INTRODUCTION TO MONTE CARLO
"Monte Carlo and Random Walks"

David M. CEPERLEY
Beckman Institute for Advanced Studies \& Technology University of Illinois at Urbana-Champaign - N.C.S.A. II-61801 Urbana, U.S.A.

These are preliminary lecture notes, intended only for distribution to participants.

Monte Carlo and Random Walks

Today we discuss basic Monte Carlo techniques.

- What is Monte Carlo?
- Any computational method which uses random numbers as an essential part of the algorithm
- Equivalent to performing integrals by sampling the integrand
- Often a Markov chain, in particular Metropolis MC
- References
- Allen\&Tildesley "Computer Simulation of Liquids"
- Frenkel\&Smit
- Thijssen, "Computational Physics"
- Kalos\&Whitlock, "Monte Carlo Methods"
- "Numerical Recipes"

MC is advantageous for high dimensional integrals

Consider an integral in the unit hypercube:

$$
I=\int_{0}^{1} d x_{1} \ldots d x_{D} f\left(x_{1}, \ldots x_{D}\right)
$$

By conventional deterministic methods:

- Lay out a grid with L points in each direction with $h=1 / L$
- Number of points is $N=L D \propto C P U$ time.

HOW DOES ERROR GO WITH CPU TIME and DIMENSIONALITY?

- Error in trapizoidal rule goes as $\varepsilon=\mathrm{f}^{\prime \prime}(\mathrm{x}) \mathrm{h}^{2}$.
- The CPU time $\propto \varepsilon^{-\mathrm{D} / 2}$.
- But by sampling we find ε^{-2}. To get another decimal place takes 100 times longer!

Log(cpuTime)

Other reasons to do Monte Carlo:

- Conceptually and practically simple.
- Comes with built in error bars.

Many methods of integration have been tried, and will be tried in this world of sin and woe. No one pretends that Monte Carlo is perfect or all-wise. Indeed, it has been said that Monte Carlo is the worst method except all those other methods that have been tried from time to time. Churchill 1947

Probability Distributions

- $P(x) d x=$ probability of observing a value in $(x, x+d x)$ is a probability distribution function (p.d.f.)

$$
\int d x P(x)=1 \quad P(x) \geq 0
$$

- x can be either a continuous or discrete variable.
- Cumulative distribution:

Probability of $x<y$.
Useful for sampling

- Average or expectation
- Moments:
- Zeroth moment $\mathrm{I}_{0}=1$
- Mean $<x>=I_{1}$

$$
c(y)=\int_{-\infty}^{y} d x P(x) \quad 0 \leq \mathrm{c}(\mathrm{y}) \leq 1
$$

- Variance $\left\langle(x-<x>)^{2}>=I_{2}-\left(I_{1}\right)^{2}\right.$

Mappings of random variables

Let $P_{x}(x) d x$ be a probability distribution
Let $y=g(x)$ be a new variable

What is the pdf of y ?
$P_{y}(y) d y=P_{x}(x) d x$

$$
P_{y}(y)=\frac{P_{x}(x)}{\left\lvert\, \frac{d g}{d x x_{x}}\right.}
$$

What happens when g is not monotonic?

Central Limit Theorem (Gauss)

Sample N values from $p(x) d x$. $\left(X_{1}, X_{2}, X_{3}, \ldots X_{N}\right)$
Estimate mean from
What is the pdf of mean?
Solve by fourier transforms.

$$
y=\frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

If you add together two random variables, you multiply together their characteristic functions:

Then

$$
\begin{aligned}
& c_{x}(k)=\left\langle e^{i k x}\right\rangle=\int d x p(x) e^{i k x} \\
& c_{x+y}(k)=c_{x}(k) c_{y}(k)
\end{aligned}
$$

$$
\begin{array}{l|l|}
& c_{x_{1}+\ldots x_{N}}(k)=c_{x}(k)^{N} \\
\cline { 2 - 2 } & c_{y}(k)=c_{x}(k / N)^{N} \\
\hline \text { Taylor expand } & \ln \left(c_{x}(k)\right)=\sum_{n=1}^{\infty} \kappa_{n} \frac{(i k)^{n}}{n!}
\end{array}
$$

cumulants $\boldsymbol{\kappa}_{n}$

What happens to the reduced moments?

$$
\kappa_{n}=\kappa_{n} N^{1-n}
$$

Hence the $\mathrm{n}=1$ moment remains invariant. mean $=\kappa_{1}$ variance $=\kappa_{2}$
skewness $=\kappa_{3}$
kurtosis $=\kappa_{4}$
The rest get reduced by higher and higher powers of N .

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} c_{y}(k)=e^{i k \kappa_{1}-k^{2} \kappa_{2} / 2 N-i k^{3} \kappa_{3} / 6 N^{2} \ldots} \\
& p(y)=\left(N / 2 \pi \kappa_{2}\right)^{1 / 2} e^{-\frac{N\left(y-\kappa_{1}\right)^{2}}{2 \kappa_{2}}}
\end{aligned}
$$

Given enough averaging almost anything becomes a Gaussian distribution.

Approach to normality

Figure 1. Distributions of sums of uniform random numbers, each compared with the normal distribution. (a) \boldsymbol{R}_{1}, the uniform distribution. (b) $\boldsymbol{R}_{\mathbf{2}}$, the sum of two uniformly distributed numbers. (c) R_{3}, the sum of three uniformly distributed numbers. (d) \boldsymbol{R}_{12}, the sum of twelve uniformly distributed numbers.

Conditions on Central Limit Theorem

$$
I_{n}=\left\langle x^{n}\right\rangle=\int d x p(x) x^{n}
$$

- We need the first three moments to exist.
- If I_{0} is not defined \Rightarrow not a pdf
- If I_{1} does not exist \Rightarrow not mathematically well-posed.
- If I_{2} does not exist \Rightarrow infinite variance. Important to know if variance is finite for Monte Carlo.
- Divergence could happen because of tails of distribution

$$
I_{2}=\int_{-\infty}^{\infty} d x p(x) x^{2}
$$

$$
\lim _{x \rightarrow \pm \infty} x^{3} p(x) \rightarrow 0
$$

- Or because of singular points, e.g. at $\mathrm{x}=0$

$$
\lim _{x \rightarrow \pm 0} x^{3} p(x) \rightarrow \text { finite }
$$

Random Number Generation

Also read "Numerical Recipes".

What is a random number?

- A single number is not random. Only an infinite sequence can be described as random.
- Random means the absence of order (a negative property).
- Can an intelligent gambler make money by betting on the next numbers that will turn up?
- All subsequences are equally distributed. This is the property that MC uses to do integrals and that you will test for in the homework.

Random numbers on a computer

- Truly random--the result of a physical process such as timing clocks, circuit noise, bad memory
- Too slow (we need $10^{10} / \mathrm{sec}$)
- Too expensive
- Low quality
- Not reproducible
- Pseudo-random. prng (pseudo means fake)
- Deterministic sequence
- But if you don't know the algorithm they appear to be random
- Quasi-random (quasi means almost random)
- "half way" between random and a uniform grid

Pseudo Random Sequence

S: State and initial seed.
T: Iteration process,
F: Mapping from state to integer RN (I) or real RN (U).

Cycle length

-If internal state has M bits, total state space is 2^{M} values.
-If mapping is $1-1$, then it will divide up space into a finite of cycles.

- Best case is a single cycle of length 2^{M}.
-Entire period of the RNG is exhausted in:

> - rand (1 processor) ~ 100 second
> - drand48 (1 processor) ~ 1 year
> - drand48 (100 processor) ~ 3 days
> - SPRNG LFG (10^{5} procs) $\sim 10^{375}$ years
> Assuming 10^{7} RN/sec per processor
-It is easy to achieve very long cycle length but 32 or 24 bit generators are no longer adequate!

Common PRNG Generators

- Multiplicative Lagged Fibonacci
- Modified Lagged Fibonacci
$z_{n}=z_{n-k} * z_{n-1}$
$z_{n}=z_{n-k}+z_{n-1}$
(modulo 2^{m})
vary
initialization
- 48 bit LCG
- 64 bit LCG
- Prime Modulus LCG
$z_{n}=a * z_{n-1}+p$
(modulo m) vary p
vary a
- Combined Multiple Recursive

$$
\begin{gathered}
z_{n}=a_{n-1} *_{z_{n-1}}+\ldots+ \\
a_{n-k}{ }^{*} z_{n-k}+\text { LCG }
\end{gathered}
$$

vary LCG

Recurrence
Parallelization

Uniformity

- Output consists of taking N bits from state and making an integer in ($0,2^{\mathrm{N}}-1$) " I_{k} "
- One gets a uniform real " U_{k} " by mulitiplying by 2^{-N}.
- We will discuss how to get other distributions.
- If there is a single cycle, then integers must be uniform in the range $\left(0,2^{\mathrm{N}}-1\right)$
- Uniformity of numbers taken 1 at a time is usually easy to guarantee.
- But what we need is higher dimensional uniformity

Sequential RNG Problems

- Correlations \Rightarrow on-uniformity in higher dimensions

Uniform in 1-D but non-uniform in 2-D

This is the important property to guarantee:

$$
\left\langle f\left(x_{i+1}\right) g\left(x_{i+2}\right)\right\rangle=\left\langle f\left(x_{i}\right)\right\rangle\left\langle g\left(x_{i}\right)\right\rangle
$$

MC uses numbers many at a time--they need to be uniform.

LCG Numbers fall in planes.

Good LCG generators have the planes close together.
For a k-bit generator, do not use them more than k/2 together.

Fig. 8.2 Correlation between the triplets of points \vec{r}_{n} $\left\{x_{3 n}, x_{3 n+1}, x_{3 n+2}\right\}$ generated by a pseudorandom number generator. T। value of the third coordinate is represented by the intensity of the point.

SPRNG

-A library of many well tested excellent parallel PRNGs
-Callable from FORTRAN.C, C++, and JAVA
-Ported to popular parallel and serial platforms

SPRNG Functions

- int *init_sprng(int streamnum, int nstreams, int seed, int param)
- double sprng(int *stream)
- int isprng(int *stream)
- int print_sprng(int *stream)
- int make_sprng_seed()
- int pack_sprng(int *stream, char **buffer)
- int *unpack_sprng(char *buffer)
- int free_sprng(int *stream)
- int spawn_sprng(int *stream, int nspawned, int ***newstreams)

Chi-squared test of randomness

- HW exercise: do test of several generators
- Divide up "cube" into "N" bins.
- Sample many "P" triplets.
- Number/bin should be $n=P / N \pm(P / N)^{1 / 2}$

$$
\begin{aligned}
& \mathrm{N}=100 \\
& \mathrm{P}=1000
\end{aligned}
$$

GOOD

Figure A.1. The frequency function of observed values of χ^{2} after 1000 samples. The bins are equally probable intervals where the expected number of $\boldsymbol{\chi}^{2}$ in each bin is 10 . The pseudorandom number generator was Eq. (A.13).

BAD

Figure A.2. The frequency function of observed values of $\boldsymbol{\chi}^{\mathbf{2}}$ after $\mathbf{1 0 0 0}$ samples using prn generator Eq. (A.14). The expected number of $\boldsymbol{\chi}^{2}$ in each bin is 10 . The value of the bin indicated by $\left.{ }^{(}{ }^{*}\right)$ is offscale.

- Chi-squared statistic is

$$
\chi^{2}=\sum_{i} \frac{\left(N_{i}-n_{i}\right)^{2}}{n_{i}}
$$

- Where n_{i} is the expected number in bin i.
- The probability of a given chi-squared is $Q\left(x^{2} \mid N-1\right)$ ($\mathrm{N}-1$) because of "sum rule".

For more details see "Numerical Recipes"

Recommendation: For careful work use several generators!

- For most real-life MC simulations, passing existing statistical tests is necessary but not sufficient.
- Random number generators are still a black art.
- Rerun with different generators, since algorithm may be sensitive to different RNG correlations.
- Computational effort is not wasted, since results can be combined to lower error bars.
- In SPRNG, relinking is sufficient to change RNGs

Parallel Simulations

- Parallel Monte Carlo is easy? Or is it?
- Two methods for easy parallel MC:
- Cloning: same serial run, different random numbers.
- Scanning: different physical parameters (density,...).
- Any parallel method (MPI, ..) can be used.
- Problems:
- Big systems require excessive wall clock time.
- Excessive amounts of output data generated.
- Random number correlation?

Parallelization of RNGs

-Cycle Division: Leapfrog or Partition. Correlation problems

- Cycle Parameterization: If PRNG has several cycles, assign different cycles to each stream

Set of possible states

Each cycle gets a disjoint subset

- Iteration Parameterization: Assign a different iteration function to each stream

Examples of Parallel MC codes and Problems

- Embarrassingly parallel simulations. Each processor has its own simulation. Scanning and cloning. Unlikely to lead to problems unless they stay in phase.
- Lots of integrals in parallel (e.g. thousands of Feynman diagrams each to an accuracy of 10^{-6}). Problem if cycle length is exhausted.
- Particle splitting with new particles forking off new processes. Need lots of generators. Problem if generators are correlated initially.
- Space-time partitioning. Give each local region a processor and a generator. Problem if generators are correlated.

Sampling Distributions

"Numerical Recipes" on random numbers

How to generate non-uniform probability distributions.

These are used in importance sampling to reduce the variance of a Monte Carlo evaluation or to simulate various physical processes.

We start by assuming that there is software to generate udrn's in the range $(0,1)$.

How do we sample an arbitrary $p(x) d x$?

There are lots of tricks.

Discrete Distributions

Any discrete distribution p_{k} can be sampled by constructing the cumulant.

- Sample $0<\mathrm{u}<1$.
- Find which region it is in. i.e. find k : $\mathrm{c}_{\mathrm{k}-1}<\mathrm{u}<\mathrm{c}_{\mathrm{k}}$
- Return label "k".
- The search operation can be done by bisection in $\log _{2}(N)$ steps.
- For simple distributions, it might be even easier.
- There is a faster $\mathrm{O}(1)$ method, using a precomputed table.

Continuous Distributions

Generalize to a continuous function.

This is the mapping method.

- Construct the cumulant: $c(y)=\int_{-\infty}^{y} d x p(x)$
- Find $\mathrm{x}=\mathrm{c}^{-1}(\mathrm{u})$ (Can always perform with a table lookup.)

Some analytic examples:

- $P(x)=a e^{-a x} \quad 0<x \quad$ then $\quad x=-\ln (u) / a$
- $P(x)=(a+1) x^{a} \quad 0<x<1$ then
$\mathrm{x}=\mathrm{u}^{1 /(\mathrm{a}+1)}$
Problem occurs if inverse mapping is difficult.

Rejection technique

- Sample x from $q(x) d x$
- Accept x with probability $c(x)$, otherwise repeat

What is distribution of accepted $x^{\prime} s$?

$$
\mathrm{p}(\mathrm{x}) \mathrm{dx}=\mathrm{c}(\mathrm{x}) \mathrm{q}(\mathrm{x}) \mathrm{dx} / \text { normalization }
$$

Hence choose

$$
c(x)=a p(x) / q(x)
$$

Where a is set so that

$$
c(x) \leq 1 \Rightarrow a \leq \min (q(x) / p(x))
$$

$1 / a$ is the acceptance probability, a is the efficiency.
If inefficient will use lots of prns/step.
Do not undersample, or else efficiency will be low.

Composition method

Combine several random numbers

- Add several udrn's.

Remember characteristic function Limit for large k is a Gaussian

Example: add two integers in $(1,6)$

- Multiply or divide 2 udrns?

- Take maximum of ' k ' udrns.

$$
x=\max \left(u_{1}, . ., u_{k}\right) \text { Prove that } P(x)=k x^{k-1}
$$

Normal distribution

- Inverse mapping is a little slow, also of infinite range.
- Trick: generate 2 at a time: $\mathrm{r}=(\mathrm{x}, \mathrm{y})_{2}$

$$
\begin{aligned}
& p(x, y) d x d y=(2 \pi)^{-1} \exp \left(-\frac{r^{2}}{2}\right)=p(r) r d r d \theta \\
& p(v) d v=\frac{1}{2} e^{-v / 2} \text { with } v=r^{2} \\
& x=\sqrt{-2 \ln \left(u_{1}\right)} \cos \left(2 \pi u_{2}\right) \\
& y=\sqrt{-2 \ln \left(u_{1}\right)} \sin \left(2 \pi u_{2}\right)
\end{aligned}
$$

- Or sample angle using rejection technique:
- Sample (x, y) in square
- Accept if $x^{2}+y^{2}<1$
- Normalize to get the correct r.

Code to sample normal distribution

Normal distribution $\langle x\rangle=x_{0}$ and $\left\langle\left(x-x_{0}\right)^{2}\right\rangle=\sigma^{2}$

```
1 x=sprng()-0.5
y=sprng()-0.5
r2=x*x+y*y
if (r2>0.25) go to 1
radius= sigma*sqrt (-2*ln(sprng())/r2)
xnormal=x0+x*radius
ynormal=y0+y*radius
```

- No trig functions, 1 log, 1 sqrt, 1 divide
- Mixes up regularity of random numbers
-Efficiency of angle generation is $4 / \pi$.
-Can get 2 ndrn's each time.

Multivariate normal distributions

How to sample a correlated Gaussian? (say with D components)

- Assume we want $\left\langle\mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{j}}\right\rangle=\mathrm{T}_{\mathrm{ij}}$
- Make Choleski decomposition of T, (take square root). (see Numerical Recipes or notes)

$$
\text { SSt }=T
$$

- We can assume S is a triangular matrix

- Generate D normally distributed numbers y.
- Transform to correlated random distribution
X=Sy

Bias vs statistical error

- Bias is a systematic error caused by using a quantity with fluctuations in a non-linear expression.
- You will get a result systematically too high or low.
- Suppose $Z+\delta Z$ is the result of a MC evaluation of $<Z>$.
- But we quote $F(Z)$. Example: $F=-k T \ln (Z)$.
- What is the statistical error and bias on F ?
- Expand Z in power series about <Z>

$$
\begin{aligned}
& F(Z)=F(\langle Z\rangle)+\frac{d F}{d Z} \delta Z+\frac{1}{2} \frac{d^{2} F}{d Z^{2}} \delta Z^{2} \\
& \operatorname{bias}(F)=\langle F(Z)\rangle-F(\langle Z\rangle)=\frac{1}{2} \frac{d^{2} F}{d Z^{2}}\left\langle\delta Z^{2}\right\rangle \quad \text { order } \frac{1}{N} \\
& \operatorname{error}(F)=\left\langle(F(Z)-F(\langle Z\rangle))^{2}\right\rangle^{1 / 2}=\left|\frac{d F}{d Z}\right|\left\langle\delta Z^{2}\right\rangle^{1 / 2} \quad \text { order } \frac{1}{N^{1 / 2}}
\end{aligned}
$$

Efficiency of MC

statistical error ~ sqrt(variance/computer time).

DEFINE:

$$
\begin{aligned}
& \text { efficiency }=\zeta=\frac{1}{v T} \\
& \nu=\text { error }^{2} \text { of mean } \\
& T=\text { total computer time }
\end{aligned}
$$

One can either:

- write faster code,
- get a faster computer or
- work on reducing the variance/step.

Importance Sampling

Given the integral

$$
I=\int d x f(x)
$$

How should we sample x to maximize the efficiency?

Estimator

Transform the integral to:

$$
I=\int d x p(x)\left[\frac{f(x)}{p(x)}\right]=\left\langle\left[\frac{f(x)}{p(x)}\right]\right\rangle_{p}
$$

The variance is:

$$
v=\left\langle\left[\frac{f(x)}{p(x)}-I\right]^{2}\right\rangle_{p}=\int d x \frac{f(x)^{2}}{p(x)}-I^{2}
$$

Optimal sampling: $\quad \frac{\delta v}{\delta p(x)}=0$ with constraints

Parameterize as:

$$
p(x)=\frac{q^{2}(x)}{\int d x q^{2}(x)}
$$

Solution:

$$
p^{*}(x)=\frac{|f(x)|}{\int d x|f(x)|}
$$

$$
f(x) / p^{*}(x)=\frac{\operatorname{sign}(f(x))}{\int d x|f(x)|}
$$

If $f(x)$ is entirely positive or negative, estimator is constant.
We can't sample $p^{*}(x)$, but its form can guide us.
Importance sampling is a general technique: it works in many dimensions.

Example of important sampling.

$$
f(x)=\frac{e^{-x^{2}}}{1+x^{2}}
$$

Optimize "a"

$$
p(x)=(2 \pi a)^{-1 / 2} e^{-\frac{x^{2}}{2 a}}
$$

Mean value is independent of a.
CPU time is not

$$
v=\int_{-\infty}^{\infty} d x p(x)(f(x) / p(x)-I)^{2}=\int d x c \frac{e^{-x^{2}\left(2-\frac{1}{2 a}\right)}}{\left(1+x^{2}\right)^{2}}-I^{2}
$$

Importance sampling functions

Variance integrand

What are allowed values of a?

- Clearly for $p(x)$ to exist: $0<a$

- For finite estimato $.5<a$
- For finite variance
- Obvious valye $a=0.5$
- Optimal value $\quad a=0.6$.

$$
v=\int d x \frac{f(x)^{2}}{p(x)}=\int d x \frac{(2 \pi a)^{1 / 2}}{1+x^{2}} e^{-x^{2}\left(2-\frac{1}{2 a}\right)}
$$

What does infinite variance look like?

Spikes

Long tails on the distributions

$\alpha=.4 .0014=\varepsilon$
 $\alpha=.8 .00097$

- Basic idea of importance sampling is to sample more in regions where function is large.
- Find a convenient approximation to $|f(x)|$.
- Do not under-sample. That could cause infinite variance.
- Over-sampling results in loss of efficiency but not infinite variance.
- Always derive analytically conditions for finite variance.
- To debug: test that estimated value is independent of important sampling.
- Sign problem: zero variance is not possible for oscillatory integral. "Monte Carlo can add but not subtract."

Correlated Sampling

Suppose we want a function of 2 integrals:

$$
G\left(F_{1}, F_{2}\right) \text { where } F_{k}=\int d x f_{k}(x)
$$

Use the same $p(x)$ and random numbers to get both integrals.
What is optimal $p(x)$?

$$
p^{*}(x) \propto\left|f_{1}(x) \frac{d G}{d F_{1}}+f_{2}(x) \frac{d G}{d F_{2}}\right|
$$

It is a weighted average of the distributions for F_{1}^{1} and F_{2}.
Consider $G=F_{1} / F_{2}$ (like Boltzmann distribution)

$$
p^{*}(x) \propto\left|f_{2}(x)\left(\frac{f_{1}(x)}{f_{2}(x)}-G\right)\right|
$$

Sampling Boltzmann distribution

- Suppose we want to calculate a whole set of averages:
- Optimal sampling is:

$$
\left\langle O_{k}\right\rangle=\frac{\int d R O_{k}(R) e^{-V(R) / k T}}{\int d R e^{-V(R) / k T}}
$$

$$
p_{k}^{*}(x) \propto|\underbrace{e^{-V(R) / k T}}_{\text {constant }} \underbrace{\left(O_{k}(R)-\left\langle O_{k}\right\rangle\right)}_{\text {variable }}|
$$

- We need to sample this only. Avoid undersampling.
- The Boltzmann distribution is very highly peaked.

Random Walks

- It is very difficult to sample directly a general probability distribution.
If we sample from another distribution, the overlap will be order $\exp (-a N)$ where N is the number of variables.
- Markov chains (random walks) allow you sample any distribution based on detailed balance and transition rules.
- These methods were introduced by Metropolis et al in 1953 who applied it to a hard sphere liquid.

Markov 1856-1922

- One of the most powerful and most used algorithms.

Equation of State Calculations by Fast Computing Machines

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, and Augusta H. Teller, Los Alamos Scienlific Laboratory, Los Alamos, New Mexico
AND
Edward Teller,* Department of Physics, University of Chicago, Chicago, Illimois
(Received March 6, 1953)

Abstract

A general method, suitable for fast computing machines, for investigating such properties as equations of state for substances consisting of interacting individual molecules is described. The method consists of a modified Monte Cario integration over configuration spacc. Results for the two-dimensional rigid-sphere system have been obtained on the Los Alamos MANIAC and are presented here. These results are compared to the free volume equation of state and to a four-term virial coefficient expansion.

I. INTRODUCTION

THE purpose of this paper is to describe a general method, suitable for fast electronic computing machines, of calculating the properties of any substance which may be considered as composed of interacting individual molecules. Classical statistics is assumed, only two-body forces are considered, and the potential field of a molecule is assumed spherically symmetric. These are the usual assumptions made in theories of liquids. Subject to the above assumptions, the method in not restricted to any range of temperature or density. This paper will also present results of a preliminary twodimensional calculation for the rigid-sphere system. Work on the two-dimensional case with a LennardJones potential is in progress and will be reported in a later paper. Also, the problem in three dimensions is being investigated.

[^0]
II. THE GENERAL METHOD FOR AN ARBITRARY POTRNTIAL BETWEEN THE PARTICLES

In order to reduce the problem to a feasible size for numerical work, we can, of course, consider only a finite number of particles. This number \boldsymbol{N} may be as high as several hundred. Our system consists of a squaret containing N particles. In order to minimize the surface effects we suppose the complete substance to be periodic, consisting of many such squares, each square containing N particles in the same configuration. Thus we define $\mathbb{d}_{A B}$, the minimum distance between particles A and B, as the shortest distance between A and any of the particles B, of which there is one in each of the squares which comprise the complete substance. If we have a potential which falls off rapidly with distance, there will be at most one of the distances $A B$ which can make a substantial contribution; hence we need consider only the minimum distance $\boldsymbol{d}_{A B}$.

[^1]
Markov chain or Random Walk

- Markov chain is a random walk through phase space:

$$
s_{1} \Rightarrow s_{2} \Rightarrow s_{3} \Rightarrow s_{4} \Rightarrow \ldots
$$

Here " s " is the state of the system

- The transition probability is: $P\left(s_{n} \rightarrow s_{n+1}\right)$ stochastic matrix
- In a Markov chain, the distribution of s_{n+1} depends only on s_{n} (by definition). A drunkard has no memory.
- Let $f_{n}(s)$ be the probability after " n " steps. It evolves according to a "master equation."

$$
f_{n+1}\left(s^{\prime}\right)=\sum_{s} f_{n}(s) P\left(s \rightarrow s^{\prime}\right)
$$

- The stationary states are eigenfunctions of P.

$$
\sum_{s} \pi(s) P\left(s \rightarrow s^{\prime}\right)=\varepsilon \pi\left(s^{\prime}\right)
$$

- Because P is positive, the eigenvalues have $\varepsilon \leq 1$. An equilibrium state must have $\varepsilon=1$.
- How many equilibrium states are there?
- If it is ergodic, then it will converge to a unique stationary distribution (only one eigenfunction=1)
- In contrast to MD, ergodicity can be proven
- Conditions:
- One can move everywhere in a finite number of steps with non-zero probability. No barriers
- Non-periodic transition rules. (for example hopping on a bi-partite lattice)
- Average return time is finite. (no expanding universe) Not a problem in a finite system.
- If ergodic, convergence is geometrical and monotonic.

$$
f_{n}(s)=\pi(s)+\sum_{\lambda} \varepsilon_{\lambda}^{n} c_{\lambda} \phi_{\lambda}(s)
$$

Metropolis algorithm

Three key concepts:

1. Sample by using an ergodic random walk.
2. Determine equilibrium state by using detailed balance
3. Achieve detailed balance by using rejections.

Detailed balance: $\pi(s) P\left(s \rightarrow s^{\prime}\right)=\pi\left(s^{\prime}\right) P\left(s^{\prime} \rightarrow s\right)$.

Rate balance from s to s^{\prime}.

Put $\pi(s)$ into the master equation.
$\sum_{s} \pi(s) P\left(s \rightarrow s^{\prime}\right)=\sum_{s} \pi\left(s^{\prime}\right) P\left(s^{\prime} \rightarrow s\right)=\pi\left(s^{\prime}\right) \sum_{s} P\left(s^{\prime} \rightarrow s\right)=\pi\left(s^{\prime}\right)$

- Hence $\pi(s)$ is an eigenfunction.
- If $P\left(s \Rightarrow s^{\prime}\right)$ is ergodic then $\pi(s)$ is the unique steady state solution.

Rejection Method

Metropolis achieves detailed balance by rejecting moves. Break up transition probability into sampling and acceptance:

$$
\begin{aligned}
& P\left(s \rightarrow s^{\prime}\right)=T\left(s \rightarrow s^{\prime}\right) A\left(s \rightarrow s^{\prime}\right) \\
& T\left(s \rightarrow s^{\prime}\right)=\text { sampling probability } \\
& A\left(s \rightarrow s^{\prime}\right)=\text { acceptance probability }
\end{aligned}
$$

The optimal acceptance probability that gives detailed balance is:

$$
A\left(s \rightarrow s^{\prime}\right)=\min \left[1, \frac{T\left(s^{\prime} \rightarrow s\right) \pi\left(s^{\prime}\right)}{T\left(s \rightarrow s^{\prime}\right) \pi(s)}\right]
$$

Note that normalization of $\pi(\mathrm{s})$ is not needed or used!

The "Classic" Metropolis method

Metropolis-Rosenbluth -Teller (1953) method for sampling the Boltzmann distribution is:

- Move from s to s^{\prime} with probability $T\left(s \rightarrow s^{\prime}\right)=$ constant
- Accept with move with probability:

$$
A\left(s \rightarrow s^{\prime}\right)=\min \left[1, \exp \left(-\left(E\left(s^{\prime}\right)-E(s)\right) / k_{B} T\right)\right]
$$

- Repeat many times
- Given ergodicity, the distribution of s will be the canonical distribution: $\pi(\mathrm{s})=\exp \left(-E(\mathrm{~s}) / \mathrm{k}_{\mathrm{B}} \mathrm{T}\right) / Z$
- Convergence is guaranteed but the rate is not!

How to sample

$$
\text { S_new }=\text { S_old }+\Delta \text { (sprng - 0.5) }
$$

Uniform distribution in
a cube of side " Δ ".

Note: It is more efficient to move one particle at a time because only the energy of that particle comes in and the movement and acceptance ratio will be larger.
$A\left(s \rightarrow s^{\prime}\right)=\exp \left(-\beta\left(V\left(s^{\prime}\right)-V(s)\right)\right)=\exp \left(-\beta \sum_{j \neq i}\left(v\left(r_{i}^{\prime}-r_{j}\right)-v\left(r_{i}-r_{j}\right)\right)\right)$

MONTE CARLO CODE

call initstate(s_old)
E_old = action(s_old)
LOOP\{
call sample(s_old,s_new,T_new,1)
E_new = action(s_new)
call sample(s_new,s_old,T_old,0)
A=exp(-E_new+E_old) T_old/T_new if(A.gt.sprng()) \{
s_old=s_new
E_old=E_new
naccept=naccept+1\}
call averages(s_old)

- Sample snew

Trial action
\leftarrow Find prob. of going backward
\searrow Acceptance prob.

Overview of MCMC

- Decide how to move from state to state.
- Initialize the state
- Throw away first k states as being out of equilibrium.
- Then collect statistics but be careful about correlations.

Common errors:

1. If you can move from s to s^{\prime}, the reverse move must also be possible.
2. Accepted and rejected states count the same!

Exact: no time step error, no ergodic problems in principle but no dynamics either.

Always measure acceptance ratio. Adjust to roughly 0.5 by varying the "step size"

A 20\% acceptance ratio actually achieves better diffusion.

Fig. 1. Average acceptance probability.

Fig. 3. $\langle\vec{r}(i)-\vec{r}(i+100))^{2}>$ $\vec{r}(i)=3 n$ vector of argon positions at step i.

Variance of energy (local quantity) is not as sensitive to step

 size. MC is a robust method!

Fig. 2. $\frac{\langle\Delta V(i) \Delta V(i+50)\rangle}{\left\langle\Delta V(i)^{2}\right\rangle}$
where $i=$ step number and ΔV is the deviation of potential energy from the mean.

Acceptable range of efficiency.

Fig. 4. The variance of the total potential energy for calculations with the same number of steps.

Comparison between MC and MD Which is better?

- MD can compute dynamics. MC has a kinetics but dynamics is not necessarily physical. MC dynamics is useful for studying long-term diffusive process.
- MC is simpler: no forces, no time step errors and a direct simulation of the canonical ensemble.
- In MD you can only work on how to make the CPUtime/physical time faster by inventing better transition rules. Ergodicity is less of a problem. MD is sometimes very effective in highly constrained systems.
- MC is more general, it can handle discrete degrees of freedom (e. g. spin models, quantum systems), grand canonical ensemble...
So you need both! The best is to have both in the same code so you can use MC to warm up the dynamics.

Optimizing the moves

- Any transition rule is allowed as long as you can go anywhere in phase space with a finite number of steps. (ergodic)
- Try to find a $\mathrm{T}\left(\mathrm{s} \Rightarrow \mathrm{s}^{\prime}\right) \approx \pi\left(\mathrm{s}^{\prime}\right)$. If you can the acceptance ratio will be 1 .
- We can use the forces to push the walk in the right direction. Taylor expand about the current point.

$$
\mathrm{V}(\mathbf{r})=\mathrm{V}\left(\mathbf{r}_{0}\right)-\mathrm{F}(\mathbf{r})\left(\mathbf{r}-\mathbf{r}_{\mathbf{o}}\right)
$$

- Set $T\left(s \Rightarrow s^{\prime}\right) \approx \exp \left[-\beta\left(V\left(r_{0}\right)-F\left(r_{0}\right)\left(r-r_{0}\right)\right)\right]$
- Leads to Force-Bias Monte Carlo
- Related to Brownian motion (Smoluchowski Eq.)

Brownian Dynamics

Consider a big molecule in a solvent. In the high viscosity limit the "master equation" is:

$$
\begin{aligned}
& \frac{\partial \rho(R, t)}{\partial t}=D \nabla^{2} \rho(R, t)-\beta D \nabla[F(R) \rho(R, t)] \\
& R(t+\tau)=R(t)+\tau \beta D F(R(t))+\eta(t) \\
& \langle\eta(t)\rangle=0 \quad\left\langle\eta(t)^{2}\right\rangle=2 D h
\end{aligned}
$$

Enforce detailed balance by rejections! (hybrid method)

$$
T\left(R \rightarrow R^{\prime}\right)=c \exp \left(-\frac{\left(R^{\prime}-R-\beta D \tau F(R)\right)^{2}}{2 D \tau}\right)
$$

Also the equation for Diffusion Quantum Monte Carlo!

Problems with estimating errors

- Any good simulation quotes systematic and statistical errors for anything important.
- The error and mean are simultaneously determined from the same data. HOW?
- Central limit theorem: the distribution of an average approaches a normal distribution (if the variance is finite). One standard deviation means $\sim 2 / 3$ of the time the correct answer is within σ of the sample average.
- Problem in simulations is that data is correlated in time. It takes a "correlation" time to be "ergodic"
- We must throw away the initial transient
- Get rid of autocorrelation.
- We need ≥ 20 independent data points to estimate errors.

Estimating Errors

- Trace of $A(t)$:
- Equilibration time.
- Histogram of values of $A(P(A))$.
- Mean of A (a).
- Variance of $A(V)$.
- estimate of the mean: $\quad \Sigma \mathrm{A}(\mathrm{t}) / \mathrm{N}$
- estimate of the variance
- Autocorrelation of $A(C(t))$.
- Correlation time (к).
- The (estimated) error of the (estimated) mean (σ).
- Efficiency [= 1/(CPU time * error ${ }^{2}$)]

DataSpork

Interactive code to perform statistical analysis of data

Correlated data

Uncorrelated data

Estimating Errors

- Uncorrelated data

$$
\begin{aligned}
& \left\{a_{t}\right\} \quad 0<t \leq N \\
& \left\langle a_{t}\right\rangle \approx \bar{a}=\frac{1}{N} \sum_{t} a_{t} \\
& \operatorname{error}(\bar{a})=\left\langle(\bar{a}-\langle a\rangle)^{2}\right\rangle^{1 / 2} \approx\left[\frac{\sum_{t} \delta a_{t}^{2}}{N(N-1)}\right]^{1 / 2} \\
& \delta a_{t} \equiv a_{t}-\bar{a}
\end{aligned}
$$

- Correlated data

$$
\begin{aligned}
& \operatorname{error}(\bar{a})=\left\langle(\bar{a}-\langle a\rangle)^{2}\right\rangle^{1 / 2} \approx\left\langle\frac{\kappa \sum_{t}\left(a_{t}-\bar{a}\right)^{2}}{N(N-1)}\right\rangle^{1 / 2} \\
& \kappa=1+2 \sum_{t=1}^{\infty} \frac{\left\langle\delta a_{t} \delta a_{0}\right\rangle}{\left\langle\delta a^{2}\right\rangle}=\text { correlation time }
\end{aligned}
$$

- Blocking method: average together data in blocks longer than the correlation time until it is uncorrelated.

Proof of variance estimator

$$
\begin{aligned}
& \operatorname{error}(\bar{a})=\left\langle(\bar{a}-\langle a\rangle)^{2}\right\rangle^{1 / 2} \approx\left\langle\frac{\kappa \sum_{t}\left(a_{t}-\bar{a}\right)^{2}}{N(N-1)}\right\rangle^{1 / 2} \\
& \kappa=1+2 \sum_{t=1}^{\infty} \frac{\left\langle\delta a_{t} \delta a_{0}\right\rangle}{\left\langle\delta a^{2}\right\rangle}=\text { correlation time } \approx 2 \int_{0}^{\infty} \frac{d t}{\delta t} \mathrm{C}(\mathrm{t}) \\
& C\left(t, t^{\prime}\right) \equiv \frac{\left\langle\delta a_{t} \delta a_{t^{\prime}}\right\rangle}{\left\langle\delta a^{2}\right\rangle}=C\left(\left|t-t^{\prime}\right|\right)=\text { autocorrelation function } \\
& \left\langle(\bar{a}-\langle a\rangle)^{2}\right\rangle=\left\langle\frac{1}{N^{2}} \sum_{t, t^{\prime}}^{N} \delta a_{t} \delta a_{t^{\prime}}\right\rangle=\frac{\left\langle\delta a^{2}\right\rangle}{N^{2}} \sum_{t, t^{\prime}}^{N} C_{\left|t-t^{\prime}\right|} \approx \frac{\left\langle\delta a^{2}\right\rangle}{N^{2}} \sum_{t^{\prime}=1}^{N} \sum_{t=-\infty}^{\infty} C_{t}=\left\langle\delta a^{2}\right\rangle \frac{\kappa}{N}
\end{aligned}
$$

Statistical thinking is slippery: be careful

- "Shouldn't the energy settle down to a constant"
- NO. It fluctuates forever. It is the overall mean which converges.
- "The cumulative energy has converged".
- BEWARE. Even pathological cases have smooth cumulative energy curves.
- "Data set A differs from B by 2 error bars. Therefore it must be different".
- This is normal in 1 out of 10 cases. If things agree too well, something is wrong!
- "My procedure is too complicated to compute errors"
- NO. Run your whole code 10 times and compute the mean and variance from the different runs. If it is important, you MUST estimate its errors.

[^0]: - Now at the Radiation Laboratory of the University of Califormin, Livermore, California.

[^1]: \dagger We will use the two-dimensional nomenclature here since it is easier to visualize. The extension to three dimensions is obvious.

