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Abstract

The theoretical underpinnings of the properties of nanostructures has become a frontier activity in materials science. Although ab initio
and empirically based calculations of the properties of bulk materials and their surfaces have advanced significantly in the past several
decades, the extension of these methods to nanocrystals, nanotubes, and large molecular structures is not trivial or automatic. However,
considerable progress has been made. Here, we review the status of the theoretical efforts to predict and explain properties of bulk solids
and then describe extensions and applications to nanoscience and nanotechnology.q2001 Elsevier Science B.V. All rights reserved.
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1. Theoretical background

The development of quantum mechanics in the 1920s
and 1930s and its successes in explaining the detailed
properties of atoms and many solid-state phenomena sug-
gested that explaining and predicting real material proper-
ties would be forthcoming in a relatively short period of
time. However, this was not the case. Because atomic
spectra are sharp, their quantum interpretation in terms of
electronic transitions between narrow energy levels was
relatively easy compared to the broad spectra common to
most solids. In contrast to gases of weakly interacting
atoms, the solid-stateAenergy levelsB are spread into bands,
and because of the strong interactions between the atoms
making up a solid, there are crystal field and correlation
effects influencing the behavior of the electrons, which in
turn have a major effect on many of the properties of
solids. Hence, the developments in this field came slowly.
Physical models changed as more was learned about the
relative importance of the various interactions, and compu-
tational techniques were refined so that the resulting equa-
tions describing the electronic and lattice properties could
be solved. In fact, the major advances in interpreting

w xsolid-state band spectra appeared in the 1960s 1 .
The evolution continued, and now there is aAStandard

w xModel of SolidsB 2 , which can be viewed as a set of
cores containing periodically arranged nuclei with their

) Tel.: q1-510-642-4753; fax:q1-510-643-9473.
Ž .E-mail address: mlcohen@uclink.berkeley.edu M.L. Cohen .

core electrons and a sea of valence electrons which interact
Ž .with the positive cores and with each other Fig. 1 . Some

versions of this model account for the detailed electronic
structure of the core electrons, but here we ignore the core
structure and focus on the approach where the core interac-
tion is treated using a pseudopotential. Hence, the model
involves accounting for core–core Coulomb interactions,
electron–core interactions computed via pseudopotentials,
and electron–electron interactions, which can be evaluated

w xusing density functional theory. The approach 2 is robust
and allows calculations of electronic structure, crystal
structure, lattice vibrations, elastic constants, superconduc-
tivity, properties, etc.

The development of the pseudopotential was central to
the implementation of the theory. The important concept
was the creation of a potential which described the interac-
tions between the valence electrons and the cores. A useful
empirical approach to account for these interactions and
the electron–electron interactions was developed in the
1960s and is still being used. It is the Empirical Pseudopo-

Ž .tential Method EPM in which a few parameters are fit to
w xoptical data 1 . This approach produced excellent band

structures, especially for semiconductors. It also yielded
optical spectra and electronic charge density maps. The

w xmethod was based on the idea 3 that valence electrons
experience both an attractive Coulomb core potential and a
repulsive Pauli potential arising from the fact that the
valence electron wavefunctions must be orthogonal to the
core electron wavefunctions. The cancellation of the attrac-
tive and repulsive terms leaves a net weak pseudopotential.

0928-4931r01r$ - see front matterq2001 Elsevier Science B.V. All rights reserved.
Ž .PII: S0928-4931 01 00221-1
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Fig. 1. Model of a solid with cores at fixed lattice positions and valence
electrons free to move throughout the crystalline solid.

Hence, the EPM approach involves fitting just the first few
form factors to optical data.

The transition from using the EPM approach to an ab
initio approach went through several stages. The availabil-

w xity of electronic charge density maps 4 allowed the
separation of the total potential into an electron–core
potential describable by a pseudopotential and an elec-
tron–electron potential which contained the usual Hartree
and exchange-correlation contributions. Using a Poisson

w x w xequation and approximations by Slater 5 and Wigner 6 ,
this method could be applied. The major motivation for
this stage of evolution of the method was to use it to
compute properties of surfaces and interfaces. Because of
charge rearrangement at a surface, it is critical to compute
the electronic structure self-consistently and account for
the changes in the charge density arising from the struc-
tural changes. Hence, electron–electron potentials based

™Ž .on the total charge densityr r allowed the development
of realistic potentials which when added to the electron–
core pseudopotentials could reproduce the effects of sur-
face charge rearrangements. However, there still remained
the problem of computing the electronic structure since the
previous techniques were based on having a bulk crystal
with an infinite array of unit cells.

To account for surface and interface geometries and still
retain the fundamental approach used to calculate proper-
ties of bulk crystals, the concept of a supercell was intro-

w xduced 7 . The supercell was constructed to contain a slab
of atoms with a vacuum region so that infinitely repeated
supercells would resemble a system with an infinite num-
ber of slabs separated by vacuum. The surfaces of the slabs

w xwere good models for crystal surfaces 8 , and interfaces
could be modeled with two slabs in contact representing

w xdifferent materials 9 to represent systems such as Schot-
tky barriers or heterojunctions.

w xThe supercell concept 7 could be applied to other
localized configurations in addition to surfaces and inter-
faces. An early application was its use in describing the
properties of molecules. Here, some geometric arrange-
ment of atoms is repeated in a supercell, which contains
enough in the way of vacuum region to prevent
molecule–molecule interaction. The result is a model for
an infinite array of non-interacting molecules, and hence
the computed electronic and structural properties are ap-
propriate for a single molecule. The obvious extension to
nanostructures is to build a supercell with a good represen-
tation for a nanocrystal, nanotube, large molecule, or
whatever nanosystem is of interest and then use the tech-
niques developed for bulk materials to solve for the physi-
cal properties of these systems. This is a desirable path;
however, the computer time needed to solve the appropri-
ate equations rises quickly with the number of atoms in the

Ž .unit cell. One then has two choices: 1 reduce the com-
plexity of the cell, mainly by reducing the number of

Ž .atoms used to model the nanostructure, or 2 use a less
sophisticated method for computing the electronic struc-
ture so that solving the equations requires less time. Exam-
ples of the latter include using the EPM or tight-binding
approaches instead of full self-consistent pseudopotential
methods. Both of these approximations have been used
with success.

The pseudopotential approaches introduced so far, based
either on experiment or on analytic expressions used to
reproduce the electron–core and electron–electron poten-
tials, evolved into an ab initio or first-principles approach.
In this approach, the only input was the atomic number to
produce a pseudopotential to account for the core–valence
electron interaction. The electron–electron interactions
were determined using a density functional approach. Both
of these developments had their roots in the 1930s with

w xFermi’s 10 introduction of an atomic pseudopotential and
w xDirac’s 11 development of density functional theory

Ž . w xDFT . More modern versions of pseudopotentials 12–17
w xand DFT 18,19 are part of the Standard Model, and there

is constant evolution in this very active area of condensed
matter physics.

Using the above scheme in principle constitutes the
Standard Model referred to earlier. In practice, the pseu-
dopotentials are usually generated to reproduce the outer
portions of the electronic wavefunctions but not the region
near the core which can have fairly complex oscillatory

Ž .behavior. The local density approximation LDA to DFT
is often used to calculate ground-state properties and ex-
cited state spectra are often evaluated using aAGWB

w x w xapproximation 20 . One of the first applications 21 was
to the structural properties of Si. A momentum-space

w xformalism 22 was used to compute total energies for
different structural forms of Si. By comparing the resulting
total energies, the lowest energy structure for each volume
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Fig. 2. Schematic plot of a pseudopotential as a function of position
compared with an ionic Coulomb potential.

could be determined, and this allowed a determination of
the high pressure phase structures and many ground-state
properties.

Examples of applications of the theories described above
are given in Section 2.

2. Applications to bulk materials

The EPM described above used data to fit Fourier form
™ ™ ™Ž . Ž . Ž .factors V G of the pseudopotentialV r . When V r is

™Ž .weak, only the first fewV G s are needed, which is,
™ ™™™ iGPrV r s S G V G e 1Ž . Ž . Ž .Ž .Ý

™
G

™ ™Ž .where G is a reciprocal lattice vector andS G is the
structure vector which is used to locate the atoms in the

Ž .primitive cell. In practice, threeV G s per atom are suffi-
cient. A schematic picture of the resulting potential is

Ž .shown in Fig. 2 along with an ion or Coulomb potential
for comparison. The form factors are generally overdeter-
mined when the computed optical spectrum is compared

Fig. 4. The valence electron charge density of silicon. Contour spacings
are in units of electrons per unit cell volume. Shaded circles represent
atomic cores.

with measured reflectivity or modulated reflectivity data
w x1 . Features in the optical spectrum can be associated with

™Ž .critical points in the electronic band structureE k , wheren™
n is the band index andk is the crystal wavevector. In
particular, for a direct optical transition between bandsi
and j, when

™ ™
™ ™= E k s= E k , 2Ž .Ž . Ž .k i k j

™
a critical point at that value ofk occurs, and there is a
resulting Van Hove singularity in the optical spectrum.
These singularities are particularly evident in modulated
spectroscopy as shown in Fig. 3.

By analyzing optical spectra in the manner described
above, it was possible to obtain the electronic band struc-

Fig. 3. Measured and calculated derivative reflectivity spectra for germanium.
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ture and wavefunctions. From these, the optical constants,
densities of states, photoemission spectra, and electron
charge density maps can be obtained. An example of the
latter is shown in Fig. 4 where the predicted electronic
charge density is compared with experiment.

Hence, in principle, the problem of electronic structure
outlined before as a goal of quantum theory was solved.
The approach worked well for bulk semiconductors, insu-
lators, and metals. In addition, using the supercell ap-
proach described above, this method was applied to sur-
faces, interfaces, and small molecules after analytic forms
were used for the potentials.

As described in the Section 1, the extension to the
current ab initio approach required first-principles pseu-
dopotentials, density functional theory, and a reliable
method to calculate total energies. An example of the
application of this approach to ground-state properties is
its use in determining the structural, electronic, and vibra-
tional properties of Si. By evaluating the total energy for a
given volume, it is possible to determine the lowest energy
structures as a function of volume. The caveat is that only
a finite, and often small, number of candidate structures

Žare considered. For the Si example, seven structures di-
.amond, hexagonal diamond,b-tin, sc, fcc, bcc, and hcp

are shown in Fig. 5. Other structures are known for Si,
such as the BC8 structure, which is found experimentally
under certain conditions. Although it is straightforward to
calculate the properties of BC8 Si, at this point, it is not
easy to guess beforehand that this structure would be a

Fig. 5. Total energy curves for seven structures of Si as a function of
volume normalized to the experimental volume. The dashed line is the
common tangent between the diamond and theb-tin phase.

good candidate for a low energy structure. Hence, we are
not yet at the point where ab initio theory is capable of
predicting structures in general; however, it is possible to
compare candidate structures. Progress in molecular dy-

w xnamics 23 , used in conjunction with the methods de-
scribed here, suggests that this goal may be achieved, or, at
the least, theory will be more fruitful in predicting new
structures in the future.

Returning to the Si example, the structural energy has
several parts, including: kinetic energy of the electrons and
cores; core–core Coulomb interactions; electron–core
terms; and electron–electron Coulomb, exchange, and cor-
relation effects. Using pseudopotentials, the total energy

w xformalism, and the LDA, these can all be evaluated 2 and
the total or structural energyE can be evaluated as astructure

function of volume. The results in Fig. 5 show that dia-
mond is the lowest energy structure and the resulting
volume and energy dependence on volume at this energy
yields a lattice constant and bulk modulus in excellent
agreement with experiment. Typical expected precision for
this method is less than 1% for lattice constants and
around 5% for bulk moduli and other elastic constants.
These results are impressive when one considers the lim-
ited input of the atomic number and crystal structure.

As pressure is increased, there is the subsequent volume
decrease and, as shown in Fig. 5, other structural phases
have lower energy than the diamond structure. Hence, this
approach is capable of computing transition volumes and
the transition pressure for a structural phase change. This
is illustrated in Fig. 5 by the common tangent drawn
between the diamond andb-tin phases. At volumes corre-
sponding to points 1 and 4, the diamond andb-tin struc-
tural phases are found, respectively. However, for the
region between points 2 and 3, the transition is occurring.
The slope of the common tangent yields the transition
pressure and the volumes at points 2 and 3 are the transi-
tion volumes. Excellent agreement between theory and
experiment is obtained for these quantities.

Besides ground-state structural properties, the total en-
ergy pseudopotential method can be used to determine
phonon dispersion curves and electron–phonon interac-

w xtions 2 . A particularly impressive result is the calculation
Ž .for simple or primitive hexagonal sh or ph and hcp Si.

For these structural phases, not only the electronic and
ground-state structural properties were determined from
first principles, a calculation of the electron–phonon cou-
plings led to a successful prediction of superconductivity
in these metallic phases and excellent estimates of the
superconducting transition temperatures.

3. Nanocrystals

The physics, chemistry, and engineering of nanocrystals
has evolved considerably in recent years, and this area has
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become a challenge for theory. In our previous discussion
on bulk crystals, their periodic nature was fixed which
resulted in simplifying and useful concepts such as Bloch
wavefunctions to exploit translational invariance. We also
described the complications introduced by surfaces and
interfaces, which break the translational invariance and
introduce the possibility of electronic charge rearrange-
ment and atomic reconstruction. One method for dealing
with these changes is to restore periodicity through the use

w xof a supercell 7 . Similar techniques can be used for
nanocrystals, but the resulting computer calculations be-
come formidable. Two other techniques and applications
will be described here.

The goal of theory is to explain size and shape effects
in these systems where many of the constituent atoms are
near the surface of the nanocrystal. Hence, there are the
effects of confinement and shape to explore, and the cases
discussed here will be semiconductor nanocrystals contain-
ing hundreds to thousands of atoms. The two theoretical
approaches presented are the Wannier function approach
and the Green function approach. For the Wannier function
method, some applications will be given, whereas only the
formalism of the Green function method will be described
as applications have not yet been reported.

Wannier functions are localized wavefunctions, which
w xcan be expressed in terms of Bloch wavefunctions 24 :

1 ™ ™™™ ™3 yi kPR ™a ryR s d ke C r 3Ž . Ž .Ž . Hn n ,k'V BZ

™™ ™
™Ž . Ž .where a ryR andC r are Wannier and Bloch func-n n,k™

tions, respectively,R is a lattice vector, andV is the
Ž .volume of the Brillouin zone BZ . The Wannier functions

are localized around lattice sites, and they are used as basis
sets for tight-binding calculations where the energy:

1 ™ ™™ ™3 yi kPRE R s d ke E k 4Ž .Ž . Ž .Hn n
V BZ

A calculation for a bulk crystal involves taking matrix
elements of the bulk HamiltonianH between WannierB™Ž .functions to obtainE R in a tight binding like scheme.n

For a nanocrystal, one can consider the Hamiltonian to be:

H sH q U yU 5Ž . Ž .N B N B

where the difference in potentials between the nanocrystal
and the bulk crystal is expected to be reasonably approxi-
mated by:

™0 r inside™ ™U r yU r f 6Ž . Ž . Ž .N B ™½
` r outside

to account approximately for the boundary conditions on
w xthe nanocrystal. The result 25 is that approximate eigen-

states and eigenvalues ofH can be obtained by diagonal-N

izing:

™ ™
™ ™a H a fd E R yR 7Ž .¦ ;n ,R N m ,R m ,n n i jž /i j

One application which illustrates the improvement of
the Wannier function approach over a simpler effective

w xmass approximation is the study of InAs nanocrystals 26 .
The approach starts with an EPM calculation of the bulk
band structure which yields Bloch functions and, via Eq.
Ž .3 , the Wannier functions. The Wannier states are used to
diagonalize the Hamiltonian and the electronic structure
can then be computed as a function of the nanocrystal
radius. The result for the fundamental gap of InAs appears
in Fig. 6 along with experimental photoluminescence data

™ ™w x w x27 . A calculation based onkPp theory 28 is also shown
™ ™in Fig. 6 for comparison. In contrast to thekPp approach,

the Wannier function results are in excellent agreement
with experiment. The failure of theAeffective massB ap-

™ ™proximations such as the one used in thekPp approach is
most likely attributable to the assumption of a parabolic,
spherical band dispersion over a large part of the BZ. For
smaller nanocrystals, one expects that their properties will

™
be greatly influenced by band structure states at largek
where the assumption of parabolic bands breaks down.

Another interesting application of the Wannier function
approach to nanocrystals is the study of the pressure
dependence of band states in InP. For the bulk crystal, the
gaps between the top of the valence band and the bottom
of the conduction band behave differently as a function of
™
k. Measured from the valence band maximum, the conduc-
tion band minimum atG moves up in energy with increas-
ing pressure more rapidly than the L minima which also
move up. In contrast, the minima at X move down with

Ž .increasing pressure. Hence, the directG–G gap at ambi-
ent pressure will no longer be the minimum gap at high

Ž .pressure. As the state at X lowers, an indirect gapG to X
becomes the fundamental gap. This pressure-induced direct
to indirect gap transition in the bulk can have different

Fig. 6. Lowest energy gap of InAs nanocrystal versus radius.
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characteristics in an InP nanocrystal. In particular, the
quantum confinement of the conduction band states can
influence the pressure dependent properties of the energy
bands. One can argue that because of confinement, the
localization in real space will result in aAdelocalizationB
in k-space leading to conduction band states, which are
averaged over the BZ. Hence, a characteristic conduction
state could haveG, X, and L mixing.

w xThe calculational results 29 for the InP nanocrystal
energy levels indicate that confinement energies are rela-
tively insensitive to pressure. Because the confinement
reduces theG–X separation, these studies suggest that it
would require less pressure to induce an indirect transition
in InP nanocrystals than in the bulk semiconductor. The
model chosen here is for a nanocrystal with an equal
number of In and P atoms. Different ratios of the atoms
may have an effect on these conclusions. The dependence
of the bulk and nanocrystal energy levels on the relative
change in lattice constantDara is shown in Fig. 7.

The applications of the Wannier function method to
InAs and InP given above are examples of theAstate of the
artB in calculating properties of semiconductor nanocrys-
tals. The Wannier method can be applied broadly and it is
computationally tractable for many applications. Another
theoretical approach using Green functions which has con-
ceptual appeal is suggested next, but it has not yet been
used broadly for computation of material properties.

The motivation for the Green function approach is to
attempt to use bulk descriptions via Green functions and
modify these for nanocrystals. For many studies, the elec-
tronic wavefunctions of the systems investigated are not
needed, but determining the energy spectrum is the objec-
tive. In this case, having the Green function to use in
obtaining quantities such as the density of states is very
useful. The goal is to develop a formalism in which the

˚Ž .Fig. 7. Unoccupied states unfilled circles of InP 27 A diameter
nanocrystal versus reduced lattice constant induced by pressure. Bulk
states are filled circles.

™™XŽ .confined Green functionG r,r ,E is expressed in termsc
™™XŽ .of the bulk Green functionG r,r ,E as:b

™™X ™™X ™™XG r ,r ,E sG r ,r ,E qDG r ,r ,E 8Ž .Ž . Ž . Ž .c b

™™XŽ .where DG r,r ,E is the perturbation arising from the
differences between bulk and nanocrystal environments.

Ž .The form of Eq. 8 is consistent with what one expects
intuitively since a nanocrystal is often viewed as a small
part of a bulk crystal with perturbations arising from
confinement, shape, and surface effects. The results above
for InAs pressure coefficients of band states is suggestive
of this view. To a first approximation, the nanocrystal and
bulk coefficients are similar. The difficulty is to treat the
boundary conditions for the nanocrystal in an appropriate

Ž .way. A theoretical basis for Eq. 8 has been developed
w x30 and some tests have been made. One of the advan-
tages of the Green function method is that it deals directly
with spectral functions. Hence, as an example, in principle,
one could expect to be able to calculate optical properties
using response functions appropriate for the bulk crystal
plus aA nanocrystal perturbationB. The expression of the
frequency dependent imaginary part of the dielectric func-
tion is

´ Ž2. v s´ Ž2. v qD´ Ž2. v 9Ž . Ž . Ž . Ž .c b

A calculation based on perturbing the bulk spectral proper-
ties to obtain nanocrystal properties would be highly desir-
able.

Hence, there are theoretical techniques for dealing with
the unusual effects which arise from geometry and con-
finement. Some examples are those discussed here: the
supercell method and the Wannier and Green function
approaches. This general area of theory is still evolving
both conceptually and from the point of view of applica-
tions.

4. Nanotubes

A motivation in nanoscience is to try to understand how
materials behave when sample sizes are close to atomic
dimensions. There is also the opportunity to use nanostruc-
tures for technology. One goal of device science is minia-
turization, hence nanotechnology has received considerable
attention. There is also the possibility that the unique
properties of nanostructures will result in novel applica-
tions and devices. Another reason for the great popularity
of this field is that phenomena occurring on this length
scale are of interest to physicists, chemists, biologists,
electrical and mechanical engineers, and computer scien-
tists. Although many nanostructures such as large
molecules and quantum dots are of interest, at present, one
of the most active areas is the study of nanotubes.

w xCarbon nanotubes were discovered 31 in 1991. They
Žare found as single-walled tubes, multi-walled tubes con-
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.centric tubes , and they sometimes bunch to formAropesB.
w xOther nanotubes exist, such as those based on Mo 32 , and

Ž .some BN, BC N, BC , and CN have been predicted2 3
w x33–36 using the theoretical methods described earlier.

For all of the B C N tubes, sp2 bonding plays ax y z

fundamental role. The classic example of the difference
between sp3 and sp2 bonding properties is how carbon
forms diamond and graphite. For diamond, the three-di-
mensional, four-fold coordinated sp3 structure is rigid and
almost isotropic in its properties. In contrast, the graphite
sp2 bonding is planar and three-fold coordinated in the
planes with weak bonding between the planes. The strong
covalent in-plane bonding and weak van der Waals inter-
plane bonding results in anisotropic physical properties
which are useful for applications to lubrication and other
processes requiringAslippageB between layers. The in-
plane carbon–carbon bonds are shorter than those of dia-
mond, but the interlayer distances are large. The nature of
the bonding is shown in Fig. 8.

One can view a single-walled carbon tube as a rolled up
sheet or strip of sp2-bonded graphene. The atoms are

Ž .located using a pair of integersn,m and the lattice vector
™ ™ ™Csna qma as shown in Fig. 9. A tube can be classi-1 2

fied using the pair of integers by viewing the rolling up of
Ž .the sheet as theAplacementB of the atom at 0,0 on the

Ž .atom at n,m . Hence, different diameter tubes and helical
Ž .arrangements of hexagons can arise by changingn,m as

shown in Figs. 10 and 11.
The electronic properties are sensitive to the stricture of

the tube. Carbon nanotubes can be metallic or semicon-

2 Ž . 3 Ž .Fig. 8. Contrasting sp bonding upper with sp bonding lower using
ball and stick models.

Ž .Fig. 9. Structure of ann,m carbon nanotube. The carbon atoms are at
the vertices of the hexagons.

Ž .ducting depending onn,m . For example, if nym is
three times an integer, the carbon nanotube has an ex-
tremely small gap, and at room temperature, it has metallic
behavior. Fornsm, the tubes are metallic; and for other
values ofnym, the tubes behave as semiconductors with

w xa band gap. The theoretical explanation 37–39 is based
on band folding, starting with the electronic structure of a

Fig. 10. Ball and stick model for a nanotube. The balls represent carbon
atoms.
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Fig. 11. Schematic structural model of a helical nanotube.

graphene sheet. Some of these predictions have been veri-
w x Ž .fied using scanning tunneling microscopy 40,41 Fig. 12 .

Because of their geometry, nanotubes are sensitive to
defects and impurities. This sensitivity gives rise to un-
usual properties. For example, in three dimensions, we are
accustomed to the fact that if one metal carrying current is
put in contact with a second metal—consider copper and
aluminum as an example—then the electrical current will
flow across the junction from the first metal to the second.
For two metallic carbon nanotubes, depending on the
helicity, the junction can stop the current because of the

w xmismatch of wavefunction symmetry 42 . Theoretical
studies suggest that breaking the symmetry by bending the
tubes will allow the flow of current.

Another example which may lead to a useful device is
the junction between a semiconductor and a metallic car-
bon nanotube. In Fig. 13, two tubes are shown joined by a

w xFig. 12. Low temperature STM images of a carbon nanotube 41 .

Ž .Fig. 13. A carbon nanotube Schottky barrier formed from an 8,0
Ž .semiconductor nanotube joined by a 5–7 defect to a 7,1 metallic

nanotube.

w xdefect 43 . The defect involves the rotation of bonds
between two hexagons to form a five-fold ring and an
adjacent seven-fold ring. This defect allows the joining of

Ž . Ž .a semiconducting 8,0 tube with a semi-metallic 7,1 tube
and the junction is in effect a Schottky barrier or quasi-1D
semiconductorrmetal junction made from a single element
Ž .Fig. 14 . Calculations of the local densities of states for
this system yield spectra which are very similar to those
evaluated for 3D systems. Far from the interface on the
Ž .8,0 side of the device, there is an energy gap, while on

Ž .the 7,1 side, there are states at the Fermi level. Near the
junction, metal-induced gap states similar to those found
for standard 3D Schottky barriers are found.

One can extend the above arguments to consider two
semiconductor nanotubes used for a heterojunction. One

Ž . Ž .such system would be an 8,0 tube in contact with a 5,3
tube. Again, defects can be arranged so that these two
tubes will join and local densities of states are obtained
which are similar to those obtained for standard 3D semi-
conductorrsemiconductor junctions.

The examples above focus on pure carbon nanotubes,
however, compound B C N nanotubes offer another vari-x y z

able, i.e. chemical composition changes in addition to

Fig. 14. Electronic band structure of graphene, which is a single sheet of
™Ž . Ž .graphite upper . Brillouin zones for graphite with allowedk for the 7,1

Ž . Ž .and 8,0 nanotubes lower .
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geometric and defect-related manipulations of electronic
structure. Another example, is the insertion of other ele-
ments into nanotubes such as K atoms in a C nanotube
w x44 . In this example, the outer electron is expected to
leave the K atoms, which can form a chain inside the
nanotube. The expected effect is that a cylinder of charge
will result with electrons coating the inside of the C tube.

A similar electronic effect is expected for a doped BN
nanotube. The calculated charge density for states associ-
ated with the lowest conduction band is a free-electron-like
state which concentrates charge along the center of the

w xtube. Although the prediction 33 of the existence of BN
w xnanotubes has been verified 45 , transport properties have

Ž .not been explored yet. This is similar for BC N Fig. 15 ,2

which has a helical structure and is expected to have a
chiral arrangement of charge density when doped. Hence,

w xthis system is expected to behave like a nanocoil 46 .
Another theoretical prediction is that BC tubes will act3

individually as semiconductors, but bundles of these tubes
w xare expected to exhibit metallic behavior 35 .

The experimental activity in the nanotube field is cur-
rently very large and broad. Structural properties are stud-
ied using electron microscopy. Studies using atomic force
microscopy and scanning tunneling microscopy have
yielded considerable structural and electronic information.
Many of these studies are searching for special effects
resulting from the reduced dimensionality and device ap-
plications. A few examples include observations of metal-
lic transport and nonlinear on-tube devices including recti-

w x w x w xfiers 47 and transistors 48 , single electron transport 49
Ž .Fig. 16 , and behavior suggesting 1D electronic structure

Fig. 15. Ball and stick model of a representative structure of a BC N2

nanotube.

Fig. 16. The arrangement for obtaining transport measurements of a
w xsingle-walled nanotube rope in reference 49 .

w x50 . Coulomb blockade characteristics are observed in
magnetic field studies of spin–splitting and even–odd

w xeffects in a single-walled carbon nanotube rope 51 .
Other applications include the possibilities associated

with the strength of nanotubes. There have been measure-
ments of the structural stability and elastic constants of C

w xand BN nanotubes 52,53 . These systems have extremely
large Young’s moduli and it is expected that they will be
useful in strengthening existing materials. Other possible
applications include electron emitters for flat panel dis-

w x w xplays 54 , lubricants 55 , and random access computers
w x56 . These are just a few of the many possible applications
of nanotubes.

The discovery of nanotubes and the associated growth
in research on tubes has been associated with the previous

w xdiscovery of C 57 . These fullerene systems are of great60

interest and many studies have been done related to this
molecule, solids formed from C , and A C where A is60 3 60

an alkali metal. Other variations of configurations of C
w xeither molecular or planar 58 have been considered just

as other compounds have been suggested as possible tube
w xforming systems 59 . In the discussion below, we consider

w xC 60,61 , which has been the subject of recent studies.36

This example is included to illustrate how variations on the

Table 1
Ž .AStandard ModelB pseudopotentials and density functional theory

The Standard Model describes the following ground-state and excited
properties for a broad class of solids, clusters, and molecules.

Electronic structure
Crystal structure and structural transitions
Structural and mechanical properties
Vibrational properties
Electron–lattice interactions
Superconductivity
Optical properties
Photoemission properties
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Fig. 17. Structure of carbon pentaheptite formed from five-fold and
seven-fold rings of bonds.

structural and electronic properties of the systems de-
scribed here may lead to more interesting and perhaps
useful materials.

Superconductivity in C -based systems was reported60
w x62 and subsequent studies resulted in relatively high
superconducting transition temperaturesT . Theoreticalc

studies have led to a generally accepted model of BCS
electron–phonon induced electron pairing to explain the

w xsuperconducting properties 63 . Arguments based on the
theoretical model suggest that in going from graphite
which has a lowT to the higherT s for the C -basedc c 60

systems, it is the curvature of the hexagonally arranged
sheets that is central. This suggests that systems such as
C which has an even higherAcurvatureB than C may36 60

exhibit superconductivity with a higherT . Based on thisc
w xargument, nanotubes are expected 64 to have moderate

T s.c
w xA calculation 65 using electron–electron pairing re-

Žsulting from phonon excitations on the molecule intra-
.molecular can be relatively strong for C -based solids.36

Estimates ofT give values in the range of five times thatc

of K C . Hence, these calculations suggest that doped3 60

C -based solids may be superconducting above liquid36

nitrogen temperatures.

5. Conclusions

The most general conclusion is that new materials often
lead to new phenomena and applications, and that on the
theory side, the Standard Model appears to be capable of
explaining and predicting a large variety of physical prop-
erties such as those shown in Table 1.

The variety of structures just using C is extremely broad
when one considers the new forms beyond diamond and

graphite which have emerged recently: macromolecules
Ž .such as C , C , and C , onions concentric buckyballs ,60 70 36

single-walled and multi-walled tubes, tori, and variously
shaped fragments. In Fig. 17, an example of possible

w xlayer-based systems is shown 58 . Systems such as these
and variations using B, C, and N should provide interest-
ing building blocks and phenomena for nanoscience and
nanotechnology.
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