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Abstract

The conformation space of proteins and peptides presents a complex energy profile
consisting of a tremendous number of local minima separated by energy barriers. Be-
cause of energy barriers, conventional simulations in the canonical ensemble are of little
use, they tend to get trapped in states of these energy local minima. Multicanonical
method overcomes this difficulty by performing a random walk in energy space and sam-
ples much wider phase space than by conventional methods . Following a brief discussion
of the powerful multicanonical simulation method, the intermediate steps of the simula-
tion starting from a given sequence as the input leading to the folded three dimensional
structure and the minimization procedure are summarized. Attempt to design a hybrid
generalized-ensemble algorithm, determination of the topographic structure of energy
landscape and conformational coverage of the low energy region are presented.

Biological macromolecules such as proteins have a well defined 3D structure which is es-
sential for their biological activity. Therefore, predicting the protein's structure by theoreti-
cal/computational methods is an important goal in structural biology. [1] The configuration
space of peptide's and protein's presents a complex energy profile consisting of tremendous
number of local minima; their basins of attraction were called localized microstates. The en-
ergy profile also contains larger potential energy wells defined over wide microstates (e.g., the
protein's fluctuations around its averaged structure), each including many localized ones. [2]
Proteins are expected to populate low energy wide microstates even at room temperature,
while peptides might also populate relatively higher energy microstates. The most stable wide
microstate corresponds to the native structure.

Because of energy barriers, the commonly used thermodynamic simulation techniques,
such as the Metropolis Monte Carlo (MC) [3] and molecular dynamics (MD) [4] are not
very efficient in sampling while the system may occur to be trapped in a basin. Therefore,
developing simulation methods that lead to an efficient crossing of the energy barriers has
been a long standing challenge.



The trapping problem of the MC and MD methods can be alleviated to a large extent,
by the multicanonical MC method (MUCA) of Berg and collaborators, [5, 6, 7] which was
applied initially to lattice spin models and its relevance for complex systems was first noticed
in Ref.[6]. Application of MUCA to peptides was pioneered by Hansmann and Okamoto [8]
and followed by others; [9] simulations of protein folding with MUCA and related generalized
ensemble methods are reviewed in Refs.[10] and [11].

Details about the implementation of MUCA are given in Ref.[12]. Here we only provide a
very brief description of the pro cess. The MUCA weights are a step function of the energy

«Ji(x) = e x p ( - ^ £ x + a,) for E^ < £ x < Et (1)

where the bi are inverse microcanonical temperatures, 6, = (fesTj)"1, and the a, are related
to microcanonical free energies. The a, are not independent, but follow from the bi. For the
determination of the 6, we use the recursion in its extension to continuum peptides [12]. It
relies on m = 1, 2 , . . . short runs with weights determined by b™^1 and the iteration from m — 1
to m is

&r_i = W-i1 + 9?-i M W f l T l / A ^ • (2)
Here the Hf1 are (not yet used) energy histograms for the range E^i < E < Ei and the
statistical factor g^_x incorporates information about all runs up to m. In particular, g™Lx is
zero if either tT^_x or Hf1 is zero, such that the proper limit of q™Lx lnfi^^/i?™] is also zero
in that situation.

As a showcase, we have first modeled the pentapeptide Met-enkephalin (Tyr-Gly-Gly-Phe-
Met) by the ECEPP/2 potential [13], which assumes a rigid geometry (i.e. constant bond
lengths and angles), and is based on non-bonded, Lennard-Jones, torsional, hydrogen-bond,
and electrostatic potentials, where the dielectric constant is t = 2.

Following the MUCA test runs at relatively high temperatures which enabled us to deter-
mine the required energy ranges, energy range was divided into 31 bins of 1 kcal/mol each,
covering the range [20,—11] kcal/mol. At each update step, a trial conformation was ob-
tained by changing one dihedral angle at random within the range [—180°; 180°], followed by
the Metropolis test and an update of the suitable histogram. The weights were built after
m = 100 recursions during a long single simulation, where the parameters bi and a* were
iterated every 5000 sweeps. From the production run, canonical ensemble expectation values
of thermodynamic quantities were obtained by re-weighting [14], e.g.

where each subscript is i = i(t) such that E^i < Et < E^, gives the canonically re-weighted
energy E as a function of T.

The lowest energy conformation (our suspected GEM) was found at E = —10.75 kcal/mol.
Here we define, following Hansmann et. al. [15], an order parameter (OP)

V b w {RS)OP = 1 — V b w - a{RS) (4)



where a\RS' ve of' are the dihedral angles of the reference state (which is taken as GEM)
and of the considered configuration, respectively. The difference a\ — cq is always in the
interval [—180°, 180°], which in turn gives for peptides

0 < < OP >T < 1 (5)

Figure. 1 shows the energy surface obtained by the multicanonical simulation run of one
million sweep plotted against energy and the order parameter [16]. Here, we would like to
point out that the utilized data is obtained by sampling of the conformational space and no
minimization procedure is applied. At high temperatures, where the peptide is in the random
coil state, the energy surface looks as one gaussian-like peak centered around the value of the
order parameter OP ~ 0.3. When the temperature is lowered, first a transition from the state
of random coil to globular structure is expected. In Figure.2 we show the same energy surface
of Fig.l(b) by grouping the conformations of 1 kcal/mol interval in energy. Curve A denotes
the energy interval —1 kcal/mol < E < 0 kcal/mol, which corresponds after re-weighting
to the temperature interval 315 K < Ta < 330 K. At this temperature, the energy surface
starts deviating from a smooth surface and develops a shoulder. We identify this temperature
as the starting of forming a structure rather than a random coil. Further down in energy
(temperature), the newly forming branch of the energy surface becomes more populated. At
the temperature 215 K < T& < 230 K denoted by the curve B, the energy surface displays
a typical structure bifurcating into two branches of almost equal height. From there on, the
branch having larger values of the order parameter wins and more conformations populate that
section of the conformational space. Our estimate of Ta and Tf, from the topographic structure
of the energy surface of Met-enkephalin are very close to the values of the collapse temperature
TQ = 295 ± 20 K and the folding temperature Tf = 230 ± 30 K, respectively, determined by
Hansmann et al [17]. We observe a third temperature denoted by the curve C in Fig.2 where
the glassy behavior sets in and many valley structure of the energy surface become clearly
pronounced. For our simulated peptide sample Met-enkephalin, this temperature is in the
range 155 K < Tc < 185 K. Below this temperature, the energy surface is made of valleys
which are well separated. The valley at the far-out end of the order parameter scale having
the conformations with the value of the order parameter in the range 0.98 < OP < 1 contains
the global energy minimum (GEM), respect to which the order parameter is evaluated. The
temperature Tc seems to correspond to the glass transition temperature estimate of Tg =
180 ±30 K, which value is based on the fractal dimension estimates. [18] In Fig.3 we plotted all
the conformations found with energy E < —10.5 kcal/mol with respect to the order parameter.
Their number is 3587 conformations in one production run of one million sweeps. As clearly
seen from Fig.3 that the conformations in this energy range are localized in one of the four
valleys, which are identified by the value of their order parameter OP ~ 0.80, 0.87, 0.92 and
0.98. The conformations in the neighborhood of the GEM take place within the same wide
microstate of the GEM but they are grouped into local microstates, each of which are one of
the above mentioned valleys. The small differences in values of OP comes from the differences
in side-chain angles. We observe no conformation anywhere outside the definite valleys when
the energy is less than about 1 kcal/mol above the GEM.

The number of conformations found in energy bins of 1 kcal/mol, which were plotted in
Fig.2, appear in Table I. The lowest bin is 0.75 kcal/mol and includes the GEM. The table



displays the distribution of sampled conformations according to the order parameter values,
namely the distribution with respect to how far they are in configuration space from the global
energy minimum. We also included in Table I the same distribution obtained in our simulation
of Met-enkephalin for the case of variable peptide-bond angles u>.

Next we have utilized the energy landscape paving (ELP) algorithm recently introduced
by Wille and Hansmann [19], which is designed to deform the energy surface to escape local
minima as well as to direct the search towards the unexplored regions. ELP samples the
significant local minima and the transition states without generating too many unimportant
conformations.

The central feature of ELP is to perform Monte Carlo (MC) simulation with a modified
energy expression which enables to keep the search away from the already explored regions.
The weight for a state is taken as

(6)

where T denotes temperature and E is the following replacement of the energy E:

E = E + f(H(q,t)) (7)

where f(H(q,t)) is a function of the histogram H(q,t) in a chosen "order parameter" q. In
order to test the efficiency of ELP, we adopted the simplest case and used the potential energy
itself as an order parameter and the weight is generated by E = E + H(E,t) where H(E,t)
is the histogram in energy. The histogram is updated at each MC step, hence the "time"
dependence of H(E,t), and normalized over the number of sweeps.

We have examined the performance of the ELP procedures in studying the low energy
conformations by applying to a linear heptapeptide with bulky side chains, deltorphin (also
known as dermenkephalin) (H-Tyr1-D-Met2-Phe3-His4-Leu5-Met6-Asp7-NH2) with 36 dihedral
angles [20]. The characteristic behavior of ELP methods is shown in Fig.4 which is the time
series of 5 x 105 sweeps for the ELP simulation of deltorphin at T = 50K. For comparison, the
standart Monte Carlo simulation at T = 50K shows a time series confined to rather narrow
range of energy -33 kcal/mol < E < -28 kcal/mol. The ELP time series has the typical time-
dependent feature of continously extending the covered range of energy. After long enough
time elapsed, the time series becomes like the one achieved by multicanonical simulation.
Another important feature one sees from the time series is that the simulation gets trapped
in a local minima in the energy landscape, spends some time there to built histogram, then
escapes to search other regions. But when the search hits the same pre-visited minima, it does
not get trapped, almost immediately leaves and freely searches till gets trapped in another
basin with lower energy. In a stepwise fashion, the search tries to reach the global minima
and afterwards the stepwise entrapments disappear and the time series looks like the typical
time series of multicanonical simulation (e.g. after 400000 sweeps in Fig.4).

In Table II we have shown the number of conformations found in energy bins of 1 kcal/mol
above the GEM with ELP and MUCA methods. First part of the table (part A) shows the
result of the first 5 x 105 steps and the second part (part B) is for total of 106 steps for both



methods. Because the efficiency of ELP strongly depends on the temperature, we carried out
two different ELP simulations each of 106 steps at temperatures T = 50K and 250K. From
the Table II it is obvious that ELP sampled more low temperature conformations compared to
MUCA, except for the second and the third lowest energy bins where the MUCA simulation
encountered an entrapment in a wide macrostate. In searching the low-energy conformations,
ELP search at T = 50K is clearly more effective then the one at higher temperature. The
lowest energy conformation (our suspected GEM) is E = —44.1058kcal/mol.

A very good coverage of the lowest energy bins of deltorphin is provided by the energy
landscape paving approach. Extensively long computer time would be needed in MUCA
simulation and the probability weight factors have to be determined by iterations of trial
simulations, while ELP simulation is found much simpler to implant and more effective in
sampling the lowest energy region of the conformational space.

Further improvement of our simulational studies had been achived by our recently sug-
gested fast and effective conformational search method [21], which combines the features of
the ELP and the Monte Carlo Minimization (MCM) method developed by Li and Scheraga
[22]. In order to design a search method especially effective at the low-energy part of the
conformation space, the hope was while utilizing the ELP method to overcome the energy
barriers, we simultaneously benefit from the MCM technique to lower the energy. Namely,
we have implanted an MCM step in between the two updates of the dihedral angles in ELP
algorithm, with the MCM protocal adopted from the Ref. [23] We have tested the performance
of this procedure in studying the low energy conformations of deltorphin, again modeled by
the ECEPP/2 potential.

Fig.5 displays the time sequence of the first 80000 sweeps for the simulation of deltorphin
by utilizing our hybrid algorithm. The first 10000 sweeps is typical of the MCM algorithm,
which is directed to find out the lowest energy state. Actually the search succeeds to visit
the global energy minimum (GEM) with E = —44.1058 kcal/mol by the time it reaches
to 10000 iterations. At that point, if we had utilized the standard MCM algorithm, the
time sequence would continue as a straight horizontal line indicating that the lowest energy
state had been captured and the further minimization would not introduce any change. The
next step in Fig.5, namely the portion covering the sweeps from 10000 to 30000, seems to
be the regime where the characteristic feature of ELP comes into play. By building up the
histogram, it rescues the system from getting trapped at the lowest energy state and pushes
the search to explore other regions of conformation space. After 30000 sweeps in Fig.5, we
observe a third regime of an effective and fast search, confined to the low energy corner of the
conformation space with energies between the GEM and about 5 kcal/mol above the GEM.
With this algorithm, the simulation does not repeatedly spend time in searching the unwanted
higher energy states. Our hybrid algorithm adopts the typical search patterns of ELP and
the Multicanonical algorithms, but instead of visiting the whole range of available energies, it
conducts an effective search of the desired low energy region.

In order to classify the microstates according to the potential wells they belong around
thermodynamically stable different structures, we have adopted a variance criterion whereby
two structures are considered different if at least two corresponding dihedral angles differ by 2°



or more. The lowest energy conformation found in our simulation with energy E = —44.1058
kcal/mol is taken as the GEM and the number of different structures found in energy bins of
1 kcal/mol above the GEM are listed in Table III. We see that the conformational coverage
of the low energy region is quite good and all the bins upto about E = —40.00 kcal/mol are
almost equally populated by around 12000 entries. The results show that this hybrid algorithm
used here is more effective in sampling the lowest energy region of the conformational space,
faster in reaching the global energy minimum and the significant low energy conformations
pertaining the GEM and saves computer time.

In summary, we have shown here that the multicanonical method and the generalized-
ensemble simulations of short peptides can provide a good coverage of the conformational
space, especialy in the lowest energy region, a good sampling of the conformations pertaining
the basin of GEM. Concerning computer time, MUCA simulations required a 12 h production
run for Met-enkephalin and about a week for deltorphin on a DEC-Alpha 433 workstation,
while the use of our proposed hybrid algorithm made the simulation of deltorphin possible in
less than one day.

I would like to take this opportunity to thank the organizers of the International Workshop
on Proteomics held at ICTP on May 2003, where this talk was presented.
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ENERGY

Fix LO

-10.75 to -10.0
-10.0 to -9.0
-9.0 to -8.0
-8.0 to -7.0
-7.0 to -6.0
Variable LO

-12.21 to-12.0
-12.0 to-11.0
-11.0 to-10.0
-10.0 to -9.0
-9.0 to -8.0

1.0-0.9

3282
1001
467
190
90

23
6380
7600
2700
600

OVERLAP
0.9-0.8

3935
3530
2332
1460
897

25
7568
21199
9956
3107

0.8-0.7

3073
4925
4003
3150
2515

-
302
4775
3959
2390

0.7-0.6

2779
4475
3979
3488
3290

-
197
2784
3456
3137

TOTAL
CONF.
15327
28088
26220
24139
22497

48
14457
37107
28430
2644

[12] F. Ya§ar, T. Qelik, B.A. Berg, H. Meirovitch, J Comp Chem 21, 1251 (2000).

[13] F.A. Momany, R.F. McGuire, A.W. Burgess, H.A. Scheraga, J Phys Chem 79, 2361
(1975); M.J. Sippl, G. Nemethy, H.A. Scheraga, J Phys Chem 88, 6231 (1984).

[14] A.M. Ferrenberg, R.H. Swendsen, Phys Rev Lett 61, 2635 (1988); Ibid 63, 1658 (1989).

[15] U.H.E. Hansmann, Y. Okamoto, J.N. Onuchic, Proteins 34, 472 (1999); U.H.E. Hans-
mann, J.N. Onuchic, J. Chem. Phys. 115, 1601 (2001).

[16] H. Arkin and T. Qelik, Int. J. Mod. Phys. C 14, 113 (2003).

[17] U.H.E. Hansmann, M. Masuya, Y. Okamoto, Proc. Natl. Acad. Sci. U.S.A. 94, 10652
(1997).

[18] D.A. Lidar, D. Thirumalai, R. Elber, R.B. Gerber, Phys. Rev. E 59, 2231 (1999); N.A.
Alves and U.H.E. Hansmann, cond-mat/0001195.

[19] L.T. Wille and U.H.E. Hansmann, Phys. Rev. Lett. 88, 068105 (2002).

[20] H. Arkin and T. Qelik, Eur. Phys. J. B 30, 577 (2002).

[21] H. Arkin and T. Qelik, Int. J. Mod. Phys. C 14, xxx (2003).

[22] (a) Z. Li and H.A. Scheraga, Proc. Natl. Acad. Sci. USA, 84, 6611 (1987); (b) J. Mol.
Struct. (Thechem.), 179, 333 (1988).

[23] H. Meirovitch, E. Meirovitch, J. Compt. Chem 18, 240 (1997).



Table 2: Number of conformations in energy bins of 1.0 kcal/mol above E = —44.11 kcal/mol
as obtained by the MUCA and the ELP Methods. Part A shows the result of the first 5 x 105

sweeps and part B is for total of 106 sweeps.

A

B

Energy (Kcal/mol)

.44.11 to -43.11
-43.11 to-42.11
-42.11 to-41.11
-41.11 to-40.11
-40.11 to-39.11
-39.11 to-38.11
-44.11 to -43.11
-43.11 to-42.11
-42.11 to-41.11
-41.11 to-40.11
-40.11 to-39.11
-39.11 to-38.11

MUCA

1207
20116
25225
7506
3838
4729
2674

45350
46091
12188
8485
10983

ELP T=50K

10770
13825
14023
13863
20362
20449
27729
30238
32962
33044
33192
33081

ELP T=250K

-
3

2845
9986
12880
14503
10843
20189
22656
24125
25245
26039

Table 3: Number of significantly different structures in energy bins of 1 kcal/mol above E =
—44.11 kcal/mol as obtained by the new designed hibrid algorithm. The number of different
conformations are classified ac cording to the overlap parameter. The results of only 80000
sweeps are presented in the table.

ENERGY

-44.11 to -44.00
-44.00 to -43.00
-43.00 to -42.00
-42.00 to -41.00
-41.00 to -40.00
-40.00 to -39.00
-39.00 to -38.00

1.0-0.9

1535
588
29
-
1
-
-

OV
0.9 - O.i

5101
5539
1284
245
116
7
21

ERLAP

1 0.8-0.7

5171
5210
5701
2041
1519
685
367

0.7-0.6
624
921

4425
4152
3944
3204
2905

TOTAL
CONF.

12431
12298
12004
11462
11193
10611
9787
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Figure 1: Energy surface in configuration space of Met-enkephalin viewed from different angles.
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Figure 2: Same as Fig.l(b), plotted by grouping the conformations of 1 kcal/mol interval in
energy.
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Figure 3: Distribution of microstates with E < —10.5 kcal/mol with respect to the overlap
parameter.
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Figure 4: Time series of the energy landscape paving simulation of deltorphin. For comparison,
the standart Monte Carlo simulation at T = 50K is performed and a time series fluctuating
within a ra ther narrow range of energy -33 kcal/mol < E < -28 kcal/mol is obtained. MC
time ser ies is not plotted, otherwise the figure becomes confusing unless presented in color.
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Figure 5: Time series of algorithm used in this work.
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