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ceperley

Monte Carlo and Random Walks

Today we discuss basic Monte Carlo techniques.

What is Monte Carlo?

— Any computational method which uses random numbers as an
essential part of the algorithm

— Equivalent to performing integrals by sampling the integrand
— Often a Markov chain, in particular Metropolis MC

References

- Allen&Tildesley "Computer Simulation of Liquids”
-  Frenkel&Smit

— Thijssen, "Computational Physics”

- Kalos&Whitlock, "Monte Carlo Methods”

- "“Numerical Recipes”
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MC is advantageous for high
dimensional integrals

Consider an integral in the unit hypercube:

1
I={dx...dxy [ (x,...%,)
0

By conventional deterministic methods:

e Lay out a grid with L points in each direction with h=1/L

e Number of points is N=LP oc CPU time.

HOW DOES ERROR GO WITH CPU TIME and DIMENSIONALITY?
e Error in trapizoidal rule goes as ¢=f"(x) hZ.

e The CPU time « ¢gP/2,

e But by sampling we find ¢2. To get another decimal place takes
100 times longer!
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Log(cpuTime)

ND\

Good  Log(error) Bad

Other reasons to do Monte Carlo:
— Conceptually and practically simple.

— Comes with built in error bars.

Many methods of integration have been tried, and will be tried in this
world of sin and woe. No one pretends that Monte Carlo is perfect
or all-wise. Indeed, it has been said that Monte Carlo is the worst
method except all those other methods that have been tried from

time to time. Churchill 1947

ceperley random walks
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Probability Distributions

P(x)dx= probability of observing a value in (x,x+dx) is a
probability distribution function (p.d.f.)

[dxP(x)=1 P(x)20

X can be either a continuous or discrete variable.
Cumulative distribution:

Probability of x<y. v

Useful for sampling c(y)= j dxP(x) 0<c(y)=1.
Average or expectation e

Moments: < (x) jde(x)g(x)

— Zeroth moment I,=1

- Mean <x>=I, I, =<x >=ja’Xp(X)xn

~ Variance <(x-<x>)2> =I,-(I,)2

random walks



Mappings of random variables

y=g(x)
Let P,(x)dx be a probability s

distribution

Let y=g(x) be a new variable

What is the pdf of y?

N\

P,(y)dy=P,(x)dx / N/

_ LK)
Py(y) " |dg

dx|,

What happens when g is not
monotonic?

ceperley random walks



Central Limit Theorem (Gauss)

Sample N values from p(x)dx. (X;, X;, X3 ... Xy)

Estimate mean from N
What is the pdf of mean? y= #le.
Solve by fourier transforms. i=1

If you add together two random variables, you multiply together their
characteristic functions:

c (k)= <e”“> = Idxp(x)eib‘
C iy (k) =c (k)c, (k)
Coon, (B)=c (K)"
e, (k) =c,(k/ N

Then

Taylor expand

cumulants In(c (k))= Z (lk)
I

ceperley random walks



cumulants x,

What happens to the reduced moments? mean=xa,

variance=x,
1-n
Q’ n=K,N skewness =x,

o _ kurtosis=x,
Hence the n=1 moment remains invariant.

The rest get reduced by higher and higher powers of N.

. kic, —k2ic, /2 N—ikic, | 6 N>
lim,  c (k)=e&"""" 3R
N—ow ~y

_ N(-x)?

p(y)= (N/27nc2 )1/2 e

Given enough averaging almost anything becomes a Gaussian
distribution.

ceperley random walks



Approach to normality
[\
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Figure 1. Distributions of sums of uniform random numbers, each compared with the
normal distribution. (@) Ri, the uniform distribution. () R3, the sum of two
uniformly distributed numbers. () Rs, the sum of three uniformly distributed
numbers. (d) Ris, the sum of twelve uniformly distributed numbers.

ceperley random walks



Conditions on Central Limit Theorem

[ = <x”> = Idxp(x)x”

e We need the first three moments to exist.
- If I, is not defined=not a pdf
- If I, does not exist =not mathematically well-posed.

- If I, does not exist = infinite variance. Important to know
if variance is finite for Monte Carlo.

e Divergence could happen because of tails of distribution

x p(x) >0

X—>to0o

I, = j dxp(x)x” lim

e Or because of singular points, e.g. at x=0

lim_,, x p(x) > finite

ceperley random walks
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Random Number Generation

Also read "Numerical Recipes”.

What is a random number?

A single number is not random. Only an infinite sequence
can be described as random.

Random means the absence of order (a negative
property).

Can an intelligent gambler make money by betting on
the next numbers that will turn up?

All subsequences are equally distributed. This is the
property that MC uses to do integrals and that you will
test for in the homework.

random walks 10



Random numbers on a computer

e Truly random--the result of a physical process such as timing
clocks, circuit noise, bad memory

— Too slow (we need 1019/sec)
- Too expensive
- Low quality
— Not reproducible
e Pseudo-random. prng (pseudo means fake)
— Deterministic sequence

— But if you don’t know the algorithm they appear to be
random

e Quasi-random (quasi means almost random)
- “half way” between random and a uniform grid

ceperley random walks 11



Pseudo Random Sequence

Cycle
/Su e § _1_T.._ S _T.., Snel >
Seed [‘F [‘F [‘F

I n-1 I n I n+1
S: State and initial seed. < Un-'l> ( Un> ( Un+1>

T: Iteration process,

F: Mapping from state to integer RN (I ) or real RN (U).

ceperley random walks 12



Cycle length

oIf internal state has M bits, total state space is 2M values.

oIf mapping is 1-1, then it will divide up space into a finite of
cycles.

eBest case is a single cycle of length 2M.

eEntire period of the RNG is exhausted in:

e rand (1 processor) ~ 100 second

e drand48 (1 processor) ~ 1 year

e drand48 (100 processor) ~ 3 days

e SPRNG LFG (10> procs) ~ 10375 years
Assuming 107 RN/sec per processor

eIt is easy to achieve very long cycle length but 32 or 24 bit
generators are no longer adequate!

ceperley random walks



Common PRNG Generators

e Multiplicative Lagged

— X
Zn - Zn-k Zn-I

Recursive

an ¥z, + LCG

Fibonacci oovary
e Modified Lagged Fibonacci Zn = Znk ¥ Zn-l initialization
(modulo 2M)
e 48 bit LCG .
e 64 bit LCG Zn =@%Zpg +P vary p
e Prime Modulus LCG (modulo m)
vary a
e Combined Multiple Z, = an.1%z,.4 + ...+ vary LCG

ceperley random walks

Recurrence

Parallelization

14



ceperley

Uniformity

Output consists of taking N bits from state and making an
integer in (0,2N-1) “L.”

One gets a uniform real “U,” by mulitiplying by 2N,

We will discuss how to get other distributions.

If there is a single cycle, then integers must be uniform in
the range (0,2N-1)

Uniformity of numbers taken 1 at a time is usually easy to
guarantee.

But what we need is higher dimensional uniformity

random walks
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Sequential RNG Problems

e Correlations s@pon-uniformity in higher dimensions

Uniform in 1-D but
non-uniform in 2-D

0.3
0.2

01 ©

0
o]

This 1s the important property to guarantee:

(fCr)g(x0)) =(f(x)){g(x))
MC uses numbers many at a time--they need to be uniform.

ceperley random walks



LCG Numbers fall in planes.

Good LCG generators have the planes close together.

For a k-bit generator, do not use them more than k/2
together.

Fig. 8.2 Correlatlon between the triplets of polnts ¥p,
{1:3,,, z3n+1,x3n+2} genera ted by a pseudorandom number generator. TI
value of the third coordinate Is represented by the Intensity of the point.

ceperley random walks 17



SPRNG

oA library of many well tested excellent parallel PRNGs
eCallable from FORTRAN.C, C++, and JAVA
ePorted to popular parallel and serial platforms

SPRNG Functions

e int *init_sprng(int streamnum, int nstreams, int seed, int param)
e double sprng(int *stream)

e int isprng(int *stream)

e int print_sprng(int *stream)

e int make_sprng_seed()

e int pack_sprng(int *stream, char **buffer)

e int *unpack_sprng(char *buffer)

e int free_sprng(int *stream)

e int spawn_sprng(int *stream, int nspawned, int ***newstreams)

ceperley random walks
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Chi-squared test of randomness

e HW exercise: do test of several generators

e Divide up “cube” into "N” bins.

e Sample many “P” triplets. N=100

e Number/bin should be n=P/N +(P/N)1/2 P=1000

GOOD BAD

= T | E I | | i T T T T
y I ; I : 915 : 1I10 . 11125 ! 140 IL[[‘I-LI liO l-LLI_|1125 ) 140
Figes AL The fequency foncdon °f,;::s=~=:,::m T e e S
;:u?;)nmyiopn:on:m;e:n:e:emt:r e Eq. fff:f). e o ’ indicated by (*) is offscale.
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2 Ni=n;)”
e Chi-squared statistic is A = Z%
i
e Where n, is the expected number in bin i.
e The probability of a given chi-squared is Q(x?|N-1)

(N-1) because of “sum rule”.

For more details see "Numerical Recipes”

random walks
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Recommendation:
For careful work use several generators!

e For most real-life MC simulations, passing existing statistical
tests is necessary but not sufficient.

e Random number generators are still a black art.

e Rerun with different generators, since algorithm may be
sensitive to different RNG correlations.

e Computational effort is not wasted, since results can be
combined to lower error bars.

e In SPRNG, relinking is sufficient to change RNGs

ceperley random walks 21



Parallel Simulations

Parallel Monte Carlo is easy? Or is it?
Two methods for easy parallel MC:
— Cloning: same serial run, different random numbers.
- Scanning: different physical parameters (density,...).
Any parallel method (MPI, ..) can be used.
Problems:
— Big systems require excessive wall clock time.
— Excessive amounts of output data generated.
— Random number correlation?

ceperley random walks



Parallelization of RNGs

eCycle Division: Leapfrog or Partition. Correlation
problems

e Cycle Parameterization: If PRNG has several cycles, assign
different cycles to each stream

meam =» O O O

Set of possible states Each cycle gets a disjoint subset

e Iteration Parameterization: Assign a different iteration
function to each stream

ceperley random walks

23



ceperley

Examples of Parallel MC codes and Problems

Embarrassingly parallel simulations. Each processor has its
own simulation. Scanning and cloning. Unlikely to lead to
problems unless they stay in phase.

Lots of integrals in parallel (e.g. thousands of Feynman
diagrams each to an accuracy of 10-®). Problem if cycle
length is exhausted.

Particle splitting with new particles forking off new
processes. Need lots of generators. Problem if generators are
correlated initially.

Space-time partitioning. Give each local region a processor
and a generator. Problem if generators are correlated.

random walks
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Sampling Distributions

"Numerical Recipes” on random numbers

How to generate non-uniform probability distributions.

These are used in importance sampling to reduce the variance
of a Monte Carlo evaluation or to simulate various physical
processes.

We start by assuming that there is software to generate udrn’s
in the range (0,1).

How do we sample an arbitrary p(x)dx ?

There are lots of tricks.

ceperley random walks
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Discrete Distributions

Any discrete distribution p, can be sampled by constructing the
cumulant. Z":
C —
0 J . Gk c P
p a pb pc pd

e Sample O<u<1.
e Find which region it is in. i.e. find k: ¢, _;<u<c,
e Return label “k”.

e The search operation can be done by bisection in log,(N)
steps.

e For simple distributions, it might be even easier.
e There is a faster O(1) method, using a precomputed table.

ceperley random walks 26



Continuous Distributions

Generalize to a continuous function.
This is the mapping method.

y
e Construct the cumulant: c(y)= Idxp(x)
e Sampleuin (0,1) —o0

e Find x=c1(u) (Can always perform with a table lookup.)

Some analytic examples:
e P(x)=a e O<x then x=-ln(u)/a

e P(x)=(a+1)x® 0O<x<1 then x=y1/(a+1)
Problem occurs if inverse mapping is difficult.

ceperley random walks
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Rejection technique

e Sample x from g(x)dx «
e Accept x with probability c(x), otherwise repeat —

What is distribution of accepted x’s?
p(x)dx= c(x)q(x)dx/normalization
Hence choose c(x) = qa p(x)/q(x)

Where a is set so that c(x)L1= a<min(g(x)/ p(x))

1/a is the acceptance probability, a is the efficiency.
If inefficient will use lots of prns/step.

Do not undersample, or else efficiency will be low.

ceperley random walks 28



Composition method

Combine several random numbers

e Add several udrn’s. /\ .
Remember characteristic function
Limit for large k is a Gaussian / \ )
D7/ S U AN N
Example: add two integers in (1,6) -~ = @ " o) )
e Multiply or divide 2 udrns? . &

e Take maximum of 'k’ udrns.
x= max(u,, .., U,) Prove that P(x)= k xk'!

ceperley random walks 29



Normal distribution

e Inverse mapping is a little slow, also of infinite range.
e Trick: generate 2 at a time: r=(x,y),

p(x,y)dxdy = (2x)" exp(—%) — p(r)rdrd

p(v)dv = %e‘”z with v =r’

x = |=21n(y, ) cos(27u,)
y =+/-2In(u,) sin(27zu,)

e Or sample angle using rejection technique:
- Sample (x,y) in square
- Accept if x2+y? <1
— Normalize to get the correct r.

ceperley random walks 30



Code to sample normal distribution

Normal distribution <x>=x, and <(x-x,)?>=c?

1 X=sprng ()
y=sprng ()
r2=x*x+y*y
if (r2>0.25) go to 1
radius= sigma*sqgrt (-2*1ln(sprng())/r2)
xnormal=x0+x*radius
ynormal=y0+y*radius

-0.5
-0.5

eNo trig functions, 1 log, 1 sqrt, 1 divide
eMixes up regularity of random numbers
oEfficiency of angle generation is 4/x.
eCan get 2 ndrn’s each time.

ceperley random walks
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Multivariate normal distributions

How to sample a correlated Gaussian? (say with D components)
e Assume we want <xx;> =Tj;

o Make Choleski decomposition of T, (take square root).
(see Numerical Recipes or notes)
SSt=T

e We can assume S is a triangular matrix I 0

e Generate D normally distributed numbers vy.
e Transform to correlated random distribution
X=Sy

ceperley random walks 32
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Bias vs statistical error

Bias is a systematic error caused by using a quantity with
fluctuations in a non-linear expression.

You will get a result systematically too high or low.
Suppose Z+46Z is the result of a MC evaluation of <Z>.
But we quote F(Z). Example: F=-kT In(Z).

What is the statistical error and bias on F?

Expand Z in power series about <Z>

F(Z)=F((Z))+ 2—1;52 + % ‘;Zf 6Z°

bias(F) = <F(Z)> —F(<Z>) = % ZIQZIZ <5Zz> order %
\V2 |\ dF ,\1/2 1

error(F)=<(F(Z)—F(<Z>)) > :‘d_Z (62°) " order e

random walks 33



Efficiency of MC

statistical error ~ sqgrt(variance/computer time).

DEFINE: 1

efficiency=¢ = —
vl

v =error’ of mean

T’ = total computer time

One can either:
— write faster code,
— get a faster computer or
— work on reducing the variance/step.

ceperley random walks



Importance Sampling

Given the integral I = jdxf(x)
How should we sample x to maximize the efficiency?
Estimator
Transform the integral to:
/- ;dxpm{ﬂﬂ :<{f<x>}>
p(x) p(x) |/,
The variance is: )
2
{ (x) ,} e p
p(x) p(x)
. _ oL . .
Optimal sampling: = 0 with constraints
o p(x)

ceperley random walks 35



2
q (%)
Parameterize as: px)= Idxqz(x)

Solution: ‘f(x)‘

p(x)=
Jarl 1)
. sign( f(x
Estimator: f(x)/ p(x)= gn(f (x))
Jarl £
If f(x) is entirely positive or negative, estimator is constant. “zero

variance principle.”
We can’t sample p*(x), but its form can guide us.

Importance sampling is a general technique: it works in many
dimensions.

ceperley random walks 36



Optimize “a

Example of important sampling.

(1P

f(x)= 1—
_|_

p(x)=(Qza) e

Mean value is independent of a.

1.66

1.65 -

1.64

1.63

1.62

ceperley
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1.e6*time

2
—X

X

X

CPU time 1s not

relative cpu time

3.0

251
201
Ls-
1.0 4

0.5

0.0
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—x2 (2_L)

o0 2 e 2a o)
1% =I_Oodxp(x)(f(x)/p(x)—[) :jdxc "y -1
(1 + X
Importance sampling functions Variance integrand

0.4

06

0@“”;&

J\,/

0.3

04 —

g
g o2

0.2
0.1
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What are allowed values of a?

e Clearly for p(x) to exist: 0O<a

.0 .5 .6“ 1. a .
e For finite estfjmato .5<a
C >
e For finite varian .25<a
C / >
e Obvious value a=0.5
e Optimal value a=0.6.

V= jdx f(x)2 J.dx (272'61)1/2 . (2‘£j

1+ x*

ceperley random walks 39



What does infinite
variance look like?

Spikes

Long tails on the
distributions

ceperley random walks
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Basic idea of importance sampling is to sample more in
regions where function is large.

Find a convenient approximation to |f(x)].
Do not under-sample. That could cause infinite variance.

Over-sampling results in loss of efficiency but not infinite
variance.

Always derive analytically conditions for finite variance.

To debug: test that estimated value is independent of
important sampling.

Sign problem: zero variance is not possible for oscillatory
integral. "Monte Carlo can add but not subtract.”

random walks 41



Correlated Sampling

Suppose we want a function of 2 integrals:

G(F,,F,) where F, = [ dxf, (x)
Use the same p(x) and random numbers to get both integrals.

What is optimal p(x)?

‘ dG dG
p (x) | fi(x)——+ fr(x)——
YU dE T2 dE,
It is a weighted average of the distributions for F, and F,.
Consider G=F,/F, (like Boltzmann distribution)

fi() G]
f2(x)

ceperley random walks 42
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Sampling Boltzmann distribution

Suppose we want to calculate a whole set of averages:

IdROk (R)e—V(R)/kT
<0k> - IdRe—V(R)/kT

Optimal sampling is:

. J/

P (e (0,(R)~(0,))

constant )
variable

We need to sample this only. Avoid undersampling.
The Boltzmann distribution is very highly peaked.

random walks
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Random Walks

It is very difficult to sample directly
a general probability distribution.

If we sample from another
distribution, the overlap will be
order exp(-aN) where N is the
number of variables.

Markov chains (random walks)
allow you sample any distribution
based on detailed balance and
transition rules.

These methods were introduced by
Metropolis et al in 1953 who
applied it to a hard sphere liquid.

One of the most powerful and most
used algorithms.

random walks

Markov 1856-1922
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Equation of State Calculations by Fast Computing Machines

NicHOLAS METROPOLIS, ARIANNA W. ROSENBLUTH, MARSHALL N. ROSENBLUTH, AND AuGUSTA H. TELLER,
Los Alamos Scientific Laboratory, Los Alamos, New Mexico

AND

EowarD TELLER,* Depariment of Physics, Universily of Chicago, Chicago, Ilinois
{Received March 6, 1953)

A general method, suitable for fast computing machines, for investigating such properties as equations of
state for subatances consisting of interacting individual molecules is described. The method consists of a
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been obtained on the Los Alamos MANIAC and are presented here. These results are compared
to the free volume equation of state and to a four-term virial coefficient expansion.

I. INTRODUCTION

HE purpose of this paper is to describe a general
method, suitable for fast electronic computing
machines, of calculating the properties of any substance
which may be considered as composed of interacting
individual molecules. Classical statistics is assumed,
only two-body forces are considered, and the potential
field of a molecule is assumed spherically symmetric.
These are the usual assumptions made in theories of
liquids. Subject to the above assumptions, the method
is not restricted to any range of temperature or density.
This paper will also present results of a preliminary two-
dimensional calculation for the rigid-sphere system.
Work on the two-dimensional case with a Lennard-
Jones potential is in progress and will be reported in a
later paper. Also, the problem in three dimensions is
being invstigated.
. Non at the Radiation Laboratory of the University of Cali-
foraia, Livermore, California.

random walks

II. THE GENERAL METHOD FOR AN ARBITRARY
POTENTIAL BETWEEN THE PARTICLES

In order to reduce the problem to a feasible size for
numerical work, we can, of course, consider only a finite
number of particles. This number N may be as high as
several hundred. Our system consists of a squaret con-
taining NV particles. In order to minimize the surface
effects we suppose the complete substance to be periodic,
consisting of many such squares, each square contsin-
ing N particles in the same configuration. Thus we
define d4 5, the minimum distance between particles 4
and B, as the shortest distance between 4 and any of
the particles B, of which there is one in each of the
squares which comprise the complete substance. If we
have a potential which falls off rapidly with distance,
there will be at most one of the distances AB which
can make a substantial contribution; hence we need
consider only the minimum distance d 5.

t We will use the two-dimensional nomenclature here since it
is easier to visualize. The cxtension to three dimensions is obvious.
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Markov chain or Random Walk

Markov chain is a random walk through phase space:
S$;=S, 53 =S, =...
Here “s” is the state of the system
The transition probability is: P(s,—s,.;) stochastic matrix

In a Markov chain, the distribution of s_.; depends only on s,
(by definition).

Let f (s) be the probability after "n” steps. It evolves
according to a “master equation.”

£ (S') _ Zslfn(S)P(S —>S')

The stationary states are eigenfunctions of P.

ZSZE(S)P(S > S') =¢en(s)

random walks 46
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Because P is positive, the eigenvalues have ¢ < 1. An
equilibrium state must have ¢ =1.

How many equilibrium states are there?

If it is , then it will converge to a unique stationary
distribution (only one eigenfunction=1)

In contrast to MD, ergodicity can be proven
Conditions:

— One can move everywhere in a finite number of steps
with non-zero probability. No barriers

— Non-periodic transition rules. (for example hopping on a
bi-partite lattice)

— Average return time is finite. (no expanding universe) Not
a problem in a finite system.

If ergodic, convergence is geometrical and monotonic.

f, (S) = 7Z'(S) + ;8261¢ﬂ (S)

random walks 47



Metropolis algorithm

Three key concepts:
1. Sample by using an ergodic random walk.
2. Determine equilibrium state by using detailed balance

3. Achieve detailed balance by using rejections.

Detailed balance: 7 (s) P(s »5s’) = n(s))P (s” - s ).

Put 7 (s) into the master equation.
Zﬂ(S)P(S—)S'):Zﬂ(S')P(S'—>S)=7Z(S')ZP(S'—>S)=7z(S')

e Hence 7x(s) is an eigenfunction.

o If P(s =s’) is ergodic then 7 (s) is the unique steady state
solution.

ceperley random walks 48



Rejection Method
Metropolis achieves detailed balance by rejecting moves.
Break up transition probability into sampling and acceptance:
P(S —)S'):T(S —)S')A(S —>S')
T (s — s') = sampling probability

A gs - SI:) acceptance probability
The optimal acceptance probability that gives detalled balance

IS:

A(s —s') :min{ I(s'> s)7(s )}

T'(s > s)z(s)

Note that normalization of nt(s) 1s not needed or used!

ceperley random walks
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The “Classic” Metropolis method

Metropolis-Rosenbluth -Teller (1953) method for

sampling the Boltzmann distribution is:

Move from s to s’ with probability T(s—s")= constant
o Accept with move with probability:

A(s—>s’)=min[ 1, exp (- (E(s")-E(s))/kgT ) ]

e Repeat many times

ceperley

e Given ergodicity, the distribution of s will be the canonical
distribution: n(s) = exp(-E(s)/kgT)/Z

e Convergence is guaranteed but the rate is not!

random walks
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How to sample

S new =5 old +A (sprng -0.5)

Uniform distribution in
a cube of side “A”.

Note: It is more efficient to move one particle at a time because

only the energy of that particle comes in and the movement and
acceptance ratio will be larger.

A(s—>s')= exp(—,B(V(S')—V(S))) = CXP(—,BZ(V(’? =)=l _'"J))j

J#L
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MONTE CARLO CODE

call initstate(s_old) D
E_old = action(s_old)

LOOP{
call sample(s_old,s_new,T_new,1) «
E_new = action(s_new)
call sample(s_new,s_old,T_old,0) «

A=exp(-E_new+E_old) T_old/T_ new

if(A.gt.sprng()) { ™~
s _old=s new -
E old=E_new -

naccept=naccept+ 13/
call averages(s_old)

ceperley random walks




Overview of MCMC

e Decide how to move from state to state.

o Initialize the state

e Throw away first k states as being out of equilibrium.

e Then collect statistics but be careful about correlations.

Common errors:

1. If you can move from s to s’, the reverse move must also be
possible.

2. Accepted and rejected states count the same!

Exact: no time step error, no ergodic problems in principle but
no dynamics either.
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Always measure acceptance ratio. Adjust to roughly 0.5 by
varying the “step size”

A 20% acceptance ratio actually achieves better diffusion.

'm L] 1 T T ‘ 1 ] l ] L] 1 | T ] T T T T 1 I 1 T T
) u'\qc N 5.6 ._*~ _
© METROPOLIS MONTE CARLO N 4 .\
0.80 |— \ A SMART MONTE CARLO — ~.
N O FORCE BIAS( A = %) a8k _
% So © FORCEBIAS{ X = 1) | L \
N\ [ N|
R -1 ~ | o
3 4.0 \ .
_________ . O
~ B s O e

- —8~ 32— o\o -

g | N,

T o~ N
_—— - Q24 ° =
. \ .6 -
0.48 B ® METROPOLIS MONTE CARLO
o8- § anryomrecans
© FORCE BtAS{ x = 1)
X8L 79 - 283 -
; R (0] PR R NN WU AU N SN SR RS S Y |
Fig. 1. Average acceptance probability. 0 0.2 024 0.36 048

Avor

XBL 790 - 237

Fig. 3. <(r(i) - ¥(i + 100))Z>

(i) = 3n vector of argon
positions at step i.
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Variance of energy (local quantity) is not as sensitive to step

size.  MC i1s a robust method!
1.0 T T R |
o—e Acceptable range of efficiency.
h‘\ |
09 \;b..\ / .
.\0—0’.*./&. 60 T T T T T | —
/ T T | T T
8 )d o L v |
—_ = "% s yd 50— 9 < > -
2 % o0 Ry ‘
o7t \ Vs / 1 %ol / 3
. N / 2 _ [ i -
\& >30 \\ Y/ —
\h}{i_.nf’o/’p ° - X\ ‘AQ ,ﬁi / ¥\ o
06— Tl 2ol b '_\D,z/*—\/ =
Q5 SR | 1 PR | 1 1 | 1 | | 10— : n
(0] 0.2 0.24 036 048 o - l I | | .
Alo e o Qe o024 036 a4
Fig. 2. <AV(i) AV(i + 50)> AV o4 xo. e 2
<av(i)?> )
Fig. 4. The variance of the total

where i = gtep number and
AV is the deviation of potential
energy from the mean.
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potential energy for calcula-

tions with the same number
of steps.
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So you need both! The best is to have both in the same code so

ceperley

Comparison between MC and MD
Which is better?

MD can compute dynamics. MC has a kinetics but dynamics
is not necessarily physical. MC dynamics is useful for
studying long-term diffusive process.

MC is simpler: no forces, no time step errors and a direct
simulation of the canonical ensemble.

In MD you can only work on how to make the
CPUtime/physical time faster by inventing better transition
rules. Ergodicity is less of a problem. MD is sometimes very
effective in highly constrained systems.

MC is more general, it can handle discrete degrees of
freedom (e. g. spin models, quantum systems), grand
canonical ensemble...

you can use MC to warm up the dynamics.

random walks
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Optimizing the moves

Any transition rule is allowed as long as you can go
anywhere in phase space with a finite number of steps.
(ergodic)

Try to finda T(s = s’) = n (s’). If you can the acceptance
ratio will be 1.

We can use the forces to push the walk in the right direction.
Taylor expand about the current point.

V(r)=V(ry)-F(r)(r-r,)
Set T(s = s’) =~ exp[ -B(V(rp)- F(ro)(r-ry))]
Leads to Force-Bias Monte Carlo
Related to Brownian motion (Smoluchowski EQ.)
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Brownian Dynamics

Consider a big molecule in a solvent. In the high viscosity limit
the “master equation” is:

5Pg’:»f) = DV’ p(R,t) - fDV[F (R)p(R,1)]

R(t+7)=R(t)+BDF (R(t)) + n(t)
(n(t))=0 <77(z)2> = 2Dh

Enforce detailed balance by rejections! (hybrid method)

T(R— R'") = cexp(— (R=R _fDDTF(R))zj
.

Also the equation for Diffusion Quantum Monte Carlo!
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Problems with estimating errors

Any good simulation quotes systematic and
statistical errors for anything important.

The error and mean are simultaneously determined from the
same data. HOW?

Central limit theorem: the distribution of an average
approaches a normal distribution (if the variance is finite).
One standard deviation means ~2/3 of the time the correct
answer is within o of the sample average.

Problem in simulations is that data is correlated in time. It
takes a “correlation” time to be “ergodic”

We must throw away the initial transient
Get rid of autocorrelation.
We need >20 independent data points to estimate errors.
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Estimating Errors

Trace of A(t):

Equilibration time.

Histogram of values of A ( P(A) ).
Mean of A (a).

Variance of A( v ).

estimate of the mean:

estimate of the variance

e Autocorrelation of A (C(t)).

e Correlation time (« ).

e The (estimated) error of the (estimated) mean (¢ ).
o Efficiency [= 1/(CPU time * error 2)]

ceperley
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Interactive code to
perform statistical
analysis of data

File

Analuzer (914

&l Datasets

The file md3.s5ca contains 4 datasets,

time
MO _EM

'-.-'iewl

MO _PE
MM A2

Email guestions bugs to shumway@ uiucedu

ceperley random walks

DataSpork

|

MD_FE

File

Trace

Sutocorrelation

Blacking

-2.35

1.0

o5

0o

0.0030

0.0020

o.oo1o
0o

Trace of MD_PE

1000

& utocorrelation for MD_PE

2000 3000

e

=y

L

1 e

o 100 200 300

4000 000

Dataset Information

mean: —2.2545316
* 00021934381

sigrma: 0.0289611649

correlation time: 25.812561

Blocking &nalysis of MD_PE
E Y - start cuttoff:

end cuttoff:

500

5000
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Correlated data

25 col 1 (data.?)
File

X

MI=] E3

Trace of col 1 (data.2)

o 200

G600 a00

1ean
-7.2616753E 00
ror of mean:
+1.1E-02
igma:
1.0301166E-01
utocor. time
1.175459ZE 01
art cutoff-
0.0

i cutoff
’—;99. 0

1

I

|

| Trace Lnutucurrelatiun LBlucking |

Uncorrelated data

[ col 1 (data.1) [_ O] %]
File

Trace of col 1 {data.1)

ean
’—T.lBSS?DSE DD‘
Iror of mean
El. 3E-02 —‘
igma
’_54. 01l01704E-01
utocor. time
’—al. 0118468EE‘
rt cutoff-
N
| | | | nd cutoff-
i 200 400 G600 ann
999.0

=2

[ col 1 (data.2)

File

0.5

-0.0

Autocorrelation

=1 B3

—7.2616758E 00

20 40 60

rror of mean-
=1.1E-02
igma
1.030L166E-0L
utocor. time:
1.1784892E 0L
art cutoff-
0.0

nd cutoff-
I—:ss. 0

[ Trace u.éulucurrelaliun l Blocking
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[ col 1 (data.1) =]
File

Autacorrelation

]

1.1856705E 00
Tor of mean:
+1.3E-02
igma:
4,0101704E-01

il

utocor. time-
1.0118466E 00
art cutoff-

]

o
o

nd cutoff-
98.0

-0.0

| lifagal autocorretation | Bideking|

e 2
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Estimating Errors

e Uncorrelated data

e Correlated data

O0<t<N

taf
<at> zﬁz%Zat

error(a_) = <(a_—<a>)2> ~

N(N-1)

— -
n | 2.9
t

1/2

) 1/2

S\ 172 KZ(at_a)
<>)> S\ TN

= correlation time

e Blocking method: average together data in blocks longer
than the correlation time until it is uncorrelated.
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Proof of variance estimator

error(5)=<(5‘<“>)> “‘< N(N-1) >

K=1+ 2; <5<a 5a>0> = correlation time ~ 2]08% C(t)

<5a 5a,>

Ct,t"= >’ =C (|t —t '|) =autocorrelation function
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Statistical thinking is slippery: be careful

“Shouldn’t the energy settle down to a constant”

— NO. It fluctuates forever. It is the overall mean which
converges.

“"The cumulative energy has converged”.

- BEWARE. Even pathological cases have smooth
cumulative energy curves.

“"Data set A differs from B by 2 error bars. Therefore it must
be different”.

— This is normal in 1 out of 10 cases. If things agree too
well, something is wrong!

"My procedure is too complicated to compute errors”

— NO. Run your whole code 10 times and compute the
mean and variance from the different runs. If it is
important, you MUST estimate its errors.
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