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We will review some results concerning the energetic and dynamical consequences of taking a
generic hydrophobic model of a random polypeptide chain, where the effective hydrophobic interac-
tions are represented by Hookean springs. Then we will present a set of calculations on a microscopic
model of hydrophobic interactions, investigating the behaviour of a hydrophobic chain in the vicinity
of a hydrophobic boundary. We will conclude with some speculations as to the thermodynamics of
pre-biotic functions proteins may have discharged very early on in the evolutionary past.
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I. INTRODUCTION

The approach of a statistical physicist to biological
problems is different from that of a biologist, in the same
way that the approach of a physicist to any natural phe-
nomenon is different, from that of an engineer. The dif-
ference seems to lie in regarding any given instance of
a particular phenomenon not as the product of an in-
genious design, but only as a member of a very large
ensemble of possible realizations of a generic rule, all
governed by the same laws of physics. To a statistical
physicist, a biological molecule is not, first and foremost,
a high precision tool custom-made to perform a highly
specialized task; it is rather a member of a very large set
of possible outcomes of random processes, which, under
non-equilibrium conditions, have conspired to produce
a certian, albeit very improbable result. Moreover, as
has already been thoroughly underlined by Eigen [1] and
Maynard-Smith [2], biological entities typically corre-
spond to sharply peaked probability distributions (“qua-
sispecies”) about some point in biological phase space,
rather than unique solutions to some optimization prob-
lem. This distribution is of course reflected in the genetic
code, and also must translate itself to the proteins that
make up the organism.

Another source of deviations from perfect order is ther-
mal noise. We would like to stress that the protein in
its native state must essentially correspond to a self-
organized system, i.e., the “native state” should be con-
cieved of as the attractor of a dynamics. [3] This typically
corresponds not to a unique conformation but to a set of
conformations to which the trajectory of the phase point
representing the molecule is confined after asymptotically
long times (which may already be achieved in microsec-
onds).

In this paper we will first review a simple model in-
volving discrete torsional degrees of freedom [3]. The hy-
drophobic interactions driving the folding of the polypep-
tide chain [4, 5] are modeled by Hookean springs con-

necting pairs of hydrophobic residues. [6-12] This system
with harmonic interactions, under dissipative dynamics
driven by random noise, leads to a distribution of en-
ergy states obeying a modified one-dimensional Ornstein-
Uhlenbeck [13, 14] process, quite independently of the na-
ture of the sequence of hydrophobic and polar residues,
or the dimensionality of the space. It can be shown to
obey the so called Wigner distribution [15-19],

P(e) ~ € exp(—5€?) (1)

over a very large range of energies e relative to some E ;.
This distribution resembles that found for the vibrational
energy density of real proteins [6].

The second consequence of this simple model of
Hookean springs is that that under Metropolis Monte
Carlo dynamics with random initial conditions, the
model exhibits power law relaxation for the initial stages
of decay, and at the later stages the relaxation obeys
a stretched exponential ~ exp(—t®), with the expo-
nent o =~ 1/4 [20]. This Kohlrausch-Williams-Watts
type relaxation behaviour is observed experimentally for
real proteins, and predicted theoretically [4, 21-24]. At
zero temperature the probability distribution function
of the energy steps encountered along a relaxation path
in phase space also obeys a stretched exponential form,
with another exponent a ~ 0.39. In [20] we show that
a = af(a + 1), which yields a value for o in very good
agreement with our simulation results.

In the second part of this review, we would like to
cover work done with Pmar Onder [25], on the statis-
tics of a hydrophobic chain near a hydrophobic bound-
ary. The hydrophobic interaction arises from the compe-
tition between the energy and the entropy terms in the
free energy. It turns out that the so called hydropho-
bic molecules can, in fact, lower the total internal energy
when intermixed with the water molecules, but only in
a low entropy state of water with a high degree of short
range order. For low enough temperatures, this state is,
in fact, the equilibrium state as it lowers the free en-



ergy. However, for somewhat higher temperatures, the
entropy term in the free energy wins out, and the hy-
drophobic (non-polar) molecules seperate out from the
water molecules, which are now in a completely disor-
dered state. At still higher temperatures, even this seg-
regation disappears.

The decorated lattice model proposed by Widom and
co-workers [26-31] provides a microscopic basis for the
statistical physics of the so called hydrophobic interac-
tion, which is an effective, entropy driven phenomenon.
We adapted the Widom model to investigate the be-
haviour of hydrophobic chains in the neighborhood of hy-
drophobic boundaries. The motivation was to eventually
understand the role of hydrophobic surfaces in the pro-
cess of protein folding, i.e., to see if they could provide a
chaperoning effect. We have been able to treat certain as-
pects of the problem analytically, by restricting ourselves
to two dimensions, and treating the wall-chain interac-
tion in a one-dimensional approximation. Nevertheless
the full solution still involves a certain amount of numer-
ical manipulation. It is gratifying to find that within a
given temperature interval, the hydrophobic chain prefers
to adsorb on a hydrophobic boundary, and outside this
interval it is more or less in a randomly coiled state.
Moreover, within this interval, the chain is adsorbed in a
more stretched or collapsed configuration, for lower and
higher temperatures, respectively, and remains somewhat
collapsed at temperatures high enough for it to have just
desorbed from the wall. The interplay between the en-
tropy of the water molecules and the entropy of the chain
is what gives rise to this nonmonotonic behaviour.

In the last part we will briefly discuss the thermody-
namics of the folding of hydrophobic or randomly polar
and hydrophobic polypeptide chains near a hydrophobic
wall and speculate as to the evolutionary possibilities to
which this may have given rise, for the selection of those
chains with narrowly defined native states. [32]

The paper is organized as follows. In section 2, we
discuss the energetics and the glassy relaxation behaviour
of the simple Hookean model, in section 3, we present
our results on the hydrophobic chain near a hydrophobic
boundary, and in section 4, provide a brief summary of
a scenario for protein-RNA co-evolution, with prospects
for further research.

II. A GAUSSIAN MODEL FOR PROTEIN
FOLDING

The Gaussian model of a polypeptide chain we con-
sidered [3, 20] consisted of chain of N residues (treated
as point vertices), chemical bonds of fixed length along
the backbone, and N dihedral angles. (see Fig.1) We as-
sumed that we are in a temperature range where the
hydrophobic interactions are appreciably strong. The
hydrophobic interactions between the non-polar residues
will then act in such a way as to segregate them from
the polar residues and the ambient water molecules. The

FIG. 1: A chain of N = 48 residues, half of which are ran-
domly chosen to be hydrophobic, (darker beads) shown in a
random initial and a collapsed configuration in panels (a) and
(b) respectively. (Generated using RasMol V2.6)

effective hydrophobic interactions we mimick by placing
Hookean springs between all pairs of non-polar residues.

In this study we were motivated by the model proposed
by Haliloglu, Bahar, Erman [9] where all interactions be-
tween the different residues are governed by confining
square-law potentials [9-12, 33]. In our model, however,
the covalent bonds between residues are treated as fixed
rods of equal length, the chemical angles are also taken to
fixed. The residues located at the vertices may be polar
P or hydrophobic H. All the hydrophobic vertices are
to be connected to each other with springs of equal stiff-
ness. This results in their being driven to the relatively
less exposed center of the molecule in the low lying en-
ergy states, whereas the polar residues are closer to the
surface. It is important to note that we treat all H — H
pairs on an equal footing, i.e., there is no “teleological”
information that is fed into the system by connecting
only those H — H pairs which are close to each other in
the native configuration for a particular sequence.

It is known that real proteins are distinguished by H, P
sequences that lead to unique ground states while a ran-
domly chosen H, P sequence will typically give rise to a
highly degenerate ground state. In the absence of de-
tailed knowledge regarding the rules singling out the re-
alistic H, P sequences we considered a generic H, P se-
quence obtained by choosing fifty percent of the residues
to be hydrophobic and distributing them randomly along
the chain. We have checked that our results were quite ro-
bust with respect to changing the sequence of hydropho-
bic or hydrophilic residues, or even taking all of them to
be hydrophobic. (In the last section of this paper we will



indulge in some speculation as to how those sequences
with unique ground states may have been selected for.)
In this model, the energy of the molecule is given by

K
E=5 ichi:jlri —r|* = K;r;[‘/ijrj (2)

If we define (Q; = 1 for the i’ th vertex being occupied
by a hydrophobic residue, and @; = 0 otherwise. We
may write ¢;; = (;@; and the interaction matrix then
becomes

Vij = (N g-— 1)cm- —Cij—1 — Ci,j+1]5i,j
= (L=6i5)(1 = 6s5-1 — dijyi)eiy - (3)

We take the bond angles 8;,i = 1..., N—1, to have the
alternating values of (—1)%@, with § = 68°. The dihedral
angles ¢; can take on the values of 0 and +£27/3. The
state (conformation) of the system is uniquely specified
once the numbers {¢;} are given.

In this study, we did not take into account steric ef-
fects explicitly. The constraints placed on the confor-
mations due to the rigid chemical bond lengths and by
restricting the chemical and dihedral angles to discrete
values, prevent the molecule from trivially collapsing to
a point. This has a similar effect to placing the chain on
a tetrahedral lattice; however, since the chemical angles
are slightly different from 7 /3, this is not exactly true,
and the configurations are off lattice when compared to a
tetrahedral structure. Since the chain has a certain rigid-
ity and persistence, the volume of the folded structures
to grows with NV, the number of residues.

A. Dissipative dynamics of the Hookean chain

The position vectors r; of each of the vertices in the
chain can be expressed in terms of a sum over the direc-
tors R,; of unit length representing the chemical bonds,
which may be obtained from R; by successive rotations
My (6) and Ty (¢) through the bond and the dihedral
angles [34], viz.,

i—1 2

ri= > [ Te(¢)Mr(B)R: (4)

i=1k=j

where we may choose R, to lie along any of the Carte-
sian directions in our laboratory frame without loss of
generality. We obtain the torques that act at each of the
vertices i by substituting this in equation (2) and taking
the partial derivative with respect to ¢;, viz.,

T = —6E/8¢z . (5)

The system is assumed to evolve within a viscous envi-
ronment, subject to random kicks from the surrounding
molecules. As a numerical realization of this dissipative
system, we explore the phase space under a dynamics

based on relaxing pairs of rotational degrees of freedom,
namely the dihedral angles, sampled with a probability
which is a function of the conjugate torques,
: |7
P() =7 - (6)
2ilml

We may write the Langevin equation for the positions of
the vertices as

dl‘i(t) _ 1 ] .
dt - an + fr(lat) (7)

where ¢, is a friction coefficient and £,.(i,t) is a Gaus-
sian distributed noise term, delta correlated in ¢ and

in time. Equivalently, in terms of the state vector ¢
= (¢1,...,9n), we have the Langevin equation
dei(t) _ 1 .
= —7; +&(i,t 8
o = en 6 ®

where the torque 7; is a function of all the angles {¢},
¢, is the appropriate friction coefficient and ¢, is again
a Gaussian random force delta correlated in space and
time. Viewed in this way the dynamics is similar to a
pinned interface or a charge density wave system [35-39]
in 14+ 1 dimensions.

The dynamical rules we employ for the sequential up-
dating of the system loosely correspond to a discrete ver-
sion of the dissipative system envisaged in Eq.(8) above.
In order to mimick the conservation of angular momen-
tum, we choose pairs of vertices at a time, turning the
¢; in opposite directions [3]. (This does not strictly con-
serve angular momentum, due to the fact that the axes
of rotation are not necessarily parallel; however since the
motion is highly dissipative, we do not think this is a big
problem.) The choice of vertices for each updating op-
eration is done according to the distribution of torques
over the vertices of the chain.

The most natural probability distribution we can form
out of the torques, without introducing any special scale
into the problem, is P(i) = ||"/X;|7;|". Note that n is
a parameter of our dynamics, and we will be discussing
later how changing 5 affects our results.

1. At each step, for that given configuration of the
chain, we form two such independent distributions,
one for {r; > 0} and another for {r; < 0}.

2. We choose a pair of vertices ( one with positive, the
other with a negative torque on them), according
to the above distribution.

3. We then update the dihedral angles at the selected
vertices, by incrementing them according to ¢;(t +
1) = &;(¢) + sign(m;) x (27/3).

After applying the search strategy based on changing
the torques according to a distribution, we found that up-
dating the maximal torques (1 > 0) drives the system to
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FIG. 2: The normalized energy histograms, averaged over 10
random initial states for chains of N = 48, for different > 0,
along paths of 10* steps, with the first 5000 steps discarded.
The fits are to the Wigner distribution for = 0,1,3 and
Gaussian distribution for = 8.

a state with relatively high energies, whereas a random
search (5 = 0) or preferentially choosing the minimal
torques (n < 0) gives rise to more successful strategies
for reaching low lying energy states. Thus it can be said
that n here plays the role of a coarse— or fine—graining
parameter in the exploration of the energy landscape. It
should be noted that incrementing preferentially those
vertices with high torques on them corresponds, in the
language of the Langevin equation (8) to relatively small
friction coefficients (,; when 1 = 0, one simply has ther-
mal noise, and no force term.

B. Distribution of energy states

The distribution of the energies of the discrete config-
urational states explored by the chain of N = 48 residues
shown in Fig.1, as it evolves under the above dynamics,
is shown in Figs.2,3, for both positive and negative 7.
After the first 5000 steps were discarded, the statistics
were taken over 5000 steps of the trajectory. We checked
that the statistics were stationary at this point so that
we may safely assume that we have reached the attractor
for this dynamics.

The shape of the distribution essentially does not
change with g for 5 < 0, while for positive 5 the peak
shifts to successively higher values of the energy, and the
distribution is distorted towards a Gaussian, indicating
that the states explored are less correlated. These fig-
ures compare very favorably with the energy histograms
obtained by Socci and Onuchic [40] for a Monte Carlo
simulation on a lattice model of a proteinlike heteropoly-
mer, the density of vibrational states found by ben-
Avraham [6] and the ultraviolet absorption spectra re-
ported by Mach et al. [41]. It should be observed that
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FIG. 3: The normalized energy histograms, for chains of N =
48, for different 1 < 0 (see Fig.2). The fits are to the Wigner
distribution.

the distributions which we obtain are also extremely sim-
ilar to the specific heat capacity Cp as a function of tem-
perature as found by Chan for different proteins. [42] It
is interesting to note that it is also very similar to the
distribution of Euclidean distances to the global energy
minimum in the phase space of large atomic clusters [43].
We were able to fit the simulation results very success-
fully with a distribution of the Wigner form (Figs. 2,3)

fw(E) = a(E — E)e "E-F0)" 9)

for n = —6 to n = 3. Here Ey corresponds to the offset
due to the lowest energy state attained for the different
7, and it can be seen that it shifts the distribution to
higher values of the energy for higher values of . The
distributions become Gaussian for 7 = 6 and 5 = 8. (See
Ref.[3], Table Ia,b for the values of the fitting parameters)

It should be mentioned that the same energy distribu-
tions may be fitted equally well (or better near the point
Ey and in the far tail) by the “inverse Gaussian” [44],
where the probability density is given by,

o) = [ s oo [ AEZE o

This has the same functional form as the distribution
of first passage times over a distance d for an Ornstein
Uhlenbeck process [13, 14] with diffusion coefficient D
and initial drift velocity v, in the regime of small times,
if one makes the further identifications A = d?/(2D) and
B = d/v. The parameters and estimated errors for the
fits to the parameters A and B are given in Table II of
Ref. [3]. Both the “diffusion constant” (mobility) and the
“drift velocity” of the phase point along its trajectory in
phase space depend on 7, being maximum for = 0 and
decreasing for positive values of . For n < 0 they are
essentially independent of 7.



C. Universality of the energy historgrams and the
Ornstein-Uhlenbeck process

An Ornstein-Uhlenbeck (OU) process describes the dif-
fusive motion of a particle subject to a drift velocity pro-
portional to the distance from the origin [13, 14]. Such
a process for a single particle in one dimension would be
described by the Langevin equation,

dz 1

= —=_= 11

G = o E (1)
with a Hookean force F(z) = —gz and a delta correlated

random force £(t), ((£(t))?) = o%. In the absence of
the stochastic term which gives rise to diffusive motion,
the velocity is simply proportional to the distance from
the origin (or the point of equilibrium). For an initial
displacement z(0) = d, the solution for the distribution
of first passage times through the origin is given by
2yd p
f(t) - 7T1/20' (1 _y2
where p = g/( and y = exp(—pt).

We would now like to show that both the Wigner dis-
tribution (9) and the inverse Gaussian distribution (10)
arise as limiting forms in an OU process. Clearly, with-
out the stochastic term, the solution for (11) is simply
x = dexp(—pt) = dy. We see that (12) goes over, in the
limit of large times, i.e. y € 1, to

B 2p3/2 _pd22yz
fw = (m yde - . (13)

On the other hand, for very small times, (12) becomes,
to leading order,

32 w2
) e AT | (12)

2ndo? .
(2mo2t)3/2

where we have defined pd = v.

Since x = dy is the “distance remaining to the ori-
gin,” the distribution function (13) may just as well be
considered as a function of z. For late times, we get
fw(z) o< Texp(—pz?/o?) which is in the form of the
Wigner surmise (1). On the other hand, for very small
times, x ~ d(1 — pt) = d — vt. The distance from the ini-
tial point, £ = (d—z)/v, becomes simply proportional to
the time elapsed and we get the “inverse Gaussian”(10)
form,

_ (d—wvt)?

fie = 2%t (14)

fig(®) ~ (ﬁ) 6—3(5”‘2)22 (15)

where A = (d/0)? and p = 1/p. It should be noted that
(13 and 14) are numerically very similar.

Now let us observe that the energy E given in Eq.(2)
obeys a one dimensional OU proces (11) under the dy-
namics given by (7). Since there is no explicit time de-
pendence of E, we have

dE OE Or;

Substituting from (7) we get,
dE 1 OB\ ? OE
E__C_r;(a_rz) + i a—ri'fi(t) . (17)
From (2) we find

2
S (50) =254 X cuenlni—n-(n—r) - (19

i r .5,k
i%k

We see that the second term is like an average of the prod-
uct of differences (r;—ry)-(r; —ry) over (i, §) pairs (i # ),
and for a reasonably isotropic configuration, it vanishes.
To the same approximation, we may assume that the sec-
ond term in Eq.(17) is itself equal to a Gaussian stochas-
tic noise, i.e., set Er(t) = K >-,; cij(r; —r;) - &(t) - This
yields the required result, namely,

dE _ NE
a ¢

If under the given dynamics, the E distribution obeys
one of the limiting forms (13) or (14), then the first pas-
sage time distribution for the attainment of the lowest
energy state must obey, in turn, Eq. (12). This is the rea-
son why the distributions of first passage times for rather
general global optimization problems with quadratic cost
functions [44] is the same as the form of the distribution
of energy states which we find from our simulations.

That the same form is found experimentally for the
spectral fluctuations of rather diverse confined systems
of sufficient complexity [16, 17, 43, 45] seems to indicate
that quadratic cost functions seem to be a sort of at-
tractor, under coarse graining, for a large space of many-
body interactions. The seemingly universal behaviour
which ben-Avraham finds for the density of vibrational
states [6] and the ultraviolet absorption spectra reported
by Mach et al. [41] for various proteins, also display very
similar curves. Thus there seems to be a striking uni-
versality [8] not only between different protein-like struc-
tures, but also between different ranges of length and
energy scales. It is actually surprising that the density
of vibrational states should have a behaviour similar to
energy histograms obtained under our dynamics, since
the former involve inertial degrees of freedom, while the
latter arise from dissipative dynamics

It is also intriguing to compare the results for n > 0
(Fig. (2)) with the numerically obtained nth neighbor
spacing distributions of the eigenvalues for Gaussian or-
thagonal matrices, as reported by Porter [18], where the
identical shift of the peak and tendency to a symmetric
Gaussian distribution is found. This we interpret as rein-
forcing our observation that larger n dynamics results in
a more coarse-grained sampling of the energy landscape.
A very similar sequence of distributions is obtained by
Wales [43] for the energies of large atomic clusters, with
successively further right-shifted peaks corresponding to
distributions about higher metastable states.

+¢B . (19)
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FIG. 4: The decay with time (in Monte Carlo steps) of the
energy, in arbitrary units, of an N = 100 chain, along a
Metropolis Trajectory of 10* steps, averaged over 20 runs.
The initial configuration is random. The inverse tempera-
ture is 8 = 0.3. The initial stage (inset) is fit by a power
law e(t) ~ t77 with o = 0.49 £ 0.01, and the late stage to a
stretched exponential with o = 0.234 £ 0.03.

D. Relaxation Behaviour

In order to investigate how the present model relaxes to
equilibrium at a given temperature T', we have employed
Metropolis Monte Carlo dynamics. [20] This consists of

a) choosing a pair (i,i") of dihedral angles randomly
on the chain, and updating the (¢;, ¢y) in a way that
preserves angular momentum, incrementing them in op-
posite directions by A¢ = £27/3,

b) accepting the move with unit probability if AE <
0 and with probability p = exp(—BAE)) for AE > 0,
where 3 is an effective inverse temperature, 8 = (kgT')~*
with £ being the Bolzmann constant.

¢) repeating the second step once before discarding the
pair altogether and going to the first step.

We monitor the relaxation of the total energy as a
function of “time” measured in the number of MC steps,
(i.e., the number of pairs (¢,¢') sampled) until a steady
state is reached, typically in about 10,000 steps for chains
of N = 100. The results averaged over 20 randomly
chosen initial configurations at zero temperature (§ =
oo) are shown in Fig. 4. Defining e = (F — Ey)/Er,
where Ej is the (time- averaged) equilibrium energy and
Ej, the initial value, we find that it obeys a power law,
€(t) ~ t~7 with o = 0.49 £ 0.01 for the initial stages of
the decay, while later stages can be fitted by a stretched
exponential e(t) ~ e~*" with a = 0.234 & 0.003.

We also performed simulations for different values of
3, for chains of N = 48, averaging over 100 runs with
random initial configurations. For 8 — oo, 8 = 0.5 and
B = 0.3, the above relaxation behaviour continues to
hold and the exponents do not seem to depend on 3,
with @ ~ 1/4 and ¢ ~ 1/2 as given in Table I.

TABLE I: The exponent ¢ and « found for the power law and
stretched exponential decay of the total energy with time, for
different chain lengths N and inverse temperatures 8. The fits
were obtained from a weighted least-squares computation.

N| 8| o |Ac| a | Aa
48 | 00 |0.57(0.01|0.281 (0.004
0.5/0.56(0.01| 0.30 | 0.04
0.3]0.57(0.01| 0.25 | 0.03
100| 00 {0.49|0.01]0.234|0.003

Clearly one may write E(t), averaged over many inde-
pendent runs, as (E(t)) = (E(0) — YL, AE;O(t — t;))
where © is the Heavyside step function and ¢; = Z_::B Ths
with 7 being the waiting time at the kth step, not to be
confused with the symbol for the torques in subsection

ITA. Taking the time derivative one gets,
. M i—1
(B@) = (=) _AEbE-) m) - (20)
i=1 k=0

At zero temperature, the expectation value of E(t) can
be calculated by carrying out an integration over the dis-
tibution of waiting times {7}, and the distribution of
energy steps encountered along the relaxation path. The
expectation value, (E(t)) is then,

l Tk))AE: - (21)

£
Il

(B@) = —(Z AB;6(t —

It is important to note that the distribution of wait-
ing times 74 is dependent only on the configuration of
the chain at the &’ th step and independent of the pre-
vious waiting times. Since the dynamics is just changing
a pair of dihedral angles in opposite directions, for each
conformation {¢;} one may define an associated chain
of N(IN — 1)/2 sites, with each site corresponding to a
pair of angles (i,%') on the original chain. On the as-
sociated chain, a site will be assigned the value 1 if the
corresponding pair of angles has at least one “allowed”
move, and the value 0 if both moves are “blocked” under
the Metropolis dynamics at zero temperature. Now the
probabilities of encountering allowed or blocked moves as
one takes successive Monte Carlo steps are simply given
by the density of 1’ s or 0’ s on the associated chain at
the kth relaxation step. Let us label these probabilities
pr and g = 1 — pg. Then, in the k’th conformation,
the probability of making a transition after precisely
blocked moves simply obeys the first passage time distri-
bution [13],

Py (1) = pre™ "™ pe = |Ingg| . (22)

If we assume that the 7 are distributed identically at
each step of the relaxation process (and therefore inde-
pendently of the AE), then we could do the averages
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FIG. 5: The distribution of energy differences encountered
along the relaxation path are fit to a stretched exponential.
Level spacing histograms were formed for chains of N=48 and
averaged over 100 runs for the zero-temperature Metropolis
relaxation. The exponent a of the stretched exponential is
found to be 0.39 £ 0.03.

in (21) immediately, and we end up with a simple lin-
ear decay for FE(t). By contrast, to see how the re-
laxation times depend on the state of the system, we
may argue that the larger the energy loss in a relax-
ation event, the longer it will take for the phase point to
make a transition out of this state. Since u is roughly
the expectation for 7, we assume that p, ~ 1/AF.
With the assumption that the energy steps encountered
along a relaxation path are independently distributed,
ie, P(AE,...AEy) = Hi\il P(AE;) for a process of
M steps, one finds,

M 7j—1
B =5 YA Let) . (23)
1 =1

j=1

where I; ,(t) is

Lo = [ aaB)e = AR

j-1
AE,
< |11 <AE£ - AEk>AEk - (24)

k=0

k£L
This is obtained by taking the integral representation for
the delta-function in Eq.(21), and then performing the in-
tegrals over the 7, with the probability distribution (22),
and finally performing the remaining integral using the
residue theorem. Meanwhile we find that the probability
distribution of the energy differences encountered along a
relaxation path, P(AFE}), also is a stretched exponential
P(AE;) = P,exp(—(AE)*), with ¢ = 0.39 + 0.02 (see
Fig. 5). The angular brackets then take the form

AE, /0 T (AE - AE) " exp(—(AE))dAE:  (25)

which we approximate by AEy exp(—(AEg)*). The inte-
gration in equation (24) is then straightforward, leading,
upon substitution in (23), to

M .
E(t) ~ tz (”Ji) exp(—a;t®) (26)

where a; = j(1 — a)(aj)~*(1 + )" and
o = a
T a+1

(27)

Substituting the above value of a we get o = 0.28 £0.01
which is the result we obtained from the fits to the MC
simulations within our error bounds.

The distribution of AE along a trajectory of the n—
dynamics [3] is quantitatively different from the distri-
bution of AE encountered along a Metropolis Monte
Carlo path, and depends on 5. This arises from the
highly complex nature of the energy landscape, and the
extremely important correlations that arise between the
energy steps encountered depending upon how the phase
space is being sampled. In particular, we have found out
that in the limit of extremely large 1, where no coopera-
tivity remains, the distribution of AE along a trajectory
of the dynamics is Poissonian, which would have led to
a =1/2 instead of 1/4.

The relaxation to the native states for several real pro-
teins was investigated by Erman [23, 24], who also finds
a stretched exponential relaxation with a = 1/4. Ex-
periments on real proteins and polymers [4, 21, 22] yield
0.2 < a < 0.4. Our results seem to be closer to 1/4 and
smaller than the values most commonly found for pinned
charge density waves [39], or spin-glasses [46], namely
1/3. It should also be noted that glassy behaviour is ob-
tained here in the absence of quenched randomness, or
of frustration arising from steric hindrances, which we do
not take into account.

Comparing the theoretical and experimental relaxation
behaviour near the native state with the behaviour we ob-
serve at relatively high energies for random heteropoly-
mers, we conclude that the relaxation behaviour, and
therefore the dynamics and the structure of the energy
landscape are universal over a very large range of en-
ergies, and are relatively independent of the specific se-
quence or the details of the dynamics.

III. HYDROPHOBIC CHAIN NEAR A
HYDROPHOBIC BOUNDARY

In this section we will go back to the effective, entropy
mediated hydrophobic interaction which is the driving
force behind protein folding considered in the previ-
ous section as well as many other biological processes.
[4, 5, 47-50] We will review some work which builds upon
the model introduced by Widom and co-workers [26—
30] to understand the microscopic mechanism leading
to the effective attractive interaction between non-polar
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FIG. 6: Decorated lattice model. Lattice sites are occu-
pied by water molecules (shown as filled circles); hydrophobic
molecules (open cirlces) can only be accommodated at inter-
stitial sites.

molecules placed in water, at least within a certain tem-
perature interval. Then we will use this model to study
the behaviour of a hydrophobic chain near a hydropho-
bic boundary, in two dimensions [25]. In trying to un-
derstand the behaviour of a hydrophobic chain in water,
one must take into account both the hydrophobic interac-
tions mediated by the orientational entropy of the water
molecules, and the configurational entropy of the chain,
while respecting its connectivity.

Although the behaviour of chains (or membranes) in
the vicinity of spatial boundaries have been considered
before [51-53], these studies have concentrated on tem-
perature independent interactions.

With the inclusion, to various degrees of accuracy, of
the entropy of the chain, we are able to take into ac-
count the competition between the entropy of the water
molecules which can be constrained by the presence of
hydrophobic molecules in their neighborhood, and the
entropy of the chain. We find that although at low and
high temperatures, the chain prefers to be in a random
configuration, detached from the wall, there is an inter-
mediate temperature range where it is adsorbed on to
the wall, at least for the relative values of the hydrogen
bond, dipole-induced dipole and solvation energies which
we have assumed.

The motivation behind studying this particular system
is to shed light upon the chaperoning role which might be
played by a hydrophobic surface in facilitating the folding
process.

A. Decorated lattice model of hydrophobic
interactions

A decorated lattice model that mimics the solvent me-
diated hydrophobic interaction was suggested by Widom
and his collaborators [26-30]. In this model, g-state Potts
spins, {s;}, are situated at lattice sites. These represent
the polar solvent molecules. They can have any of the ¢
different, polarization directions. Hydrophobic molecules
(HM), which are non-polar, can only be accommodated

at interstitial sites, more precisely on the bonds connect-
ing neighboring pairs.(see Fig. 6) Lattice-gas variables,
{os;}, 0i; = (0,1), located on the bonds (ij), indicate
whether an interstitial site is empty or occupied by a HM.

The interaction energy between a pair of solvent
molecules is given by —d,,,10,,,,,1(¢ —w) — u. The oc-
cupation of the instertitial site is not allowed unless the
neighboring pair of Potts spins are in the “special state”
1. The allowed states and their energies are summarized
in Table II.

We have slightly modified this model, by introduc-
ing an energy of solvation and relaxing the prohibition
against the occupation of the interstitial site in the dis-
ordered state. In this way we may actually write down
a Hamiltonian for the water-and-hydrophobic solute sys-
tem as,

Hy = ) {8si5;0511005 (w — u) +u]
<ij>
+v0i; (1 - 5Si,3j53i,1)} . (28)
The interaction energies are ordered so that

w<u<0<o, (29)

where v may be thought of as the solvation energy of the
HM in the disordered state of the water molecules (see
Table II).

The ordering of the various interaction energies may
be seen to follow from elementary considerations. The
interaction between water molecules and HM is always
attractive, because of the dipole-induced dipole interac-
tion. On the other hand water molecules can form short
lived tetrahedral structures [54, 55| stabilized by hydro-
gen bonds [56], i.e., a type of short ranged order. Because
these structures have an open cage like space between
them [57], a HM can be accommodated there without
breaking any hydrogen bonds. Thus, this “ordered” con-
figuration is the minimum energy configuration of water
molecules in the presence of a HM. In this model, the
unique ordered state of the tetrahedrally bonded pen-
tameric configurations of the water molecules [57], which
is able to accommodate the HM without breaking any hy-
drogen bonds, is identified with the configuration where
all the s; are in the state 1.

If there are no HMs between the ordered water
molecules, there still is an attractive interaction due
to the hydrogen bonds and the dipole-dipole interac-
tions, but the absolute value of the interaction energy is
smaller, by precisely the amount contributed by the in-
duced dipole interactions. At higher temperatures, water
molecules will tend to be oriented randomly. This state,
with no HM intermixed with the water molecules, we
chose as the reference, i.e., the zero level of the energy.
When water molecules are randomly oriented, they can
still have hydrogen bonds between them, though fewer in
comparison to the ordered state. However, unlike the or-
dered state, there will be less open space between them.
To be able to accommodate a HM in a disordered region



TABLE II: The energy for different states of a pair of nearest
neighbor solvent molecules in the presence or absence of a
solute molecule at the interstitial site.

[solvent mols. [interstitial | Refs. [26, 28] | present model]

s; =s8; =1 | present w+v w
si=s8; =1 absent w u
disordered absent U 0
disordered present | not allowed v

of water molecules, further hydrogen bonds have to be
broken. Thus, the insertion of a HM within this disor-
dered phase of water molecules is energetically unfavor-
able.

The Hamiltonian Eq.(28) may be rewritten in terms of
two-state variables ¢;, defined by

051 = & (30)

with ¢; = {1,0}, if we allow a temperature dependent
“external field.” In the partition function the multiplicity
of the s; # 1 states can be taken care of by inserting a
factor of (¢ — 1) for each Potts spin not in the ordered
state, or a term —B(1—#;) In(g—1) into the Hamiltonian,
to get,

N
H = Z {tit]’ [aij(w —u—v) +U] + 034 ’U}
<ij>

-t Z(l —t)In(g—1) . (31)

Larger values of ¢ are more realistic since ¢ is the num-
ber of different orientations in which the solvent molecule
can find itself. Apart from steric hindrances, we expect
the orientation to be able to vary continuously, corre-
sponding to some appropriate ¢ — oo limit. [29]. Larger ¢
values will clearly give rise to stronger entropy-mediated
interactions between the solute molecules.

B. Effective hydrophobic pair interaction in the
Mean Field Approximation

We would like to make use of this effective Hamilto-
nian to compute the self-interaction of a hydrophobic
chain. To do this efficiently, we need an effective tem-
perature dependent pair potential between the elements
of the chain. In one dimension, one could perform a trace
over the mediating solvent molecule between two HM, to
obtain an effective interaction. However, in two or higher
dimensions, correlations between solvent molecules may
be built up over many different paths. Therefore we de-
cided to compute the effective interactions between the
solute molecules (without any effect felt from the pres-
ence of a wall) in the Mean Field Approximation. This
is the subject of this section.

In the MFA, the Hamiltonian (31)on a cubic lattice in
d dimensions, can be written as

2d
Hyr = > {t{t)oj(w — u—v) + u] + o; v}

67 p(1 —t)In(g - 1). (32)

where the sum runs over the bonds pointing to the near-
est neighbor sites. The field (¢) is the mean value of the
random variables t; associated with the neighboring wa-
ter molecules, and it will be determined self-consistently.
We have inserted p for later convenience in computing
expectation values, and will otherwise set it to unity. We
obtain the effective pair interactions between the solute
(HM) molecules by performing the ¢ sum in the partition
function.
The partition function Z is defined as

Z = Z e~ AHur(t{o}] (33)
{U‘i}7t

i=1,...,2d, and (t) must be found from

0
1—(t) =[ln(g-1)]" o Z|p=1 (34)
which we solved numerically for each given temperature
T, for d = 2.
We may define all the possible effective p-body interac-
tions that may be built from these lattice gas variables,
by writing the effective Hamiltonian

Heﬂ' = —ko - kl ZO’Z' - k2 ZUZ'O'J'
i (i5)
- k3 Z 0i0;0 — k4Hi0i ) (35)
(igk)

where (ij) denotes nn and nnn pairs and (ijk) triplets.
Note that the nearest neighbor (nn) and next near-
est neighbor (nnn) pairs are indistinguishable from each
other in this “tree” approximation, since the bonds issu-
ing from the single central site may be freely interchanged
with one another. The interaction constants may be de-
termined by setting

Z =Y e PHullosll (36)
{o:}

By considering terms with all the o; set to zero, only one
different from zero, or a pair of them different from zero,
etc., one is able to determine all the coupling constants
kp.
For the the two-body interactions k2, which we will
call M(5) from now on to simplify the notation, we find,

e—28 [{&) (w—v+u)+v] + (q _ 1)6—2,@11
[e—ﬁ [t (w—v+3u)+v] L (q _ 1)6_5”]2
x (e_ 1Bult) L g — 1) X (37)

SMEB)



Substituting the numerical values for (t) in Eq.(37) one
finally obtains the effective solute-solute interaction en-
ergy in two dimensions, which we plot, in Fig. 7, against
the inverse temperature for different choices of q. The
interaction between HMs is attractive for any finite tem-
perature, as ko enters Eq.(35) with a negative sign.
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FIG. 7: Effective, temperature dependent nn and nnn inter-
action energies between hydrophobic residues in water, in the
MF approximation to the decorated lattice model [28]. Note
that M = k» enters with a negative sign into the effective
Hamiltonian in Eq.(35). Here ¢ is the number of different ori-
entations which can be assumed by the water molecules. The
effective interaction is stronger for larger g. The coupling
constants for the decorated lattice model have been taken as
w=-15 u=-1, v=1.

To the lowest approximation [30] we will neglect the
plaquette and triplet couplings k4 and ks as being of
higher order in the fluctuations. The linear term we will
also neglect, because it is like a chemical potential, and
this will be taken into account in the wall-particle ef-
fective interaction which we will now calculate in a one-
dimensional approximation in the next subsection. The
constant term of course cancels in all the expectation
values, and may therefore be dropped from the start.

C. Effect of the boundary

In order to be able to estimate in closed form the effec-
tive interaction of a HM with the hydrophobic boundary,
we will consider a one dimensional system, and compute
the effective interaction between a hydrophobic insertion
and the hydrophobic boundary from the free energy dif-
ference resulting from this insertion. We will then use
this as an approximation to the true interaction between
the solute and the hydrophobic wall, in the unique normal
direction to the wall (a linear boundary) in two dimen-
sions.
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The Hamiltonian in Eq.(31) becomes, in one dimen-
sion,

SN
I

Z {titiv1 [os(w —u —v) + u] + oy v
—B7'(1 - ;) In(g — 1)} (38)

N
= Z Hi[ti, t,'+1,0','] .
i

For N being the length of the one-dimensional lattice of
water molecules, the free energy cost F'(N, T, r) of adding
only one HM at an interstitial a distance r from the wall
at temperature T is given by

(39)

—BF(N,T,r) = In (Z(N’T’r)) :

Zo(N,T)

where 871 = kT as usual, Zy(N,T) is the partition
function of the one dimensional system with ¢; = 0 for
all ¢, that is, no HM molecules, and Z(N,T,r) is the par-
tition function computed in the presence of one HM a
distance r from the wall. The effective interaction be-
tween the wall and a single HM is thus given by the free
energy cost of bringing HM from bulk to distance r from
the wall,

FP(1,r) = F(N,T,r) — F(N,T,rs),  (40)

where 7, means a displacement from the wall beyond
which the effect of the wall is no longer perceptible,
namely a bulk site. In the thermodynamic limit

FO(L,r) = lim FPa,r). (41)
—+00

To compute the partition functions in (39), we used
the transfer matrix method. From Eq.(38), the transfer
matrices in one dimension are obtained as

T (03) = (tle PHlttirnoid g, 1y (42)

Thus, the transfer matrix is conditional on the presence
(or absence) of an interstitial HM at each bond connect-
ing two water molecules, and we find,

_ o eP (g-1)3
7 ((q—n% L) *3)
e v eP(g 1)
) = (e‘ﬁ”(q—l)% e fv(g-1) ) *

for the two possible resulting transfer matrices. To get
the transfer matrices in a more symmetric form, we have
rewritten the third term in the Hamiltonian (Eq.(38)) as
—12B712 —t; — ti11) In(g — 1). From Eq. (40), we get,
with one HM inserted at a distance r from the wall,

_ﬂFj(\{)(l,r) = lnz(llTT_l(O)T(l)T(O)N_T|k)
k

— ) (UTY )T ()|m).  (45)

m
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FIG. 8: The effective interaction potential of a residue with
the hydrophobic wall for different values of ¢, at » = 1, at
different inverse temperatures. The interaction coefficients of
the lattice model were chosen as in Fig. 7

Notice that the left-most vector is fixed to be unity, sig-
nalling the presence of the hydrophobic wall. In the ther-
modynamic limit N — oo, this reduces to,

—ﬁF(I)(l, r) = In Z AiTij(Daija1x
ik

—anallalﬂ}i(l) ,  (46)

ij
where we have defined
Ai = ajrayi + (Mo /M) " aniag (47)
with

1
)\1,2 = 5 e_B“{l + (q - 1)65“

+ [1+

1
2

(a1 ((g +3)e™ —2¢7)]*}  (48)

being the eigenvalues of 7(0), and ag; the elements of its
kth eigenvector.

We will use F{)(1,r), which we have calculated ex-
actly in one dimension (Fig. 8), to give us an estimate
of the interaction between the HM and the hydrophobic
boundary in two dimensions.

D. Hydrophobic chain with intra-chain and
chain-boundary interactions

We are interested in the behavior of a hydrophobic
polymer chain in the presence of a hydrophobic wall.
This means we have to respect the connectivity of the
chain in performing the trace over the lattice gas vari-
ables corresponding to the HM. In other words, the phase
space consists of allowed chain configurations.
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FIG. 9: a) (Top panel) Elementary modules used to generate
SOS like chain configurations which only allow nearest neigh-
bor interactions between the modules, via nn or nnn inter-
actions between the hydrophobic residues. b) (Lower panel)
Nearest and next nearest neighbor interactions M (8) between
HMs on the chain are indicated as wavy and dashed lines, re-
spectively.

To be able to treat the model at least in a semi-
analytical way, we have considered two simplified sets
of chain configurations, which we will outline below.

1. Modular chain or SOS model

We define a set of elementary modules, from which a
large number of chain conformations can be built, such
that only nearest neighbor modules come within the in-
teraction range of each other. The subset of configura-
tions that can be generated by random combinations of
the modules that are shown in Figure( 9a) can clearly
be seen as graphs (taking the boundary as the axis)
without overhangs, as in a restricted solid-on-solid (SOS)
model [58] in (141) dimensions, where successive steps
are constrained to differ by at most one unit of height.
Making use of the linearity of the chain and the restric-
tion to nearest neighbor interactions between the mod-
ules, we used the transfer matrix along the chain to solve
the partition function for our model Hamiltonian.

We labeled the modules in Figure( 9a) as 1, 2, 3 from
left to right. A chain configuration is uniquely specified
by associating a variable, u; = {1,2,3},i = 1,...,Np,
with each module along the chain, and by specifying the
distance of the first module from the wall. Note that the
number of residues along the chain is given by 2N,, in
this case. The interaction energy of each residue with
hydrophobic wall is computed using F)(1,r). We took
M (8) defined in Eq.(37), to be the interaction energy be-
tween nearest and next nearest neighbor residues. (see
Fig.(9b)). Note that the nearest neighbor interaction



(wavy line) connects residues belonging to modules twice
removed from each other. Yet, since this occurs only in
the (7,7 + 1) = (2,3) or (3,2) combination, independently
of the identity of the ¢ — 1st module, it can still be acco-
modated within a nearest-neighbor Hamiltonian.

We model the effective Hamiltonian of a polymer with
N, modules as,

He = =Y {M)wiTluis)

-l-h]_(Ti_]_,Tz')} . (49)

The vectors |u;) correspond to the three states of the
variable u;, i.e., (1,0,0), (0,1,0) etc., so that the coeffi-
cient of the pair interaction M () is conveniently written
in terms of

022
r=(023]. (50)
032

The second term is the free energy cost of adding HMs
to the solvent matrix, hy(ri,ri_1) = —FUO(1,r1) —
F(1,r;). The distance of the second residue on the
ith module from the wall, r;, is found from r; = r + p;,
where r is the distance of the first module from the wall,
and

i

pi = Z (6Uj,2

=1

— Guy3) - (51)

Note that the displacement of the first residue on the
ith module is the same as that of the second residue on
the 7 — 1st module, and therefore the expression for h;
follows.

The partition function of the polymer is,

Z =33 ehH, (52)

T {u}
Explicitly,

Z = Z (7‘1,U,]_|U|’I"2,U2><7‘2,’U,2|U|T3,U3>...
{ri}{ui}

...(er_l,uNm_1|U|er,uNm). (53)

Here, |r;,u;) are M x 3 dimensional vectors, with M
being the size of the system in the direction orthoganal
to the wall. The transfer matrix I/ is given by a direct
product

U= i W g R (54)
¢=1
with
Wi = 8ea (55)
WD = 802 [€PM (81 + O2) + ¥ Mo, 5]  (56)
we = (2=3) (57)
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where k, £ = 1,2,3, (2 = 3) indicates an interchange of
the indices 2 and 3 in the previous equation, and

R'(YCW) = O¢10yme” 265" (L)
+ Gen 0y re” BT AM+F (L)
+ ds(y=m) (58)

where v,5=1,...M and { = 1,2,3. We note that only
the diagonal, upper diagonal and lower diagonal elements
of the matrices R(©) are different from zero. However we
have not been able to find a way to analytically diago-
nalize the matrices U, or, for that matter R; they are
not simply cyclic, but the matrix elements depend di-
rectly on the row (or column) index through the func-
tions FXO(1,7;). (See Eq.(13)). Therefore we have had
to perform the matrix multiplications numerically.

We calculated the center of mass distance of the hy-
drophobic polymer from the hydrophobic boundary,

N

O o)

i

(rem) =

|-

11 NZmZ(ru UL |rius)r
= - 1U1 Ui )T
Z N i=1 Q
(riwi U™~ rn, un,)  (59)

where the sum over the set €2 shall henceforth mean a
trace over ri,uy,Ti,4i, TN, , Un,, - Defining a 3 x M vec-
tor, |¢) such that

(¢ = (100100100 ...100) (60)
one may slightly rewrite Eq.(59) as,

(rem) = 73 O Yo(rreall reus){lrian)

mi=1 Q
(riui|uNm_i|eruNm) . (61)

and this is shown in Fig.(10) as a function of tempera-
ture. At intermediate temperatures the polymer chains
are attracted to the wall so strongly that (rem) ~ 1.5.
The chains are predominantly in a zig-zag configuration
confined very close to the wall, with half of them actually
adsorbed on the wall, and the maximum number of nn
and nnn interactions.

As § — 0 (high temperatures) the intrachain interac-
tion M also goes to zero, the entropy of the chain be-
comes the determining factor, and the chain floats free.
At low temperatures, as the entropy term in the free
energy becomes negligible, the equilibrium state is de-
termined by energetic considerations, and the polymers
desorb and take on random configurations, constraining
a large number of water molecules in their neighborhood.

The average end to end distance of the polymer chain,
projected on to the boundary, is given by

N
(L) = Np, + <Z 5u,.,1> : (62)
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FIG. 10: The average center of mass displacement from the
boundary, of the hydrophobic chain with 60 residues in the
SOS approximation, for different values of solvation energy,
v, and different values of ¢. For computational purposes, the
width of the channel was chosen to be 12 lattice spacings.

Defining |v) by,

| =(100200... %(k+2)00---M00) ,  (63)

we get,
11 & ;
(L) =Nm + ZN. ; §<TIUI " |rswi)(plrivi)
(riug|UNHry,_ un,) . (64)

The temperature dependence is reported in Fig. (11). In
the limit 8 — 0, clearly (L) = Ny (1 + ), which is
what one sees in Fig.(11), with N,,, = 30. It is interest-
ing to note the non-monotonic behaviour of (L) within
the region of interest, namely the temperature interval
for which the center of mass lies very close to the wall.
This non-monotonicity arises from the competition be-
tween the entropy mediated effective self-interaction of
the chain (leading to smaller L) and the interaction with
the wall (completely shielding one side from the water by
stretching out to adsorb on to the wall). This behaviour
is also observed in the models we have considered in the
subsequent sections.

Although the SOS model is exactly solvable in prin-
ciple, it is unable to take into account configurations of
the chain which fold on themselves, and we therefore have
also considered a model where such conformations are al-
lowed.

2. The n-fold model

In this section we take a different subset of chain config-
urations over which to perform exact summations. These
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FIG. 11: Mean length of the hydrophobic chain with 60

residues, projected on to the boundary, in the SOS approxi-
mation. Different values of solvation energy, v, and different
values of ¢ are shown for comparison.

configurations are shown in Fig.(12). If the length of the
polymer is N; then the energy of a chain with an integer
number of folds N;/n, is given by

_ Ny = (D .
Hy = — ;F (Lr+i—1) = Mvp(l =61 — nn,)
(65)
where r is the distance from the wall and v, = 3(n —
1)(Ny/n—1) is the total number of nearest neighbor and
next nearest neighbor pairs in this configuration. The
partition function

zZ=>Y" z’: e P (66)

is nontrivial to sum, again because of the complicated
way in which the functions F)(1,r + i — 1) depend on
their arguments, viz. Eqs.(46,47), and the nonlinear de-
pendence of v, on n.

The center of mass displacement from the wall can be
obtained in principle from

(rem) =271 Z Z e AHnp 4 %(n —modsn)] , (67)

where the prime indicates that the summation is only
over exact divisors of N;. The mean value of the vertical
distance between the first and last monomer is (L) =
(Ny/n), which can be calculated from,

Nifm) = 235 Sestm (68)
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FIG. 12: Polymer configurations included in the exact enu-
meration of the n-fold model.

To obtain these quantities, the partition function and
the expectation values were summed numerically, insert-
ing, for each different value of 3, the numerical value of
FO(1,r 44 —1) and of M. For the numerical sums, of
course a finite set of values had to be chosen for r. The
results we find are qulitatively and quantitatively very
close to our earlier results for the SOS-like model. [25]

In the low temperature limit, increasing the number
of HM-water nn pairs lowers the energy and this is fa-
vorable since the entropy term in the free energy is sup-
pressed, and the chain takes on relatively open, random
configurations. At intermediate temperatures where the
hydrophobic interactions are the most effective, the chain
prefers to neighbor the hydrophobic wall at as many nn
sites as possible, and therefore is adsorbed on the wall in
the unfolded state. As the temperature is raised some-
what more, effective self interactions of the chain become
more important, and the chain is in a more folded state,
although still adhering close to the wall. At high temper-
atures it is advantageous to minimize the number of near-
est neighbor sites at which the chain is in contact with
water molecules, since the entropy of the water molecules
is rather large, especially for large ¢. On the other hand,
the entropy of the chain also favors open configurations,
which win out in the high temperature limit. We found,
with N; = 50, (L) is close to le/4 = 18.8, at both ex-
tremes, with the power being that of the Self Avoiding
Walk in two dimensions.

Monte Carlo simulations

Monte Carlo computations for 3x10° random Self
Avoiding Walk configurations of length N = 20 were
reported in Ref. [25]. Here we will report the results
from 3x 10* configurations , generated via a genetic algo-
rithm [60]. If a random walk passes through any lattice
point which it has already visited, the configuration is
discarded, and a new one generated. Each successfully
generated configuration was decorated with the interac-
tion potentials F)(1,r) and M(B) from Eqs.(40,37), to
finally compute the expectation values for the center of
mass displacement from the wall and the longitudinal
component of the end to end distance, in the canonical
ensemble. The results we find (Figs. 13,14) are surpris-
ingly close to those shown in Figs. (10,11), to the n-fold
model results and to the MC results in [25].
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FIG. 13: Monte Carlo results (see text) for the average center
of mass displacement from the wall, of a polymer with 20
residues, for different values of the solvation energy, v, and
for ¢ = 10, w = —1.0, w = —1.5, on a 40x40 lattice. The
longitudinal axis is the inverse temperature in units of kg /u.
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FIG. 14: The average longitudinal component of the length
of the hydrophobic polymer, for the same parameters as in
the previous figure.

IV. THERMODYNAMICS OF EARLY PROTEIN
FUNCTION

It has long been appreciated [34] that proteins are
unique among possible amino acid chains in being able
to fold into a unique “native state” and reversibly unfold
to a random coil. Synthetically produced amino acid



chains have degenerate ground states. Moreover, short
to medium sized proteins typically fold and unfold at one
go, without any intermediary states between the folded
and the unfolded ones. This can be quantified by various
measures of so called “two-state cooperativity”[42, 61].
It is a challenge to be able to understand the mecha-
nism by which such amino-acid sequences got selected
in the course of evolution or how biological evolution as
we know it came to being in the first place. It would
seem to be self-evident that the highly specific functions
discharged by proteins in vive would not have come into
play unless two-state cooperativity had already been se-
lected via some pre-biotic mechanisms. In Ref. [32], we
have argued for a basic thermodynamic function which
could have been fulfilled by proteins, namely that of a
refrigerant in an adsorption refrigeration process.

Eigen identifies two essential properties of a biologi-
cal system, or “principles of organisation,” as hypercycles
and compartition, namely the containment and segrega-
tion of biological material [62]. The translation of RNA
code means picking out a specific sequence of amino acids
from a random jumble and transforming them into an or-
dered chain. As a result, the information carried by RNA
is translated into specific intra-chain interactions as well
as interactions with the ambient water, subject to given
boundary conditions. Once the peptide chain is formed
and wiggles itself free from the RNA molecule, it could
behave as an active Brownian particle [63] responding
to variations in temperature or other external stimuli in
specific ways which enable it, in turn, to act upon them.

A common assumption regarding compartition is that
porous rock could have played host to prebiotic pro-
cesses. [64, 65] Recent evidence has been providedby Mar-
tin and Russel [66] that life could have originated in iron
monosulfide precipitates on the ocean floor, whose pores,
lined with certain lipids, may have provided the first sim-
ple cell-like structures.

We have already shown that due to hydrophobic
interactions[25] those peptide chains that are near hy-
drophobic surfaces may adsorb on such surfaces at least
within given temperature intervals. It may be conjec-
tured that rock surfaces, with some lipids present, are
favorable sites for adsorption, and act as guides for the
peptide chains, helping them to fold. Upon folding, as
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a result of the reduction in entropy, heat will be given
out, mostly to the surface of the rock. For special se-
quences, with specific intra-chain interactions, this folded
state will be stable. If, now, the surface on which the
proteins have adsorbed is heated, say by the emission
of a hydrothermal vent [66], the chain will detach itself
from the rock surface. If it is carried along by convective
currents away from the heated wall, and in particular to-
wards a cooler pocket, where, say it encounters a region
of with a high pH, which lowers the denaturation tem-
perature, this is where it will unfold, absorbing heat from
its surroundings.

This, in fact describes an adsorption-refrigeration cy-
cle driven by low quality heat [67-72]. The efficiency
of such a refrigeration cycle operated by proteins un-
dergoing a folding-denaturation transition would depend
strongly on two parameters: the entropy gap between the
folded and unfolded states of the amino-acid chain, and
the rate of the folding-unfolding transition. One may now
hypothesize that the accidental establishment of such a
refrigeration cycle provided an evolutionary advantage
to those RNA molecules who coded proteins that were
efficient coolants, since, in an overheated environment,
lower temperatures could enhance the replication rates
of RNA. This completes the hypercycle.

If this scenario is correct, the fates of RNA chains
would from then on be bound with the synthesis- and
eventual evolution- of polypeptides. Those RNA se-
quences would be selected for, who were able to synthe-
size proteins which folded into lower entropy states, and
did this in a very short time. Today’s biological proteins
have unique ground states leading to large entropy gaps.
Small single domain proteins fold into their secondary
structures within milliseconds [73], or even faster [74].

What we would like to emphasize here is the point of
view that simple chemical and physical processes which
set the stage for biological evolution, must already have
provided a great deal of variety and complexity upon
which the fortuitous emergence of self-replicating entities
posessing a hereditary code, could elaborate.
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