united nations educational, scientific and cultural organization

the **abdus salam** international centre for theoretical physics

SMR.1524 - 7

College on Evaluation of Energy Technologies and Policies for Implementation of Agenda-21

10 - 28 November 2003

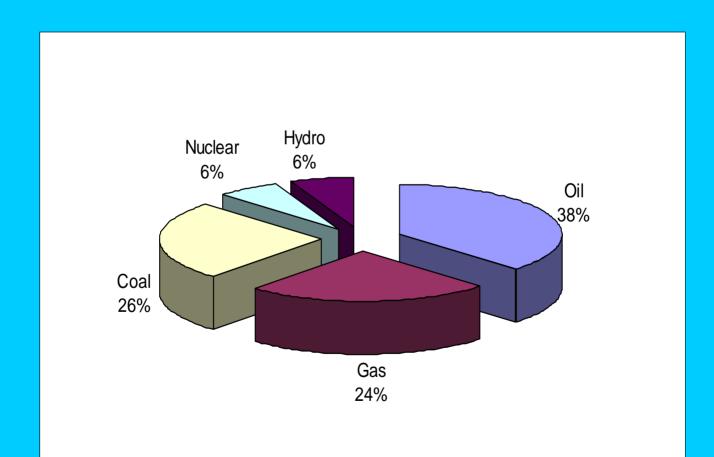
Fossil Fuel Resources and Technologies: Potential Economics & Environmental Aspects

Farzana NAQVI Pakistan Atomic Energy Commission Applied Systems Analysis Group P.O. Box 1114 Islamabad PAKISTAN

These are preliminary lecture notes, intended only for distribution to participants

Fossil Fuel Resources and Technologies: Technical, Economic and Environmental Aspects

Farzana Naqvi


College on Evaluation of Energy Technologies and Policies for Implementation of Agenda-21 10-28 November 2003 (ICTP, Trieste, Italy)

Scope of the Presentation

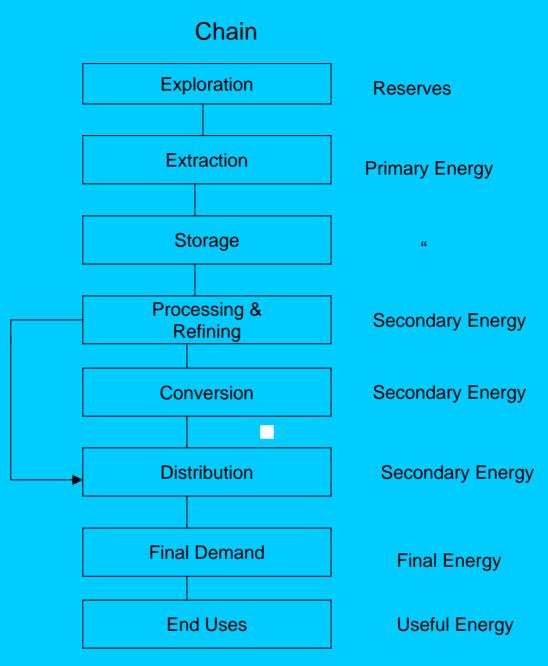
- Fossil Fuels (Coal, Oil, Gas) Resources
 - Ultimate Recoverable Resources
 - Proven Reserves
 - Developed Fields
- Supply Chain
 - **Resource Identification/**
 - Assessment to
 - Supply at Final Demand Level
- Main Aspects of Technology Evaluation
 - a) Technical
 - b) Economic
 - c) Environmental

World Energy Consumption in 2002

- Grow Rate of 2.6%; 1.4% p.a.10-Year g.r.
- Total 10.4 Billion TOE, Commercial 9.4 Billion TOE
- Oil/Gas and Coal together 87%

Estimated URRs of Oil and Gas in the World

(Billion TOE)


	Estimated URRs	Cumulative Production upto 2000 A	Proven Reserves in 2000 B	Cumulative Discoveries A+B	Yet to be discovered	
Oil	298 – 523 Avg. 411	97	121	218	81 – 305 (193)	
Gas	267 – 545 Avg. 400	46	125	171	96 – 374 (235)	
1. US Geological Survey, World Petroleum Assessment 2000						

Comparison of Current URRs with the Estimates in 1978

<u>Oil</u>	<u>URRs</u>	Cumulative Production	Proven <u>Reserves</u>	Yet to be <u>Recovered</u>
1978	354	53	89	212
2000	411	97	121	81-305 (193)
<u>Gas</u>				
1978	292	27	74	192
2000	400	46	125	96-374 (235)

Source: World Energy Conference (1980), Survey of Energy Resources (1980), Institute of Geo-Sciences, Handover IAEA (1998) Energy and Nuclear Power Planning in Developing Countries, Vienna.

Schematic Representation of Fossil Fuels Supply System

Some Technical Aspects of Technologies

- Present and future status
- Appropriateness of scale
- Indigenous capability for operation and maintenance
- Construction time
- Useful working life
- Availability factor (taking into account scheduled and unscheduled shut downs)
- Storage possibility
- System efficiency

Some Economic Aspects of Technologies

- Total investment cost and investment cost per unit capacity
- Share of foreign Currency involved
- Extent of domestic participation in planning, design and construction
- Discount rate for amortization of investment
- Annual fixed charges due to taxes, insurance etc.
- Annual operation and maintenance costs
- Capacity factor i.e. average fractional utilisation of installed capacity
- Production cost per unit output
- Reduction of import dependence

Environmental Aspects of Technologies

- Requirements of land and water
- Adverse impacts e.g. emission of particulates and noxious chemicals, release of radioactivity
- Abatement costs of environmental impacts
- External Cost of Environmental Impacts

Fossil Fuel Resources: Exploration and Extraction

Identification of Promising Basin

Geological work: Techniques such as Aerial photography; gravimetric; magnetic; seismic and radio-metric surveys; sinking of bore holes to a limited depth to test rock characteristics

- Exploration of an Identified Resource Exploratory drilling; laboratory analysis of the core sample
- Assessment of Reserves
 Appraisal drillings (after a discovery)
- Extraction of oil/ gas and production of coal

Additional wells for production, normally oil & gas come out with natural reservepressure and production of coal needs mining

• Secondary/Tersurary Recovery

Water Flooding

 $-CO_2$ Injection

Air and Water Emissions, Solid Waste Generation and Energy Consumption associated with Oil Production

Environmental Characteristics	Value	Units	Reference
Air CO ₂	140	kg/toe of oil or gas produced	Shell 1998
SO _x	0.2	kg/toe of oil or gas produced	Shell 1998
NO _x	3.7	kg/t of oil produced, onshore	World Bank 1998
	0.3	kg/toe of oil or gas produced	Shell 1998
Volatile Organic	1.9	kg/toe of oil or gas produced (including methane)	Shell 1998
Compound (VOCs)	3.3-26	kg/t of oil produced, onshore	World Bank 1998
Methane (CH ₄)	0.01- 0.20	kg/toe of oil produced	USEPA 1995
Water Oil	17	mg/L of produced water@	Exxon 1999
	0.01	kg/toe of oil produced	USEPA 1992
Solid	0.2	kg/toe of oil or gas produced	Exxon 1999
waste/Hazardous	0.28	kg/toe of oil or gas produced	Shell 1998
Hazardous Non- hazardous	1.12	kg/toe of oil or gas produced	Shell 1998
Others Energy	1.2	GJ/toe of oil or gas produced	Shell 1998

⁽²⁾ Water produced along with oil and gas is called produced water, and it typically contains 100-1000 milli-gram of oil/Litre. Most of this oil is removed from produced water prior to its discharge to surface or ocean environment.

Storage of Oil/Gas

- Storage of oil and oil products at:
 - -Gathering stations in oil fields
 - -Refineries
 - Dispatch and receiving terminals
 - Distribution centers
- Storage of LPG, LNG Containers are specially shaped and made by special material that may withstand both very high pressure and extremely low temperature
- Storage of Natural Gas

 Geological formation
 Depleted field (Strategic reserves)

Oil Refining

Types of Refineries

- Primary Refinery:Distillation
 - Catalytic reforming
 - Hydro treating / hydro fining
 - Secondary Refinery
 - Cracking plant
 - Integrated Refinery
 - Combination of primary and secondary

Simple Refinery Typically

"

-	Gasoline	10-15%
Complex	Refinery	

- F.O. < 10%
 Gasoline >30%
- World (2002) Installed Capacity: 84 million barrels/day
 - Output : 69 "
 - Capacity utilization Rate: 82%

Oil Refining

- Typical Efficiency 88-93%
- Capital cost per unit capacity US \$ 111-275 per tonne of Crude Processed
- Heating value of different oil/products

MBTU/tonne

Pakistani crude oil Crude Oil Persian Gulf	41.895 43.313
F.O.	40.792
M.S.	44.761
LPG	45.326

Environmental Impact of Oil Refining

 Large volume of water for cooling system

> Waste water : 3.5 – 5 m³ per tonne of crude processed

- Solid waste and sludge
- Energy consumption
 3% for hydroskiming refinery

5 – 6% for complex refinery

Typical Ranges of Refinery Emissions

	Min.	Avg.	Max .	Units & observations
Environmental Characteristics				
Air Particulates	< 0.1	0.8	3	kg/t of crude processed.
SO _x	0.2	1.3	6	kg/t.
NO _x	0.06	0.3	0.5	kg/t
BTX	0.75	2.5	6	g/t.
VOC	0.5	1.0	6	kg/t
Water BOD	150	n.S	250	mg/L
COD	300	n.S	600	mg/L
Phenols	20	n.S	200	mg/L
Oil	100	n.S	300	mg/L. (In desalter water)
Chromium	0.1	n.S	100	mg/L
Lead	0.2	n.S	10	mg/L
Solid wastes	3	n.S	5	kg/t
Oil consumption as fuel & losses		< 3.5		% of throughput. For simple refineries.
		5-6	10	%. For complex refineries.

Note. n.s: not specified.

Gas Processing

 Minimal processing, efficiency of 99%

Impurities: Nitrogen, CO₂, hydrogen sulphide

World Capacity (1997)

No. of Gas processing plant: 1,600 Processing 5,606 million m³/day Utilization factor 71.0%

 Gas Liquids Production (LNG, LPG):

213 million US Gallons/ day

Gas Conversion

- Gas Conversion
 - Compressed (CNG) for transport sector
 - Liquefied Natural Gas (LNG) for Export
 - Liquefied Petroleum Gas (LPG)
- Volume reduction by a factor of about 600 and trade without pipeline

Environmental Impact of Gas Processing

- Sources of emissions compressor engine, Dehydrated vent streams
- SO₂ emission from gas sweetening plant 26.98
 Kg/1000 m³ of sour gas processed if sulphur recovery plant is not present.
- Fugitive emissions from process equipment

Liquefied Natural Gas

- Natural Gas trade
 23% of world production
 (2002)
- Gas trade (581 billion cubic meters)

74% by pipeline 26% in LNG form

- No of LNG plants in 11 countries (Algeria, Australia, Brunei, Indonesia, Libya, Malaysia, Nigeria, Qatar, Trinidad & Tobago, UAE, USA)
- Energy Intensive fuel Handling Process

8-10% of the feed gas as fuel1% in loading to ship

Gas Storage & Environmental Impacts

Underground Storage Site

In 1996/97, 580 underground storage sites world-wide with Capacity of 262 G m³ which was12% of world natural gas production in 1997

Energy consumption 1% of the storage capacity receiving terminal

Storage at Receiving Terminal

Nine Countries 16.3 million m³ capacity

Depleted Reservoirs

76	Aquifers (1997) of
0.1 - 4	giga m ³ capacity

Environmental Impact

- Fugitive atmospheric emission of methane
- combustion gases from energy use in compression unit

Natural Gas Transportation and Environmental Impacts

- Pipeline needs recompression stations
- Typically about 2% of gas input per 1000 Km (max. 3%) is used in these stations
- Leakage of methane from the network
- (0.6% in 1997 in the British Gas, UK distribution network)
- Emission from combustion of fuel used
- Impact associated with pipe-laying and maintenance
- BG system (1997)

NOx from compressor 2,731 tonnes

 CO_2 " " 3.5 million tonnes CH_4 from network 0.36 million tonnes

Proven Reserves of Coal in the World and Their Distribution

	Coal Reserves (Billion TOE)		R/P 2000
	1985	2002	
OECD Countries	214	216	220
Russian Fed. & East	139	87	517
Developed Countries	352	303	263
OIC Countries	1	26	20
Non-OIC Developing	140	172	49
Countries			
Developing Countries	142	198	161
World	494	501	211

Coal Extraction

Production Methods:

Thickness of over burden, surveys, seam thickness (10-100 feet), extern of coal, stripping ratio, Thickness of overburden to thickness of coal seam, cubic yard of overburden to tons of coal of ton of overburden to ton of coal.

Underground mining: (5 - 10 years)

- Room and pillar technique
- Long wall technique

Environmental impact

- Land use
- Fugitive methane emission from surface mines

Coal Processing and Conversion

Cleaning

- Impurities: In-combustible material, sulphur, moisture
- Cleaning upto 18% ash contents for power generation
- 5-20% of BTU contents are lost in cleaning
- 20-70% total sulphur can not be removed

Conversion

- Gasification
- Liquefaction
- Electricity

Coal Transportation Methods and Environmental Impacts

- Rail, Trucks, Barges and Ships
- Slurry pipeline in few countries
- Environmental impacts due to transport, storing, loading and unloading
- A typical exposed pile in USA, 6.4 gram/kg of coal stock
- Dust produced by rapid air displacement, falling speed of coal and operation of heavy machinery

Methane Emissions in Some Selected Countries

Country	Average depth	1990 coal production		Gross methane emissions	
		million tonnes	by under ground mining	million tonnes	gram/ tonne
China	330	1053	93%	7.70	7,312
United Kingdom	500	95	83%	0.86	9,053
Poland	670	216	64%	1.35	6,250
S. Africa	200	206	60%	0.85	4,126

Methane Emission Factors in Underground Coal Mining

Country	Emission factor (m³/tonne)	Conversion Factor (kg/m ³)	Emission factor (g/tonne)
Former Soviet Union	17.8-22.2	0.67	11,926-14,874
United States	11.0-15.3	0.67	7,370-10,251
Germany	22.4	0.67	15,008
United Kingdom	15.3	0.67	10,251
Poland	6.8-12.0	0.67	4,556-8,040
Former Czechoslovakia	23.9	0.67	16,013
Australia	15.6	0.67	10,450

Estimated Methane Emissions in Surface Coal Mines

Mine	Pollutant	Avg. Value	Unit
CMWS+P	CMWS+P CO ₂		g/t
	CH ₄	201-1,340	g/t
CMES+P	CO ₂	5,450	g/t
	CH ₄	208-1,350	g/t

Typical Emissions from Coal Transportation Ship

	Particulate	SOx	СО	NOx*	
Emission factor (g/liter)	6.78	19.1xS**	0.872	7.63	
Fuel use	85.58 kJ/tkm = 2.209e-03 liters/tkm				
Emissions (g/tkm)	0.015	0.042-0.147#	0.0019	0.017	

* NO₂ only ** Sulphur content # 1%-3.5% sulphur

Fuel Requirements Data for Barge for Coal Transportation

Source	Year	Value
IAEA(1995)	1989, 1992	167 kJ/tkm
Khan(1982)	1975	335 kJ/tkm (for North America)
Japan(1992)	1990	506 kJ/tkm
	-	

Estimated Emissions of Coal Transportation by Barges

	CO ₂ (g/tkm)	NOx (g/tkm)
IAEA (1995)	13.21	0.014
Khan (1982)	26.50	0.027
Japan (1992)	40.03	0.041

Emission from Diesel Locomotives Transporting Coal

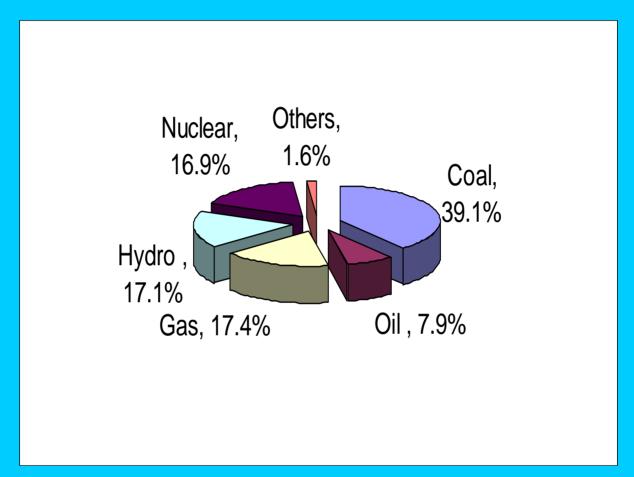
			Min	Avg	Max	Unit
Air	Greenhouse	СО		0.24		g/tkm
Air	Greenhouse	CO ₂		29		g/tkm
Air	Acidification	NOx		0.72		g/tkm
Air	VOC	NMVOC		0.05		g/tkm
Air	Greenhouse	CH₄ □		0.002		g/tkm
Others	Energy	Fuel Req.	225	398	570	KJ/tkm

Based on Ref.(Japan:1992, ORNL:1981, IPCC:1995)

Environmental Emission of Coal Transportation by Trucks (G/tkm)

	Truck of 20 tonnes		Truck of 40 tonnes		
	ASAG	DECADES (RTDB)	ASAG	DECADES (RTDB)	
СО	2.0-2.5	5.0	1.09-1.34	2.45	
CO ₂	290	267	156	157.8	
N ₂ O	0.0075	n.a.	0.004	0.001	
Nox	1.5-4.0	15	0.81-2.15	16.05	
SOx	0.315	0.286	0.169	0.169	
NMVOC	0.4-0.7	4	0.21-0.38	1.75	
CH ₄	0.02-0.04	0.4	0.01-0.02	0.2	
Particulate	0.05	n.a.	0.02	0.2	

n.a. not available


Data for Coal Slurry Pipeline

			Avg.	Unit	
Technic	Technical Characteristics				
Capacit	у		25 x 10 ⁶	t/y	
Enviror	mental Characte	eristics		•	
Air	Greenhouse	СО	0.003	g/tkm	
Air	Greenhouse	CO ₂	20	g/tkm	
Air	Acidification	NOx	0.09	g/tkm	
Air	Acidification	SOx	0.29	g/tkm	
Air	Greenhouse	CH ₄	0.044	g/tkm	

Capital and O&M Costs of Energy Sector Infrastructure Facilities

Capacity of Million <u>TOE/Year</u>	Capital cost <u>(Million \$)</u>	O&M Cost <u>(Million \$)</u>
Oil Refinery	111-275	7-19
Oil Pipeline (1000km)	26-78	13-39
Gas Processing Plant	10-90	13-39
Gas pipeline (400 km)	52-155	
Coal Mining	216-260	28-30

World Electricity Generation (2000)

Electricity Production From Coal of Top Ten Countries (2000)

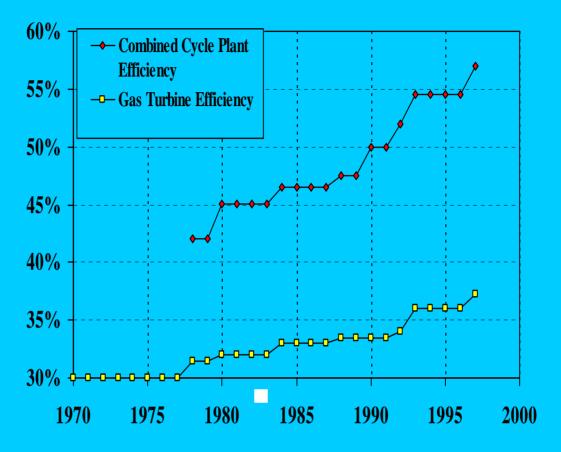
	TWh	
United States	2110	
People's Rep. of China	1062	
India	420	
Germany	299	
Japan	254	
South Africa	193	
Russia	176	
Australia	161	
Poland 📃	138	
Korea	126	
Rest of the World	1074	
World	6013	
Source: Key World Energy Statistics from the IEA, IAEA.		

Electricity Production From Oil of Top Ten Countries (2000)

	TWh	
Japan	159	
United States	125	
Mexico	97	
Italy	86	
Saudi Arabia	81	
People's Rep. of China	46	
Chinese Taipei	35	
Iraq	33	
Russia	33	
Pakistan	27	
Rest of the World	496	
World	1218	
Source: Key World Energy Statistics from the IEA, IAEA.		

Electricity Production From Gas of Top Ten Countries (2000)

	TWh	
United States	630	
Russia	370	
Japan	239	
United Kingdom	147	
Italy	101	
Islamic Rep. of Iran	93	
Thailand	61	
Malaysia	54	
Germany	53	
Netherlands	52	
Rest of the World	877	
World	2677	
Source: Key World Energy Statistics from the IEA, 2000.		


Oil/Gas-based Power Plant Categories

- Gas Steam Boiler
- Gas Fired Combustion Turbine
- Simple Cycle Heavy Duty (GTSCH)
- Simple Cycle Aero derivate (GTSCa)
- Steam Injected Gas Turbine (STIG)
- Humid Air Turbine (HAT)
- Combined Cycle (GTCC)
- Oil Steam Boiler (OSB)
- Diesel Engine (DE)
- Oil Fired Combustion Turbine

Features of Some Latest Gasbased Power Plants

- Latest GTs Unit sizes upto 280 MWe Efficiency 38-39%
- GTs with turbine inlet temperature second generation <1200 C⁰ Third generation >1200 C⁰
- Combined Cycle
 Efficiency

57-60%

Gas Turbine and Combined Cycle Efficiency Developments since 1970

Coal-based Power Plant Categories

Coal Steam Boiler Pulverised Coal (PC) Cyclone Furnace (CF) Spreader Stoker (SS)

Atmospheric Fluidized Bed Combustion Circulating (CFBC) Bubbling (BFBC)

Pressurized Fluidized Bed Combustion (PFBC)

Combined Cycle Circulating (CPFBC) Bubbling (BPFBC)

Coal Gasification Non-integrated (GCC) Integrated (IGCC) Integrated Gasification HAT

Coal Fired Combustion Turbine Improved Cycle (IC) Gasification/PFBC hybrid

Gas-fired Power Plant Investment Costs (US \$ of1996/kWe)

Country	Technology/ emission control equipment	Base construction cost	O&M Costs per Year	
Brazil	CCGT CCGT	677 766	8.39 8.62	
Turkey	CCGT/deNOx	402	6.07	
Korea	CCGT, LNG	583	21.80	
Source: Projected Costs of Generating Electricity, Update 1998, NEA, IEA, OECD. deNOx: Unspecified NOx control System				

Gas-fired Power Plant Expected to be Commercially Available by 2005-2010 investment costs (US \$ of1996/kWe)

Country	Technology/ emission control equipment	Base construction cost	O&M Costs per year
Netherlands	CCGT	664	23.71
United States	ACCGT/SCR	419	17.42
	Fuel cell/LNB, ESP	1408	27.48

Source: Projected Costs of Generating Electricity, Update 1998, NEA, IEA, OECD.

SCR: Selective catalytic reduction

LNB: Low NOx burner

Coal-fired Power Plant Investment Costs (US \$ of 1996/kWe)

Country	Plant type/ emission control equipment	Base constructi on cost	O&M Costs per year
China	PF(SC)/FGD, ESP	772	36.05
India	PF/ESP	935	27.89
Japan	PF/FGD, deNOx, dust	2561	81.33
Korea	PF(SC)/FGD, SCR	1174	53.13

Source: Projected Costs of Generating Electricity, Update 1998, NEA, IEA, OECD.

PF: Pulverized Coal

ESP: Electrostatic Precipitator

SC: Super critical

FGD: Flue gas desulphurisation

SCR: Selective catalytic reduction

Coal-fired Power Plant Expected to be Commercially Available by 2005-2010 (US \$ of 1996/kWe)

Country	Plant type/ emission control equipment	Base constru ction cost	O&M Costs per year	
Netherlands	PF(SC)/FGD , SCR	1450	53.35	
	IGCC/FGD, deNOx □	1553	54.51	
United States	IGCC/LNB, ESP	1154	32.84	
Source: Projected Costs of Generating Electricity, Update 1998, NEA, IEA, OECD.				

Environmental Impact of Fossil Fuels Fired Power Plants

(thousands tones per GWYr)				
	Oil F.O. 3.5% Sulphur)	Gas C.C.	Coal Steam Without FGD 1.2% Sulphur)	
SO ₂	152	*	51	
NOx	29	13	32	
Particulates	3	*	59	
CO ₂	6,900	5,250	7,760	
Liquid Wastes	525	350	880	
Solid Wastes	-	-	530	
* Less than 1. Source: IAEA-SM-338/52, 1996				

Costs of Flue-Gas Desulphurisation Units

	Dry		Wet	
	New	Retrofit	New	Retrofit
Removal Efficiency (%)	70-90	70-90	80-90	80-90
Capital Costs (\$/kW)	110-165	140-210	120-210	150-270
Variable O&M Costs (mills/kWh)	2.1-3.2	2.1-3.2	1.3-3.2	1.5-3.3
Total O&M Costs	7.4-11.0	6.0-9.0	7.4-13.0	6.6-12.0

Note: Costs are expressed in 1990 US \$.