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Large Scale Rossby Waves and Their Instabilities

(with Joe LaCasce)

A proper description of the coupling between the

atmosphere and the oceans requires an understanding

of the natural modes of response of the ocean basins to

variable forcing.

This leads naturally to the question of the low

frequency modes of oscillation of ocean basins.

Observations e.g. Chelton and Schlax show large scale

westward propagating waves which have been

identified as long (slow) Rossby waves although there

is considerable discussion about the detailed nature of

their dynamics.

We examine the question of Rossby wave modes of

oscillation and, as a natural extension of these ideas,

their instability properties.



aft

• : o E '3<P 15CTW

' " *



The model:

g P I

r

P 2

i

. "* " Tl *

k

k

The model is a two layer model with slightly different

densities across an interface. The motion is in

geostrophic balance.

Consider a linear model which we will apply to the

basic wave field whose stability we will investigate later.

The linearized equations can be written in terms of a

barotropic mode, in which the motion in the two layers

is identical, and a baroclinic mode in which the

vertically averaged velocity is zero. (u^D^ — ~^iPi)

Let i/f be the geostrophic streamfunction from which

the horizontal velocities can for either mode, be

obtained, u = - y/y, v = y/x



It is not hard to show that the linear governing

equation for the modes is of the form,

d r 2 i
— V y/- F\j/\ + pysx = T — Diss(y/)

is the planetary vorticity gradient 2Qcos(lat)/ R, and

for the baroclinic mode, F = 1 22, while for the
g'J>lD2

barotropic mode it is zero. We define the characteristic
1/2

scale Ld = 1 / F {deformation radius)

T is a vorticity source, say due to the wind, and Diss(yf)

is a representation of some form of dissipation, e.g.

SV y. On the boundaries of the basin the geostrophic

streamfunction must be a constant.



Free Rossby waves in the infinite region and with no

dissipation can be found in the form:

¥=Aei(kx+ly-°*\

(o- -^ . , barotropic,
k2 l2

, barodinic

For wavelengths long compared to the deformation

radius the frequency and phase speed of the barodinic

waves are co = -pk/F, cr=-/3/F = -f3Ld
2 Note,

nondispersive.

Normal modes in a basin.

Consider a rectangular basin

y=L

= T
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Rossby mode phase=O
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The plane wave solutions in the infinite domain can be

synthesized to find solutions that satisfy the boundary

conditions.

For the barotropic mode (F=0)the free solutions are

simply

y/= Aei(at+l3x/2(D)sm(m7Dc/Le)sin(n7vy/L)

with, co=
2\m2n2IL2 + n2n2

The solutions propagate phase (but no energy) to the

west and consist of a set of vortical motions which

expand and contract regularly.

Note that the stream function = 0 on the basin

boundaries and this constant value is used with no loss

of generality for the barotropic mode.



Some review;

We are going to use idealized models on the P -plane

and we are interested, for the coupling question, as to

whether there are modes that are long lived in the

presence of dissipation.

Consider an ocean basin :

Let us suppose that the travel time for a Rossby wave

to cross the basin is Tr = L/cr. {for a Rossby wave,

cr = 0(PN2D2/f2)} We will be particularly interested

in the parameter oTr where cr is either the dissipation

rate of the wave, or the growth rate of its instability. If

oTr >1 this would imply that the wave will either

dissipate or share its energy with eddies before it

crosses the basin. Effective coupling modes will require

this parameter to be small.



Gravest mode with F=2000, S=.OO2; y=0; a)=(0.0111 ,-0.001)

0.4 0.6 a.a

with \|/=r(t); oo=(0.0029,-1.32e-'
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Note that with damping the frequency is only shifted

by a constant imaginary part co = coinviscid - id.

The situation is quite different for the baroclinic mode.

For the baroclinic mode the geostrophic stream

function is directly related to the interface

displacement,

g
aroclinic = Vl ~ Wl = ~ ~ r\-

The boundary condition requires that the stream

function be spatially constant on the boundary but it

may be a nontrivial function of time (the interface

height) and is unknown. Thus for the baroclinic mode

we have the extra unknown

\ff= F(t) on the boundary. How do we determine it?

To determine the constant we use the condition of mass

conservation within each layer (if there are cross

isopycnal fluxes the condition must be modified by the

heating function responsible for the fluxes).

12



The condition is equivalent to the statement:

— FJl wdA = 0
* A

and for purely oscillating solutions this yields the

constraint

There have been a number of calculations of such

modes in simple basin shapes. (e.g. Cessi and Primeau,

2001, JPO 31, LaCasce, 2000, JPO 30, LaCasce and

Pedlosky, 2002, JPO 32) and we will describe the

results and a bit of the analysis.

First, let's do the baroclinic problem wrong (it's almost

always easier that way) by applying the b.c. y/=0 .

Then, as in the barotropic case the solutions can be

found directly in the form, including dissipation,

13



y/=e~i{kx+Q)t)sm(m7ix/Le)sui(n7iy/L)

k =
2(cQ+iS)

co - -id
2K

p 52F
1/2

(note: if n is even this satisfies integral constraint, if n is

odd it does not). If 5 is zero this yields the baro tropic

formula with K2 -> K2 + F.

As K varies the decay rate of the mode varies between

the limits

-5/2>coi >-8

14



Now let's consider the correct solution:

The solution can be written as

k=
2{(O+i8)

V2

F=F
co+i8

If F=0, the solution is independent of R

The solution for 0 is quite complicated, requiring a

complete Fourier expansion in sin modes in y and the

details are not give here (see LaCasce and Pedlosky,

2002). The basic idea however is evident from a simpler

model.

15
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Figure 2:
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Suppose we have a basin which is infinitely long in the

y direction and let's look for solutions independent of y.

At the same time, let's suppose that the wavelength of

the wave is very much longer than the deformation

radius. Now, with the incorrect boundary conditions

the zero condition on the western wall is satisfied by

radiating small scale, rapidly damped waves. We shall

see that this is not necessary for the baroclinic mode.

In the long wave limit (if we are successful in finding a

solution)

dt dx

"l(dtSolutions satisfying the b.c. y/= Te"l(dt, x = 0,Le are

iffcoLe/cr=2J7t,

An even number of wavelengths "fit" across the basin.
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This satisfies the integral condition exactly and

a)=pkj/F, kj = 2^/Le,j = 1,2,3...

Most importantly, if friction is added in this long wave

limit the frequency is shifted to

co = pkjIF-i8kj
2 JF

i) The frequency when the wave length is large

compared to LD is much lower than the

incorrect solution. (co = O(/5Ld I Le)« pLd

ii) The decay rate is very much smaller

These basin modes are very weakly damped and the

expectation is that they may survive long enough to

couple efficiently with long term atmospheric

variability. The reason the mode is not damped as

much is the absence of small scale structure.
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Physically, the way the mode works is that the long

Rossby wave propagates westward, hits the western

boundary and instead of reflecting as short Rossby

waves, produces a Kelvin wave which races around the

basin to the eastern boundary where the T on the

eastern boundary forces another long Rossby wave.

Quasi-geostrophic theory does not explicitly describe

the Kelvin wave but the role of the wave is taken

instead by the integral condition previously described.

The correct solution in a basin with finite scale in y

behaves similarly.

A key feature of the solution is that an integral number

of complete wavelengths fit across the basin at all

latitudes.

If the basin does not have uniform width (or if cr) is a

function of latitude ( as it is). The story is more

complex.

19



LaCasce and Pedlosky looked at a simple model of a

tilted rectangle

As expected, it is no longer possible to "fit" an even

number of wavelengths across the basin at all latitudes.

Small scale motions are produced, more dissipation

occurs but still less than the incorrect solution would

predict. These slightly damped modes resonate easily

with wind forcing ( also in a circular basin)

20
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cc=7t/12, a=(0.003,-2.12e-4)
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Forced response; F=2000,8=1 e-4, co=0.0029, PV damping
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Figure 14:
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Forced response with F=1000, 5=0.0002, a)=0.0035
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Summary

• The baroclinic response of an ocean basin is very
sensitive to the correct boundary condition.

• With the correct condition (y/= F(t)) on bdy. A class

of long waves with small dissipation arise when the

Rossby wave travel times do not vary by a large

amount as a function of latitude.

• The long waves resist dissipation by "fitting" into the
basin and satisfy the mass conservation condition.

• Strongly tilted basins will tend to damp the long
wave response to forcing although the modes are still
identifiable.

• Basins, like the circle, which have a latitude interval

for which dLJdy - 0, resemble the weakly tilted

rectangle.

• The long wave modes persist even when the
dissipation is not scale selective although they are
privileged when it is.
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THE STABILIT HEMODES

We see that the linear, slow, large scale modes are

weakly damped by small scale friction.

The modes have a structure in which, over most of the

basin the velocity is largely meridional (i.e. \\f contours

run north south— \j/ after all, is constant on the eastern

boundary).

The velocity is baroclinic. There is a vertical shear in

the wave. If the motion in the wave were zonal the (5

effect would stabilize the wave if the motion were weak

(linear). However, the meridional motion can't be

stabilized by p since perturbations which have east-west

trajectories release potential energy but don't "feel" the

P effect. Are these modes unstable then? If so, what is

the growth rate?

asic wave velocity

perturbation
velocity
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Model: We will use the two layer quasi-geostrophic

model to describe the instability.

We will introduce dimensionless time and space

variables. We scale x and y with L the characteristic

wavelength of the basic wave (close to the basin scale) i / r r

and we scale time with ^lgft^r"velocity with U and

\f/ with UL , [these are the classical scales for this

system] then

^T<ln+J(yn><ln)+PVnx =0,11 = 1,2
at x

29



It is useful to rewrite the system in terms of the

barotropic and barodinic fields,

Vb = ^lVl +h2Yl, K = Dn

30



We can anticipate certain results (to be checked) The
time scale for the basic wave to transit the basin or to
travel the distance L, its wavelength, is

We have scaled time with the advective time L/U. The

ratio is b1 = ^—2' *n t e r m s °^ o u r dimensionless
Aiim Ld

variables this implies a new time variable t*=b t.

On the other hand, if the instability feeds on the shear
and the scale of the instability is given by the classical
two layer model with no P (remember the modes will
not feel it strongly) then the growth rate should be of
the order <T = O(U I Ld). When this is compared to the

advective time scale it suggests another time variable to
1/2measure the growth, tg-tF . It is natural to expect

that the solution will depend on both time scales. Note
that the ratio of these time scale is,

in
aTr- —-— = Z (small Z= tege shear, large Z small

31



Again from standard stability theory we will expect

that the length scale of the perturbation is O(LJ and is

the north south scale, this suggests a new y scale,

= sFln

If these transformations are made, the problem

contains a single parameter , Z

We have done analytic and numerical work to examine

the instability as a function of Z and I will present only

the principal ( and preliminary results).

For small Z the problem is nearly linear. The wave

amplitude of the basic wave is small and to the first

approximation the linear wave theory we have

described is apt. The basic solution looks like a plane

wave with purely meridional, barodinic, velocity ( and

meridional shear). In n.d. units,

W = VJf1 cos(kx + out*), (o - -k

32



This gives the solution only on the time scale /* which

for small Z is the fast time scale. On the longer growth

rate time scale we find that the basic wave is unstable

to a triad perturbation consisting of the basic baroclinic

wave, a barotropic wave with a y-scale of the order of

the deformation radius, and the triad is completed by

an baroclinic wave whose y scale is also O(L^). The x-

scale of all three waves is O(L).

The triad must satisfy the triad resonance conditions:

The x and s wave numbers must add up and the

frequencies must also. Under the approximation Ld«L,

these become,

33



basic wave
rS

k +

barotropicpert.

baroclinic pert.

where,

CO(k) = -k,(D1= -kt jlo
2, (Oo = -k0 l{l0

2

k,0

(triad)

If the resulting triad equations are linearized about the

original baroclinic wave, the growth rate, on the time

scale tg is given by

2~|1 / 2

j which is qualitatively the same
O -

as the Eady growth rate.
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The wave number L is related to the x-wavenumber

from the resonance condition, l0 =
M/2

, where k
J

is the given wave number of the basic wave.

-1/2lo/F and P'growth rate =X.1 (- -) as fnc of ko k = 6.2832 I = 0 F =1000

6 -

i

-10 10 20 30 40
• 1/2

50 60 70

•k. = 6.5954 at locm/sqrt(F) = 0.64985 kocr|( = -5.26 F '"" = 31.6228
at max growth rate u> = 0.0060446 co, = 0.0036277 co1 =-0.0024169

the figure shows l0 as a fnc. of k0 by the resonance

condition and the growth rate. It peaks at the scale

predicted by Eady's theory.

ko
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The nonlinear triad equations show the amplitude

development. Realistically, this evolution is valid only

initially. At larger amplitudes of the perturbation the

triad will interact with other waves.

For very large Z the basic wave does not move very far

in a characteristic growth time and the problem

"reduces" to the instability of a steady flow

V(x)=V0cos(kx). We have not worked out the problem

analytically completely ( a complicated WKB problem)

but local theory would yield the same growth rate as

the triad theory with only an O(l) difference in the

numerical factor.

A detailed numerical calculation verifies these ideas.
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1/2,,Rossby triad amplitudes, F = 1000 ko = -5.26 F "70 =• 0.31623
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Growth as a function of Z; (k,l)=(7,0), F=448
10
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Dependence on sqrt(F)/b for fixed F(=3200)

0.01
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Barotropic streamfunction, \|/=sin(4roc), sqrt(F)/b=o°, t=5
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- 5Linear; \j/ =1/3 cos(3x); \|/ =10 cos(8y)

1 2 3 4

Eigenmode amp. and mean v(x) at y=jr
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\|/BC at t=2; Z=2, k=7, F=576
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Z=0.25, (k,l)=(7,0), F=576 KE(k,l)att=2.5
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We have also run fully nonlinear calculations (doubly

periodic domain) to see how the instability develops

beyond linear instability. For large Z the instability

changes structure as an inverse cascade in the (k,l)

plane takes place, consistent with the ideas of Vallis.

For small Z there is no turbulent cascade. In all cases

the final scale is at the deformation radius.

Since the growth rate, a, is of the order of Vo I Ld for

all Z it follows that Z is a measure of the growth/per

transit time.

Recall,

If, for a given L , Z>1 this implies that the wave will

suffer considerable growth of parasitic perturbations

before it can transit the basin. On the other hand if Z

<1 we can expect the wave to succeed in traversing the

basin.
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In quasi-geostrophic theory p, the deformation radius,

and/are constants. If instead we take the bold step of

including the latitude dependence of each of those

parameters, we can ask, as a function of latitude what

is the scale L for which Z=l. If we choose a deformation

radius of 50 km at 45° N and use the known variation

of the Coriolis parameter and p with latitude we obtain

the following curves.
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distance (103 km)for which growth rate = transit time Ld = 5Okm*(f(45°)/f(9)

10 20 30
def radius = 50 km

50 60 70 80
latitude (degrees) 16-Apr-2003

90

Each curve is for a different amplitude of the basic

wave. What they all share in common is that for low

latitudes the basin must be wide before there is

substantial growth in a transit time while at mid and

high latitudes the distance traversed before Z=l is

much less than a characteristic basin width. The

stronger the wave the more true this is.
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Our suggestion is that planetary scale Rossby waves

can succeed in crossing a basin of the scale of the

Pacific ocean only in low latitudes. In higher latitudes

the wave will give much of its energy to parasitic

instabilities of smaller scale.

This is consistent with the satellite observations

mentioned at the beginning of the lecture of Chelton

and Schlax in which the Rossby waves were seen most

clearly at low latitudes and higher latitudes are

dominated by eddies.

We further suggest that much of the eddy field at

higher latitudes may actually be due to the Rossby

wave. The remark has often been made that Rossby

waves are artificial and that the ocean is instead

dominated by eddies. We are suggesting that, in fact, it

may be the Rossby waves that are the generators of the

eddy field.
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