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Role of Deep Convection in Climate

1. key component of poleward heat transport in the North Atlantic

2. associated with the sinking limb of the vertical overturning cell

3. exchange of heat between atmosphere and mid-depth/deep ocean

4. mixing of properties between surface and mid-depth/deep ocean



Outline Lecture II: Variability at Deep Convective Locations

Part III. Variability of Deep Convection Observations and Theories

• Interannual variability: observations

• Variability of Convection in Models

• Climate Variability associated with variability of Convection

Part IV. An idealized model as a tool to study variability

• a simplified description of convection

• response to a variable atmosphere



Why be interested in the Variability at Deep Convection Locations in the
North Atlantic ?

Poleward heat transport in the north Atlantic is associated with NADW
formation and therefore with deep convection in the Labrador and Greenland
Seas.

But convection in both these seas is far from a steady state process!

Infact, convection is particularly sensitive element of the climate system
because it can shutdown completely.



Variability at Deep Convective Locations: Observations

Greenland Sea Deep Water (GSDW), one
of the constituents of NAD W, is formed in the
Greenland Sea.
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Variability at Deep Convective Locations: Observations

Labrador Sea Water (LSW), one
of the constituents of NAD W, is formed in the
Labrador Sea.
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Variability at Deep Convective Locations: Observations

64°W 48°W 40°W 32°W

longitude

High convection scenario -
large area

Variability in Deep Convection is
also characterized by variability in
the area over which deep convection
occurs (not just depth).

Low convection scenario -
small area

(Pickart et al., 2002; Straneo et al, 2003)



Observed Shutdown of Convection in the Labrador Sea 1969-1972
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Modeling Variability at Deep Convective Locations

1. Variations in LSW and GSDW formation in models are associated with
variations in the meridional overturning circulation and poleward heat transport
(e.g. Velinga and Woods, 2002; Betsen et al., 2003)

2. Most past and future climate change scenarios involve either a complete or
partial shutdown of NAD W formation
(e.g. Rahmstorf, 2002)



Modeled Impact of the Shutdown of NAD W Formation

Surface Air Temperature Change in a
Coupled Ocean-Atmosphere Model
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Climate sensitivity to the location of dense water formation

Coupled ocean-atmosphere simulations of present and glacial times
showing a dramatic shift in the location of dense water formation and in
the overturning circulation

high-latitude
downward mass flux

mid-latitude
downward mass flux
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(Ganopolski et al., 1998)



How to Address Variability at Deep Convective Sites ?

GCMs:
•Long-term simulations of coupled or uncoupled ocean GCMs are still
unrealistic, and difficult to interpret.
•Convection is not well resolved by even the highest resolution GCMs.

Idealized Models:
•Simplified representation of a convective system and of its exchange with
the surroundings that can be solved analytically (or with simple numerics)
and in which mechanisms can be understood.
•Must contain all the physical processes which play a role in the
mechanisms under investigation.



A Simplified Model for the Interannual Variability of a Convective Location
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simplified representation
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Starting from the Climatological Cycle: How to induce variability in the system ?
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An Example of an Idealized Model Applied to the Labrador Sea

Wintertime Heal Flux at Bravo trom NCEP

Given a variable atmospheric
forcing - what is the response
of a convective system ?
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Building the Model:

the data analysis showed that the climatological cycle can be represented
in terms of

• two phases = convection and restratification

• three layers = surface, intermediate and deep
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Different physics governing the two periods



Convection Model

Hypothesis: in order to form deep water the winter heat flux must be large enough to
convert the entire surface and intermediate (warm) layers to the density of the deep layer.

Vwin
winter heat flux
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Qwin > Qint + Qsurf
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Hdeep

No
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Convection Model
Preconditioning:

data analysis has shown that the thickness of the intermediate (warm) layer is inversely
proportional to that of the deep layer - hence the amount of heat loss needed to form
deep water is inversely proportional to the thickness of the intermediate layer.

Weakly
preconditioned

Need significant
heat loss to convect

Strongly
preconditioned

QsurpCOnst.

Qiint

Hdeep

Need small heat loss
to convect



Restratification Model

Re stratification is simulated using an advection-diffusion model for the
spreading of the deep water based on observed velocities and eddy kinetic
energy. It takes approx. 4 years for the dense water to leave the basin.

100 days 300 days

50

-60 -SO -40 -30

500 days

55

50

55

50

-60 -50 -40 -30

700 days

55

50

-60 -50 -40 -30 -60 -50 -40 -30

(Straneo et al., 2003)



Investigating the Model Response to Idealized Variability

1. Atmospheric Forcing: 4 year periodicity

period 4 - volume LSW formed
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Investigating the Model Response to Idealized Variability

2. Atmospheric Forcing: 10 year periodicity plus random noise

period 10 + random •forcing - volume LSW formed
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Investigating the Model Response to Realistic Variability

2. Atmospheric Forcing: Observed Forcing from 1948-2000

LSW Thickness Model-Observations Comparison
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Results from the idealized study:

i. the amount of dense water formed one
year strongly affects the amount formed
the following year.

ii. the basin has a 4-5 year memory,
therefore it can be expected that on longer
timescales the response closely follows
that of the forcing.
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Summary - General Role of Convection in Climate

i. Deep convection is a key component of the climate system because of its
role in the overturning circulation and poleward heat transport.

ii. It is a highly variable process, which can exhibit strongly non-linear
behaviour, including a complete shutdown of convection.

iii. Climate models are extremely sensitive to the extent and location of
convection.



Summary - An Idealized Model to Study the Variability of Convection

i. Using data to determine a climatological seasonal cycle of convection
one can identify the significant physical variables and the basic physical
mechanisms involved in convection.

ii. Once the variables and physical mechanisms are identified, they can be
summarized in an idealized model containing the basic physics of
convection and the exchange between the convection region and the
surrounding atmosphere and ocean.

iii. One can use this idealized model to test and understand the response of
the system to idealized perturbations of the basic state and to realistic
forcing.


