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Outline Lecture I — The Climatological Cycle

I. Why is deep convection important within our climate system?

II. Climatological Seasonal Cycle at a Deep Convective [.ocation




Outline Lecture II: Variability of Deep Convection

Part III. Variability of Deep Convection Observations and Theories

Part IV. An idealized model as a tool to study variability




What is Deep Convection ?
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Deep Convection: vertical overturning driven by a large surface heat loss

Mooring Location

Observations from mooring at a convective location:
the Central L.abrador Sea
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Latitude

Large Scale Aspects of Deep Convection

Deep convection Section Across the Labrador Sea
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Spreading of a convectively formed water mass

Labrador Sea Water Spreading
in the North Atlantic
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(Talley and McCartney, 1982)



Deep Convection at a Limited Number of Locations

Nordic Seas

Labrador
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The dense water formed via convection is an integral part of local
(Mediterranean) or global overturning circulations.



Deep Convection Regions As a Key Component of the Ocean’s
Poleward Heat Transport and Meridional Overturning Circulation

Schematic of the Thermohaline Circulation

Water Mass Transformation in
the North Atlantic due to deep
convection is associated with
the sinking limb of the global
overturning circulation.

Convection in the North
Atlantic results in the
formation of North Atlantic
Deep Water NADW).
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Meridional Overturning Streamfunction of the North Atlantic

North Atlantic Ocean transports O(10" W) northward
mostly via NADW formation and the vertical overturning cell

high latitudes
warm water poleward

Surface > .
water mass transformation warm = cold

at high latitudes due to a large heat loss to

the atmosphere is mostly associated with

deep convection
Depth <

cold water flowing south



OVERTURNING CIRCULATION OF THE NORTH ATLANTIC
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Summary

Part I. Why is deep convection important within our climate system?

® principal mechanism for dense water formation

® poleward heat transport and meridional overturning circulation
(especially in the North Atlantic)

® mixing of properties between the deep and surface ocean

Part II. Climatological Seasonal Cycle at a Convective [.ocation

To understand the variability of a system, we first need to:
® describe its mean behaviour
® identify the physically significant variables

® understand the basic physical mechanisms



How Deep Convection Works: the Labrador Sea Case Study

North Atlantic’s Subpolar gyre:
the warm water pathway
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ELEMENTS OF A CONVECTIVE SYSTEM

1. interior convective region

2. lateral forcing:
exchange with the surrounding
boundary currents

Latitude

3. surface forcing:
exchange with the atmosphere
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The Driving Force: the Atmospheric Heat Loss

Climatological Mean Heat Forcing over the Labrador Sea
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How to reconstruct the Labrador Sea’s Mean Seasonal Cycle from data:

Two data timeseries:

1. Ocean Weather Station Bravo (OWSB) 1964—-1974
ii. P-ALACE float data (1996—2000)
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Mean Evolution of Density in the Central Labrador Sea

Potential Density Seasonal Cycle
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Density evolution suggests the following breakdown for a simplified description:

1. layer breakdown — surface and lower layer

i1. temporal breakdown — restratification and convection



The Heat Budget of a Convective Region

Given the temporal and layer breakdown chosen, how does heat flow through the system ?

i. The annual net heat loss to the atmosphere must be balanced by a net inflow of heat from
the surrounding ocean.

ii. Vertical exchange between the two layers is limited to the convection phase.
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Extracting the Mean Seasonal Cycle

Fotential Temperature at BRAVO
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Climatological Variation in the Surface Layer Temperature

8 Variation

Surface layer temperature closely
follows the atmospheric heat flux
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Lateral exchange with the
surrounding ocean contributes to
cooling the surface layer during
restratification




Climatological Variation in the Lower Layer Temperature
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ANNUAL BUDGET FOR THE CENTRAL LABRADOR SEA

—0.77  Net surface heat loss to the
—(0.83  atmosphere

L —0.19  Cooling due to surface
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Inflow of heat into the lower layer: how does it occur ?

Proposed Mechanism = Baroclinic Exchange with the boundary currents
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Climatological Motion of the 27.72 Isopycnal

Baroclinic Exchange = reduction of the gradient
between the interior and the boundary current
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Heat Content Change in the Lower Layer during Restratification
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Warming of the lower layer (200—1500m) is primarily due to:
— thickening of the intermediate layer
— thinning of the deep layer



Simplified representation of convection:

Atmospheric
External Q< Forcing
Ocean T
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The seasonal cycle for the two periods appears to be stable if described in these
terms.



Summary

Why is deep convection important within our climate system?

® principal mechanism for dense water formation
® poleward heat transport and meridional overturning circulation

® mixing of properties between the deep and surface ocean

Part II. Climatological Seasonal Cycle at a Convective [.ocation

® Simplified representation of the system includes:
«atmospheric forcing
- exchange with the surrounding ocean
* mean heat budget
® physics of a convective system:
- 3 layer representation
- convection: heat flux from the lower into the surface layer

« restratification: influx of heat at subsurface level via baroclinic
exchange with the boundary current



