's go back to the beginning of lecture 2, but add fermions to the picture. We consider
now a superparticle on the plane-wave solution of IIB supergravity. The physical degrees of
freedom of the theory are encoded in a superfield $(x, 6) which has an expansion of the form

<S>(p+,x,6) = (p+fA(x)+p+eaUx) + Oaid^p+Aaia2(x) + --- + j ^ e 8 A * ( x ) , (20)

where 98 is short for eight powers of 6 contracted with the fully antisymmetric tensor e.
Initially we allow all the component fields to be complex, but this gives too many components



(256 bosonic + 256 fermionic) so we impose the reality condition

,9)y (21)

which cuts the number of components in half. Note, in particular, that this constraint
correctly gives the self-duality condition for the five-form field strength in flat space.

When we second quantize, this hermiticity condition implies that the inner product on
the string field theory Hilbert space % is not the inner product naively inherited from the
single string Hilbert space. In particular,

4a)(P+)t=-'V>(-P+)> (22)

where the states \a) and \o!) differ by reversing the occupation of all of the fermionic zero
modes, i.e. if \a) = |0>, then \a!) = 08|O), etc.

The action for the free superparticle is

=\j d10xd8 $(V2 - 2ind-9ndo)$, (23)

where n = F1T2r3r4 . The quantity in brackets is the quadratic Casimir of the plane wave
superalgebra. It is straightforward to insert the superfield (21) into (23) and find the resulting
spectrum.

The action (23) of course may also be obtained simply by linearizing the action for
IIB supergravity around the plane wave background, and the spectrum may be obtained by
linearizing the equations of motion around the background and finding the eigenmodes. This
has been worked out in detail by Metsaev & Tseytlin, but we will use only one fact which
emerges from this analysis. It turns out that there is a unique state with zero energy, which
we will of course call |0). The corresponding spacetime field is a linear combination of the
trace of the graviton over four of the eight transverse dimensions, ha, and the components
of the four-form gauge potential <2i234 in the first four directions. This field lives in the 9^
component of the superfield, where we define left and right chirality with respect to II (i.e.,
9R,L = | (1 ± n)0). The only important fact which you might want to keep in mind is that
this spacetime field is odd under the Z2 symmetry which exchanges the two SO(4)'s:

ZA(p+)m = -A(p+)l0)Z. (24)

When we promote the superfield to string theory, it becomes a functional of the em-
bedding of the string into superspace: $\p+,x((j),9((j)]. The cubic interaction term has a
delta-functional for continuity of x(a), and also a delta-functional for the superspace coor-
dinates:

A[d1(a) + 92(a)-d3(a)}. (25)

One can write this delta-functional in an oscillator representation as a squeezed state involv-
ing the fermionic creation operators. The 'fermionic' Neumann matrices are easily obtained
from the bosonic Neumann matrices.


