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Ocean’s ‘weather’

Geostrophic eddies

variability {
Discuss:

1. Eddies: are they important for climate?

2. Eddies and their role in setting
structure of thermocline, mixing....
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Evolution of passive tracer

e |dealized tracer driven by
surface currents in ACC
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Are eddies important for climate?

Models suggest eddies play &
major role in tracer, momentum [ %za}
and vorticity budgets | 9

e.g. vanishing of ‘Deacon Cell’

Doos and Webb
Danabasoglu, McWilliams

But

What can we infer from observations?
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Infer Eddy transport from observations

Vp —

1| Buoyancy transport

o Surface
Diabatic buoyancy
Deacon Cell fluxes
Speer,Rintoul & Winds  —>
Sloyan
2| Eddy diffusivity, K 3| Momentum balance
How can we estimate a K from Compare eddy stress

observations? to wind stress



1| Buoyancy ITransport

(I) Stream-wise average

2d — V¥

(i) Rewrite Eulerian buoyancy budget:

—b = o (TH
V- W + (vb)+
¥ x

Decompose eddy flux

w777 - I - -

isopycnal horizontal

Fy u 0
where S, = — = is the isopycnal slope




Residual-mean buoyancy budget Held and Schneider, 1999

isopycnal _ _ _
VeWwbls,,wb)=7*b,+Ww*b.

N
where W* — _wb
by

leftover V . (v/b/ . W,b,/Sp,O) — a_il:(l . ‘u)v/_b/:l

(V +v )_ay +(W+w )_az -
. Wb Vb Residual mean theory
by b,
/ Andrews and Mclntyre

Held & Schneider

If eddies are ‘adiabatic’
Gent and McWilliams



Cross-stream transport inferred from air-sea fluxes

from air-sea
buoyancy fluxes

Neglecting diffusion &
diapycnal eddy fluxes |

the wind is not the same as that

implied by air-sea buoyancy fluxes

Cross-stream transport implied by

David Marshall
Speer, Rintoul & Sloyan



Wind Stress Air-sea buoyancy flux

Annual mean TAUX (NCEP, 1580-2000) Annual mean net surface heating.of ocean (NCEP 1950-2000)
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2| Eddy transfer

Can we characterize eddies with a diffusivity, K?

If so, how large is the K?

Use ‘idealized tracer’ driven by observed
surface geostrophig flow to yield K

/

altimetry
‘Idealized D> Device to yield diffusivity

tracer’ from observations



Advection-diffusion in 2-d

oq _ 2
E-I-V'VQ—/rCVq

/
‘small-scale’ diffusion

Large-scale V
drives small scale

mixing kVq

Theory ‘intersects’ with

observations very nicely

Nakamura
Haynes and Shuckburgh

In ‘area’ coordinates problem can
be rephrased as:

X

(%)
x=kZ | |Vq|*dd
A(q,t)

‘dissipation rate’ of q



Drive tracer with altimetric data

Topex data k= 100m?%s!
every 10 days

. lo LO
Resolution 6 X 6

Assumption: large-scale K is
independent of small-scale £

Planning to repeat at

1oy L% i _ 2 1
30 X 30 With k= 10m=s

Emily Shuckburgh (DAMPT)
Helen Jones (MIT)




Near surface K

mean Keff v eff. lat. (relaxed and initialised to log(1+5sfn) stream function)

Eddy diffusivity
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Implications for parameterization




Deducing W*from K
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Momentum balance

—fvg = F+Vv'q'

/ \ Eddy PV flux

OT wind aTEddy
o

0 surface

U wind

5 T eddy
if\Wr =0

Feddy = Fwind Johnson and Bryden



Mapp
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'V at mixed layer base [$

Karsten, Marshall
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Conclusions

1

2

Transport implied by 7 and B, are very different

—> Y* must be Iariand oppose WV

30 Sv
Estimated K from altimetry

2-d mixing of yialqs near-surface K ~ 500 to 2000 m2s~!

idealized tracer

and consistent pattern of *

Eddy stresses are as large 4 Eddies are hugely
as wind stress important in ACC
and elsewhere.....




Estimate of global eddy stress
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