INTERNATIONAL W ORKSHOP ON PROTEOMICS: Protein structure, Function and interactions
(5-16 May 2003)
"Misfolding diseases and aggregation"
presented by:
A. Pastore

National Institute for Medical Research, London
United Kingdom

Structural hypotheses for
 understanding poly-glutamine diseases

Annalisa Pastore
NTMIR, London

A new family of diseases

-Alzheimer'disease
-Prion diseases
-Poly-glutamines
-Parkinson's disease
-Tauopathy
-Familial amyotropic lateral schlerosis

All associated with toxic aggregation and protein misfolding

Aging and Alzheimer

Alzheimer was of a German professor of Psychology in Breslau. Together with Franz Nissl they established the pathologic anatomy of mental illness. Alzheimer published several treatises on cerebro arteriosclerosis in 1904 and on Huntington's chorea early in 1911. In 1907 appeared the monumental work on Alzheimer's Disease for which he will always be remembered.

Misfolding and aggregation

Energy funnels

Protein misfolding and diseases

Misfolding diseases: Alrheimer

Amyloid fibers

How to study the insoluble?

X-ray
NMR of liquids
amorphous material insoluble in water

Electron microscopy
Infrared spectroscopy
NMR of solids
Fiber diffraction
A different approach!

A new family of diseases

-Alzheimer'disease
-Prion diseases
-Poly-glutamines
-Parkinson's disease
-Tauopathy
-Familial amyotropic lateral schlerosis

All associated with toxic aggregation and protein misfolding

POLYGLUTAMINE DISEASES

- Progressive neuronal disfuctions
- Pathogenic THRESHOLD ~ 35 glutamines
- Nuclear Inclusions \rightarrow fibres (amyloids)

COMMON DISEASE MECHANISM?

POLYQ
EXPANSION

An increasing number of polyQ proteins is associated to human diseases

Various types of fibers

Polyglutamine proteins

- No sequence homology
- Different size
- Poly-Q stretches at different positions
- Different cellular localization
- Different functions
- Polyglutamine proteins are unrelated except for polyQ

A special feature of poly-Q diseases

The length of poly-Q correlates with the age of onset:

QQQQQQQQQQQQQ \longrightarrow Disease onset
The longer...
... the younger

POLYGLUTAMINE AGGREGATION

E. Wanker

Aggregation in vitro • is self-driven

- is independent on a specific protein
- depends on $\left\{\begin{array}{l}\text { concentration } \\ \text { time }\end{array}\right.$

WHAT IS SPECIAL ABOUT POLY-Q?

MAX PERUTZ

- Poly-Q stretches (>20Q) have been found in several proteins (>60)
- Many are transcription activators
- No known structure contains more than 10 tandem Q

PERUTZ's MODEL

GLUTAMINE

$G \ln (Q)$

Model of water-filled nanotubes

Perutz et al. (2002)

Other proposed models...

The difficulty of validating the models

- Poly-Q peptides are insoluble in water
- Difficult expression of polyQ proteins

peptide models

-Artificial short tails (e.g. Asp2GInnLys2)

- Studies in extreme pH and/or solvent conditions

Random coil or β structures?

Mostly by CD
Some FTIR

Almost no NMR

Poly-Q peptides have been shown to be both in random coil and in β structures

Perutz (1994) Pnas 91, 5355-5358.
Altschuler et al. (1997) J.Pept.Res. 50, 73-75
Sharma et al. (1999) Febs Lett. 456, 181-185
Chen \& Wetzel (2000) Prot. Sci. 10, 887-891.

Necessity of model systems

Animal models \quad Biophysical models

Our approach:

```
MSPILGYWKI KGLVQPTRLL LEYLEEKYEE HLYERDEGDK WRNKKFELGL
EFPNLPYYID GDVKLTQSMA IIRYIADKHN MLGGCPKERA EISMLEGAVL
DIRYGVSRIA YSKDFETLKV DFLSKLPEML KMFEDRLCHK TYLNGDHVTH
PDFMLYDALD VVLYMDPMCL DAFPKLVCFK KRIEAIPQID KYLKSSKYIA
WPLQGWQATF GGGDHPPKDH PPKSDLVPRG SXEFPGRLER PHRD
```


GST

GST Q22
GST ~Q41
$\mathrm{X}=\mathrm{P}$
$X=\operatorname{MSLKP}(Q){ }_{22}$ PPPA
$X=M S L K P(Q){ }_{41}$ PPPA

To use a well characterised protein to solubilise poly-Q

Aim of the work

- PolyQ structure $\quad\left\{\begin{array}{l}\alpha, \beta, \text { random coil ? } \\ \text { flexible? } \\ \text { exposed to solvent? }\end{array}\right.$
- Differences between Q22 and Q41 ?
- Protein context
- Aggregation propertics

GST is a mostly α-protein

Our model system

Behaviour of polyQ within PROTEIN CONTEXT

FAR-UV CD SPECTRA

 poly-Q secondary structure?

POLY-Q are in RANDOM COIL

- probing the fold

NMR is an ideal tool

 to study protein foldNMR can give us the degree of folding (folded, partially folded, unfolded)

${ }^{1} H$ spectrum of an unfolded proten

NMR studies of GST-Qs

NMR is tricky on GST: GST is a large protein (ca. 20 Kda x 2)

The NMR linewidth is proportional to the size

1D NMR SPECTRA

Homo-nuclear Tocsy experiments

- probing the fold

The spectra of unfolded proteins are characterised by a massive collapse of the resonances

Heteronuclear 15 N spectra

T2 filtered

All glutamines are equivalent

NMR experiments on poly-Qs

- 1 and 2D homonuclear experiments
- 15N and 13C HSQC
- HNCO
- water saturation experiments
- diffusion experiments

Glutamine chemical shifts

	GST-Q22	GST-Q41	R.C.
$\mathrm{H} \alpha$	$4.25(0.02)$	$4.23(0.02)$	$4.37(0.2)$
C^{\prime}	$176.3(0.1)$	$176.7(0.1)$	$176.3(1)$
$\mathrm{C} \alpha$	$56.3(0.1)$	$56.7(0.1)$	$56.2(1.4)$
$\mathrm{C} \beta$	$29.2(0.1)$	$29.2(0.1)$	$30.1(1.4)$

Wishart et al. (1992) Biochemistry

NMR RESULTS

- All glutamines experience a similar chemical environment
- The Poly-Q region is highly flexible
- The glutamines are highly exposed to solvent
- No differences are observed between GST-Q22 and GST-Q41

The structure of soluble poly-Q is a random coil

What about when they aggregate?

- After 3 months at $25^{\circ} \mathrm{C}$ pH 6.5, NO significant aggregation was observed!!!

ANALYTICAL ULTRACENTRIFUGE

GST

GST-Q22

GST-Q41

Only one species in solution \rightarrow No Aggregation

Thermal denaturation of GST-Q41

Results from thermal unfolding

- All three samples are stable up to 52 C
- Above 52 C the samples start to precipitate
- The precipitation of GST and Q22 starts immediately while Q41 precipitates only after an incubation time

Analysis of the aggregates by EM

Samples incubated at $\mathrm{T}>50^{\circ} \mathrm{C}$

GST-Q41 has a greater tendency to aggregate

Models of fiber structures

CONCLUSIONS

* NMR \rightarrow direct and selective observation of the conformation of polyQ within a protein context
\& When unaggregated POLYQ = RANDOM COIL
* This is consistent with a transition random coil $\rightarrow \beta$-sheet upon aggregation
* The protein context strongly influences the solubility of polyQ regions
* Under destabilising conditions, the length of polyQ determines the tendency to aggregate

Future perspectives

- Studies of 'real' poly-Q proteins (ataxin 3)
- Characterization of conditions that promote amyloid formation
- Studies of the kinetics of aggregation

Acknowledgements

Laura Masino, NIMR, London

Geoff Kelly, NIMR, London

Yvon Trottier, Université de Strasbourg (France)
Paolo Tortora. University of Milano (Italy)
Kevin Leonard, EMBL, Heidelberg (Germany)

