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1. Motivation and background

2. Bonded contacts to single alkane molecules

3. Quantitative agreement and Coulomb   
Blockading

4. Stochastic switching and labile bonds

5. More complex molecules



Photosynthesis and single molecule electronics
The ASU-Physics-Chemistry-Engineering-Motorola group:



How Bacterial Photosynthesis Works

Photonic 
device

Photovoltaic Pump
Chemical 
synthesis

Mechanical 
motor



Components of the Artificial Proton 
Pump
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Artificial Biological Power Plant

+

+

+ +

+
+

+
+

+

+

+

+
+

+

+



Conducting AFM of reaction 
center components (J. Phys. Chem B103, 4006, 1999)

•Pt coated cantilever

•1V/nA, 0.01pA/√Hz noise

•N2 Environment

•Image in freshly distilled toluene

Au(111)



The Grim Truth:

• Poor reproducibility

• Only the poorest contact with theory:  How 
many molecules? Contacts to the molecules? 
Position of Fermi Level?…

• Decanethiols/gold 105 - 1021Ω



Many Few-Molecule-Devices have been made but 
measurements/theories generally do not agree:

For example, DNA is:
AN INSULATOR (D. Dunlap et al. PNAS 90, 7652, 1993)

A SEMICONDUCTOR (D. Porath et al, Nature 403, 635, 
2000)

A CONDUCTOR (Fink and Schoenberger, Nature 398, 
407,1999)

A SUPERCONDUCTOR (A.Y. Kasumov et al. Science 291, 
280, 2001)

The molecule-metal contact problem



Can we measure the electronic 
properties of a single simple 

molecule 
in a well-defined environment?

Can we understand the results?



2. Theoretical Definitions

1. Simple Barrier Model

2. Greens Function approach

3. Transport involving redox centers



β(V) and I(V) are related:

)
2

(22 2

* VEm
−∝

h
β

( )

























±−= xVEm

ne
h
VI 2/22exp
2

2

*

2 h



Current and β for E=5eV

Be
ta

C
urrent

Bias

V Model maps onto 
simple result for thin 
barriers, Γ1 Γ2

Γ1 Γ2



Current and β for E=0.5eV
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Models Vs. Reality
Where is EF?
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Contacts



• Potential distribution not an issue 
for symmetric structures 

• One electron approach ? Seems 
to work well for tunneling

Models Vs. Reality
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REDOX

Transport via redox center – role of thermal fluctuations

Environmental fluctuations lower transport barrier
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N-alkanes as a simple test 
case

• Well studied on electrochemical electrode surfaces



Tunneling checklist
(mechanical contact)

o Exponential decay of current with distance

o I(V) and β(V) should track

o β(V) and β(0) should agree

o Magnitude of I predicted by transport calculations?

o Note effect of stress…..

X
X

XX

Nanotechnology, 13 5-14 (2002), Ultramicroscopy 92, 67 2002
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Contact force – Tunneling rate 
explained by film thickness

Hertzian Theory with 
R=10nm, β=1Å-1

Result implies chain to chain tunneling

I=I0exp(-βh)



Stress dependence of tunneling

Monolayers distort by tilting, 2 modes of transport (Slowinski
et al.JACS 119 11910)
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Bonded Contacts
(Science 294, 571, 2001)



A simple recipe for good contacts

– bonds at each end

i



Alkanedithiols – STM Images
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Two Models…….



Histogram of curve multipliers
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Current divisor X

• Find X such  that 
variance from curve to 
curve is minimized

• Over 1000 curves for n=1



IV-Curves of bonded molecules not 
very stress dependent!
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More chain 
lengths give 
β(V)
(J. Phys. Chem. B 106 8609-8614, 2002 )
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Summary
• Get I(V) reproducibly

• Independent of stress – through bond

• I-V close to theory (but still 6x too small)

• Shape is subtly different from theory

• Apparent β too small (ca. 0.6) and too bias 
dependent

Can we understand our data?
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What if the top contact is not so good? 
Coulomb Blockade?



Coulomb Blockade: Quantized 
charge transfer

R1>>h/2e2

⇒ Coulomb 
Blockade

n

n



A. E. Hanna and M. Tinkham, Phys. Rev. B, 44, (1991), 5919-5922.

Double Junction Model

5 Parameters

R1,R2,C1,C2,Q0

Symmetry ⇒ Q0=0

Solve subject to integral charge transfer, with 
thermal hopping at 300K
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c1 = 0.318aF

(from fitting C8)
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(Theory=0.08aF)

Best Fits:



-2

-1.5

-1

-0.5

0

0.5

1

1.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

C
ur

re
nt

 (n
A)

Bias (V)

Halve the sphere size (0.7nm):

R
e

C
QV

04πε
==

Double the blockade range!
(note that this accounts for anomalous beta too)



Summary
• Fit I-V curves

• Fixes beta problem

• Correct size dependence

• What about molecular levels of gold 
nanoparticles?  Use bigger gold contacts.

Coulomb Blockading



Stochastic Switching

• First reported in phenylene-ethylenene NDR 
molecules (Donhauser et al. Science 292, 2303, 2001)

• Thought to be related to conformational 
changes associated with NDR



Single Molecule Bonding 
Fluctuations (Science 300 1413, 2002)

• “Stochastic switching” 
reported for 

• We see the same 
effect in alkane dithiols

• Significant switching 
with gold sphere 
attached 

NO2



• Cannot internal electronic changes

• Cannot be top ‘dipping’ into film

• Cannot be bond to sphere breaking

• Rate increases at annealing 
temperature

• Fluctuations of lower bond

Single Molecule Bonding 
Fluctuations

25° 60°



Stochastic Switching

• Gold is probably not the right metal to use

• Not compatible with CMOS anyway 



More Complex Molecules

• Carotenoids (J. Phys. Chem. B, 107, 6162-6169 
(2003) )

• PET-NDR molecules (Applied Physics Letters 
81 3043-3045 (2002) )



Caroteniod
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Phenylene-ethylynene Oligomers

SAc

NO2

AcS

SAcAcS

1 = 1-nitro-2,5-di(phenylethynyl-4´-thioacetyl)benzene
2 = 2,5-di(phenylethynyl-4´-thioacetyl)benzene

1

2
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Origin of NDR peak?

Expected
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• Nitro group implies redox
chemistry

• Non reversible

•Environmentally-mediated 
chemistry (thio-reduction)? 



Summary
1. Bonded system with large ‘contact pads’ gives reproducible results, probably 

because of small AFM-nanoparticle resistance

2. In some situations, single molecule curves can be identified unambiguously

3. Bonded system gives correct order of current, in contrast to large 
disagreement in the case of mechanical contacts

4. Both apparent Beta discrepancy and residual magnitude of current
discrepancy accounted for Coulomb Blockade surface ‘fluctuate’

5. Both apparent Beta discrepancy and residual magnitude of current
discrepancy accounted for Coulomb Blockade

6. Contacts on Au surface ‘fluctuate’

7. Carotene current well accounted for by tunneling, despite ease of oxidation

8. NDR molecules show small redox-related peak on tunneling background.  
‘Irreversible’ electrochemistry?

9. Fabricating Nanogaps???
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