

the **abdus salam** international centre for theoretical physics

SMR/1499 - 12

INTERNATIONAL WORKSHOP ON PROTEOMICS: PROTEIN STRUCTURE, FUNCTION AND INTERACTIONS (5 - 16 May 2003)

"Solvent effects on simple protein models"

presented by:

P. De Los Rios University of Lausanne Switzerland

Solvent Effects on Simple Protein Models

Paolo De Los Rios Giovanni Salvi Susanne Mölbert

Institut de Physique Théorique Université de Lausanne

Can we bridge the gap between explicit and implicit solvent models?

Implicit solvent: simple and fast, but... how reliable?

Anything here?

Explicit solvent: detailed and reliable, but... too slow

Outline

- A simple implicit solvent models: the HP model
- The semi-explicit solvent: the Müller-Lee-Graziano model
- A simple semi-explicit solvent model: the HPW model
- Can we *learn* effective pairwise interactions?

Implicit solvent: The HP model (K. Dill, 1989)

Mathematical Formulation

Hamiltonian

$$H = \sum_{i < j} \varepsilon_{p_i p_j} \Delta(r_i, r_j)$$

with:

ε_{XY} : interaction values p_i : H or P

 $\Delta(\mathbf{r}_i,\mathbf{r}_j) = \begin{cases} 1 & \text{if } i,j \text{ are } n.n. \\ 0 & \text{otherwise} \end{cases}$

$$\varepsilon_{\rm HH} = -1$$
 $\varepsilon_{\rm HP} = \varepsilon_{\rm PH} = \varepsilon_{\rm PP} = 0$

Given a good sequence (= with a non-degenerate native state)

Only a subset of all sequences are good sequences, and have a native state with a hydrophobic core

Folding free energy difference for real proteins

Explicit solvent: The HPW model

P. De Los Rios & G. Caldarelli, Phys. Rev. E 62, 8449 (2000)

Amino-acids alphabet: H (hydrophobic), P (polar)

The solvent is (semi)explicitly taken into account. Sites not occupied by a.a. are occupied by groups of water molecules.

Proteins: self-avoiding walks (SAW) on a 2D lattice

The water behavior is described by the MLG model.

Conformation Partition function

$$Z(S,\Gamma) = (q_{ob}e^{-\beta E_{ob}} + q_{db}e^{-\beta E_{db}})^{n_b(\Gamma)} (q_{os}e^{-\beta E_{os}} + q_{ds}e^{-\beta E_{ds}})^{n_s(\Gamma)} \qquad \Gamma = \text{conformation} \\ S = \text{sequence}$$

Learning effective potentials

Inference of potentials from known native structures (from the Protein Data Bank)

Good sequences: those with a unique conformation with the lowest cost function value

$$\{S'_N\} e.g. L = 20: \begin{array}{l} \# \{S_{20}\} = 2^{20} \cong 10^6 \\ \# \{S'_{20}\} < 40.000 \end{array}$$

Effective a.a. interaction Hamiltonian

$$\mathbf{H} = \sum_{\mathbf{i} \leq \mathbf{j}} \varepsilon_{\mathbf{p},\mathbf{p},\mathbf{j}} \Delta(\mathbf{r}_{\mathbf{i}},\mathbf{r}_{\mathbf{j}})$$

 $\mathbf{H}(\mathbf{S},\!\Gamma) - \mathbf{H}(\mathbf{S},\!\Gamma_{\mathbf{R}}) \geq \mathbf{0} \qquad \forall \, \Gamma \neq \!\Gamma_{\mathbf{R}}, \forall \, \mathbf{S}$

$$H = \sum_{i} \varepsilon_{i} C_{i} (S, \Gamma) \longrightarrow \sum_{i} \varepsilon_{i} C_{i} (S, \Gamma) - \sum_{i} \varepsilon_{i} C_{i} (S, \Gamma_{n}) = \varepsilon \cdot C^{*} (S, \Gamma, \Gamma_{n}) > 0$$

with: $C_i^{\bullet}(S,\Gamma,\Gamma_n) = C_i(S,\Gamma) - C_i(S,\Gamma_n)$ $\vec{\epsilon} = (\epsilon_{\text{HH}}, \epsilon_{\text{HP}}, \dots) = ?$

The perceptron

Trial vector En

- Calculate all Scalar Products C^A; E_n
- Worst Scalar Product Con En
- $\varepsilon_{n+1} = \varepsilon_n + \eta C^{A}_{w}$ • Iterate the process

Decoys from Protein Design

Sequence 1	$\Gamma_n(S_1)$	<u>15</u> Г(S ₁)	15 C ^A (S ₁)
Sequence N	$\Gamma_{n}(S_{N})$	<mark>15</mark> Г(S _N)	15 C [▲] (S _N)

HP Model results

The perceptron converges to the initial interactions values.

 $\varepsilon_{ij}^{perc} \cong \varepsilon_{ij}$ i, j = **H**, **P**

Only a small set is needed to reach the original values.

HPW Model results

Same problem as for real proteins !

Conclusions

• The thermodynamics of proteins can be reproduced over a broad range of temperatures by means of a semi-explicit solvent (cold and warm denaturation within the same framework)

• The solvent effects can not be reproduced by effective residues interactions.

• The energy landscape changes : the dynamical folding process may change too. Some care should be taken when studying dynamics.

Bibliography

- P. De Los Rios & G. Caldarelli, Phys. Rev. E 62, 8449 (2000)
- P. De Los Rios & G. Caldarelli, Phys. Rev. E 63, 031802 (2001).
- G. Caldarelli & P. De Los Rios, J. Biol. Phys. 27, 229 (2001).
- G. Salvi, S. Mölbert & P. De Los Rios, Phys. Rev. E 66, 061911 (2002).
- S. Mölbert & P. De Los Rios, cond-mat/0305013 (accepted on Macromolecules)

Perceptron Main algorithm

