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Requirements for Advanced Coatings

• No voids 
• No cracking or resistance to crack 

propagation
• No delamination
• For some applications we need 

• Enhanced hardness
• Enhanced toughness
• Enhanced biocompatibility
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Energetics of Delamination

• Griffith Criterion for crack propagation or delamination:
If the strain energy relieved exceeds the energy required to 

create the two new surfaces a film will delaminate, once 
a nucleation point has formed

energy reduction in strain relief

energy increase in forming new surfaces
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Our Strategies

• Low stress and substrate 
mixing layers for super 
adhesion

• Nanostructuring for enhanced 
hardness, resistance to cracking 
and supertoughness
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Stress Generation in Thin Films

• Low -> voids (tensile stress)
• Intermediate -> dense, well connected 

(compressive stress)
• High -> observations show reduced stress and 

interface mixing

tensile stress compressive stress interface mixing
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Stress Generated by Ion Impacts

• Observed universal behaviour as a function of energy

High energy impacts can relieve the stress generated by 
lower energy impacts

compressive

tensile
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The Universal Curve for AlN
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The Cathodic Vacuum Arc
• Discharge triggered by direct contact or 

surface flashover
• Plasma drifts away normal to cathode surface
• FULLY ionized & energetic (10-100s of eV)

Cathode

Plasma

few hundred microns
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Cathodic Arc Treatment of Cutting Tools

• Protective coatings for cutting tools produced using 
unfiltered arcs

Sutton Tools

Ti cathodes in nitrogen

Chromium cathodes in argon (etch) 

Photographs courtesy of
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Magnetic Filter

• Curved solenoid used to guide plasma around bend while 
macro-particles go straight ahead

• Use arc current to establish magnetic field (~10-100 mT) 
• Electrons magnetized & 

ions follow by 
electrostatic attraction

Andre Anders &
Othon R. Monteiro
Lawrence Berkeley 
National 
Laboratory
California USA

0.5 µm
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Plasma Immersion Ion Implantation (PIII)

• Bias applied to workpiece 
immersed in plasma (~10 kV)

• Arrows show electric field and 
direction of implanting ions

• Condensable plasma = 
bombardment during film growth

• Non-condensable plasma = sub-
surface implantation
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PIII&D Filtered Cathodic Arc System

to HV
pulsed 
power
supply

Cathode power
supply

Gas inlet C

First
anode

Anode 
power 
returns

Magnetic 
mirrors

Water 
cooling

Gas inlet B

Gas inlet A

Flange
coils

Second
anode

Scale: 200
mm

•  Cathodic arc:
- metal or carbon
- high ionisation rate

•  Operating conditions:
- Vacuum ≈ 10-6 Torr
- Add process gases

•  Ansto PI3 pulser:
- 0 - 25  kV pulses
- 5 - 150  µs length
-0 - 1200 Hz frequency
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The PIII&D Process

1700 -
20,000 eV

2.5 - 0.4 %
of cycle

≈ 20-100 eV

97.5 - 99.6 %
of cycle

Cathodic arc deposition PIII (20 µs, 200-1250 Hz)
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Stress versus implantation energy

• stress versus high voltage bias energy for 20 µs applied at three 
different pulsing frequencies during the deposition of carbon films.
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Macroscopic Stress Relief

• On a macroscopic scale, the film stress will be reduced as 
more of the film’s volume is subjected to the high-energy 
thermal spikes

• Volume treated is proportional to Ef (or Vf)

relief to 0.75 GPa 
occurs around
Vf ~ 2000 kV.Hz. 

Can be achieved 
with pulses of: 
10 kV @ 200 Hz
2.5 keV @ 800 Hz  
1.7 kV @ 1200 Hz
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The Vf relation in AlN
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• PIII during deposition for bias voltages between 0.1 and 6.4 kV and 
frequencies ranging from 20 to 2000 Hz
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Similar result found in TiN films

• Data from titanium nitride films produced with 
PIII&D using energies of 5 and 15 kV and pulsing 
frequencies of 100 Hz, 500 Hz and 1200 Hz (20 µs pulse 
length as before)
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Stabilization of Metastable Phases
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Kolitsch, W. Möller, Institute of 
Ion Beam Physics and 
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Germany
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Remaining Challenges

• Uniform treatment of complex 
shapes avoiding breakdown

• Treating  insulating materials

SHEATH DYNAMICS

⇓
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Practical Surfaces: Complex shapes

knee

knee
hip

wrist
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Sheath Dynamics

• Ion focusing occurs near tips increasing dose
• Small sheath width increases breakdown risk
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Equilibrium Sheath
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• PIC code to 
simulate sheath 
evolution in drifting 
plasma

• (a) Flat substrate
• (b) 30o cone
• (c) 60o cone
• (d) 90o cone
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Dose Effects
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Measuring Sheath Collapse

Plasma

Movable probe

CRO1-10 
kV

Current probe

2.2mF
90V

Conductive
holder

Sheath

Glass
cover
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Insulators: Charging Effects
• Surface charging results in voltage droop (lower energy) 
• Time for sheath to collapse down to 5 mm at an applied 

bias of 5 kV as measured by a Langmuir probe.

plasma density (x 1015 m-3)
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Solutions under study

• Thin conductive and ion 
transparent coatings stripped 
after treatment

• Ion implantation through mesh
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Structure at the nanoscale

The 
structure of
an abalone 
shell

http://www.princeton.edu/~pmi/REU/presentations
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A Multilayered Structure

Period

Sharp interface     or    Graded interface
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Crack Propagation

A crack propagating in a direction perpendicular to the 
layers is arrested at a soft layer since stress concentrated at 
the crack tip is reduced (Okumura and de Gennes, 
European Physical Journal E, vol 4, p121, 2001)
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The Multilayer Advantage
• Increased fracture toughness
• possible mechanism

Arresting of cracks at interfaces
Measured Fracture Toughness
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Surface Relaxation Method

• 11.4 micron carbon 
film grown in the 
vacuum arc

• About 200 layers

• Dark layers result 
from surface 
relaxation when 
PIII&D stopped

film surface

silicon substrate
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Pin-on-disc wear tester + impact system

load cell

solenoid

motor

Haemaccel®
tank

rotating disc

fixed pin
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♦ 50 N impacts every 10 sec, ≈ 8.5 sec @ 1 N,  1 sec @ 0 N

♦ Disk at constant 2000 rpm rotation in Haemaccel®

Combined wear test with Impacts
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Ti6Al4V pin on 2 µm thick (48 nm layers) carbon disc
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Ti6Al4V pin

Carbon (48 nm layers)

20 mm

6 mm

Ti6Al4V pin on 2 µm thick carbon disc: Wear + Impact

Pin and disc pair after 20 minutes 
wear + impact testing @ 2000 rpm

120 impacts @ 50 N

The disc has worn through to the 
metal, and the pin shows 
substantial wear
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Ti6Al4V pin

carbon disc (24 nm layers)

Ti6Al4V pin on carbon disc: Wear + Impact

Visual inspection of disc suggests
mostly asperity wear, with little 
erosion into the bulk of the coating

Pin and disc pair after 20 minutes 
wear + impact testing @ 2000 rpm

120 impacts @ 50 N

20 mm

6 mm
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Performance Enhancements by Multilayering

• Graph shows wear and impact time to failure for 
multilayered carbon films, 2 µm thick, on Ti6Al4V

• Interruptions to deposition produce a relaxed layers of 
higher density

• “Supertoughness” effect at optimum bilayer period
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Nanoscale Multilayers: 
Time variations in condensing species and surface mobility

• Multilayered coatings
• 17 nm bilayer period

Substrate

Period

(a) TEM 
image (the 
scale bar 
represents 
100 nm); 

(b) shows 
a nitrogen 
elemental 
map from 
the same 
region. 
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Multilayer in the Ti/TiN System

• Produced using cathodic vacuum arc PVD
• Ti provides a soft layer between alternate layers of TiN
• 17 nm bilayer period

BF image Ti EELS map N EELS map
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Limitations of Single Source dc Vacuum Arc

• single source limits the range of composition of 
constituent layers 

• density of the dc plasma plume fluctuates strongly 
with the instantaneous arc current ⇒ deposition of 
precise layer thicknesses at the nanoscale difficult

• new system with two sources – pulsed
• pulsed sources deliver known current per pulse 

(easy to calibrate)
• lower macroparticle production in pulsed mode (I↑)
• currents of 1-5 kA ensures competitive rates
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New System Design
• rails allow movement of the source-

filter assemblies to almost any 
position along the segment that they 
subtend

• in-situ ellipsometer & stress

• open filter reduces
macroparticle
bounce

• dual sources
in both arms

Source 1 Source 2

Magnetic Filter 
Coil

Load lock

Rotatable 
substrate holder

Lock-in high 
voltage feed-
through
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Source Design

Pulsed arc 
power 
supply

Triggering 
circuit
>1kV, 3µs

cathode insulating 
tubing

trigger 
wire

annular 
anode

water-
cooled 
cathode 
holder

•based on design of Siemroth et al, Surface and Coatings Technology, 68/69, 314-319, 1994
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Anode 

Cathode

Trigger 

Centre trigger for uniform erosion

The key to a time
stable deposition 
rate

Cathode

Bell 
anode

Centre trigger

Backing plate

Plasma duct
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Cathode spots

• Current is conducted through µm 
diameter spots on cathode surface

• Current limited to ~ 100A per spot. 
Arcs >100A exhibit multiple spots.

• Current density extremely 
high. 109 – 1012 A. m-2

• ~ 90% of plasma flux is 
electrons,~10% metal ions
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Retrograde Motion.
• In an external magnetic field, parallel to 

cathode surface, spots move in -J x B 
direction. 

BJ

Cathode

J x B

• In high current arcs 
with multiple spots, 
retrograde motion 
acts to repel spots 
away from one 
another.
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100µs  200µs 400µs 600µs

Image size 50mm square

1 ms exposures of cathode spots

200µs  400µs 600µs  800µs

Al

Ti
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Filter duct: 
Initial field 43mT
Bias +35 V

50 mm diameter
Titanium 
cathode

177 mm diam.
circular  Al 
substrate biased 
at -90 V
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Rogowski coil positions 

entrance 1/3 exit2/3

Substrate

Cathode
& anode

R.Davies 2003
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Filter duct fields 
need to be 
matched to the 
plasma flux 

Field triggered 
before cathode

177 mm diameter
circular  Al 
substrate biased 
at -90 V
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Filter duct: 
Initial field 43mT
Bias +35 V
Ion & Electron
currents

50 mm diameter
Ti cathode

177 mm diam.
circular  Al 
substrate biased 
at -90 V & +90 V
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Filter duct
Initial field 43mT
Bias: +35 V
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Filter duct
Initial field 43mT
Bias: +35 V

50 mm diam.
Ti  cathode
177 mm diam.
circular  Al 
substrate 
biases: 

+90 V, Earth, 
Float, -90 V
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Conclusions
• Equivalence of the voltage and pulse frequency for achieving stress 

relief ⇒ substitution of low bias with higher rep rates for high bias
with low rep rates
• 20 kV for 20 µs @ 200 Hz = 4 kV for 20 µs @ 1000 Hz

• Minimising the voltage requirements for feed-throughs and the 
potential for arcing (breakdown) on the substrates is useful for the 
coating of objects with complex shapes and sharp edges

• Superior performance can be achieved by nanostructured coatings 
such as nanoscale multilayers

• High current dual source pulsed arc system constructed
• High current fast moving spots reduce macroparticle emission
• Open filter to efficiently remove residual macroparticles
• Centre trigger ensures deposition rate stability over time
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Remaining Issues & Further Work

• Achieved deposition rates of around 0.25 nm per 
pulse = few tens of pulses per layer for 
nanolayered materials

• Pulses must be repeatable in composition and 
amount of material ejected (type 2 spots must be 
ensured)
• cathode must always be properly conditioned 
• adsorption of gases between pulses must be 

controlled
• linked to pressure when using background gas



Marcela Bilek, University of Sydney

School of Physics, University of Sydney
 

Anode 

Cathode

Trigger 

Centre trigger for uniform erosion

The key to a time
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Spot Types
• Contamination of cathode surface 

leads to variation in spot parameters.
• Type I spots: short lifetime, high 

velocity and small current per spot. 
Associated with surface contaminants

• Type II spots: longer lifetime, lower 
velocity and large current per spot. 
Associated with clean cathode surface.
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Type 1 and 2 spot behaviours
• In the deposition of multilayered films it will be important 

to ensure that only type 2 spots contribute to the plasma 
reaching the substrate pulse # increasing

(a) type 1 arc - exp 100µs (b) type 1 and 2 arcs exp - 500 µs (c) type 2 arc - exp 2000µs 
Al cathode. The power supply was the simple 12mF capacitor bank charged to 110V.

Notes: Anode spot in (a); Type 2 (brighter, slower moving) occasionally 
nucleate due to uneven cathode erosion
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Measuring Stress

Wafer curvature with profilometer & Stoney’s Equation

Where:
σ =  stress in film after deposition
Rf =   substrate radius of curvature post deposition
Rs =   substrate radius of curvature pre deposition
E  =   Young’s modulus
ν =    Poisson’s ratio
ts   =    substrate thickness
tf   =    film thickness

Proc. R. Soc., 1909

σ =
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* 300 micron Si wafer and film grown to ~10 microns
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Prototype Power Supply Designs

• First try (a) simple capacitor bank of between 6 and 12 
mF, charged to between 100 and 400V

• Later (b) based on oscillating LC circuit used by Siemroth 
et al, adapted for electrolytic capacitors (for pulse shape 
control)
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Current Profiles

• (a) simple 12mF, 400V capacitor bank 
• (b) 300V LC pulse circuit, crowbarred at 1ms
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Design Issues

• Peak ion current – balance good magnetic confinement and 
fewer macroparticles with too much force on filter coil and 
losses scaling as I2 (we chose 1-5 kA operation – CSD??)

• Pulse length is dictated by the radius of the cathode and the 
velocity of the cathode spots (metals 0.5 ms @ 3.5 kA peak I 
and reduce size of graphite target as would need 2 ms)

• Limits on pulse frequency set by tolerance of circuit components
to heating. Designed for 10 Hz maximum pulsing frequency but 
may not be possible to achieve at high end of current range

• With a given L and C (resonant frequency) we adjust the charge 
voltage to vary peak I and crowbar time to vary pulse length 

• This prototype dissipated only 400 W when running at 
maximum capacity of the wiring
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Optimising for Cathode Erosion

• High speed CCD camera focused on carbon cathode

• Both charged to 300V, (b) crowbarred at 1ms

Current profile (a) – 2 ms exp. Current profile (b) – 1 ms exp.
* complicated interplay between the current and the inter-spot distance
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Faster type 1 to 2 transition with LC 
Resonator Supply

• occurrs within a few arc pulses
• ~ 0.5 Hz
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Conclusions
• Design of dual source pulsed filtered cathodic arc for 

multilayer coatings constructed – further optimisation needed
• Important characteristics and operating parameters are:

• time dependence of the arc current pulse is important in 
giving even erosion & sharp type 1 –2 transition

• controlled rates of nonreactive deposition in vacuum due to 
the reproducible arc current pulse profile 

• controlled rates of deposition and controlled stoichiometry 
should also be achievable during reactive deposition 
processes when a background gas is used – need to balance 
pressure and rep. rate

• Effect of arc current and background gas pressure on the 
charge state distribution (CSD) of the plasma ions should be 
monitored to understand how the impact energy of ions will be 
affected by substrate bias  


