
the
abdus salam
international centre for theoretical physics

strada costiera, 11 - 34014 trieste italy - tel. +39 040 2240111 fax +39 040 224163 - sci_info@ictp.trieste.it - www.ictp.trieste.it

united nations
educational, scientific

and cultural
organization

international atomic
energy agency

ceperley random walks 1

Monte Carlo and Random Walks

Today we discuss basic Monte Carlo techniques.

• What is Monte Carlo?
– Any computational method which uses random numbers as an

essential part of the algorithm
– Equivalent to performing integrals by sampling the integrand
– Often a Markov chain, in particular Metropolis MC

• References
– Allen&Tildesley “Computer Simulation of Liquids”
– Frenkel&Smit
– Thijssen, “Computational Physics”
– Kalos&Whitlock, “Monte Carlo Methods”
– “Numerical Recipes”

ceperley random walks 2

MC is advantageous for high
dimensional integrals

Consider an integral in the unit hypercube:

By conventional deterministic methods:
• Lay out a grid with L points in each direction with h=1/L

• Number of points is N=LD ∝ CPU time.
HOW DOES ERROR GO WITH CPU TIME and DIMENSIONALITY?
• Error in trapizoidal rule goes as ε=f’’(x) h2.

• The CPU time ∝ ε-D/2.
• But by sampling we find ε-2. To get another decimal place takes

100 times longer!

1

1 1
0

... (,....)D DI dx dx f x x= ∫

ceperley random walks 3

Other reasons to do Monte Carlo:
– Conceptually and practically simple.
– Comes with built in error bars.

Many methods of integration have been tried, and will be tried in this
world of sin and woe. No one pretends that Monte Carlo is perfect
or all-wise. Indeed, it has been said that Monte Carlo is the worst
method except all those other methods that have been tried from
time to time. Churchill 1947

Good Log(error) Bad

Log(cpuTime)
MC

2D

4D 6D 8D

ceperley random walks 4

Probability Distributions
• P(x)dx= probability of observing a value in (x,x+dx) is a

probability distribution function (p.d.f.)

• x can be either a continuous or discrete variable.
• Cumulative distribution:

Probability of x<y.
Useful for sampling

• Average or expectation
• Moments:

– Zeroth moment I0=1
– Mean <x>=I1

– Variance <(x-<x>)2> =I2-(I1)2

() 1 () 0dxP x P x= ≥∫

() () 0 c(y) 1.
y

c y dxP x
−∞

= ≤ ≤∫

()n n
nI x dxp x x= = ∫

() () ()g x g dxP x g x= = ∫

ceperley random walks 5

Mappings of random variables

Let Px(x)dx be a probability
distribution

Let y=g(x) be a new variable

What is the pdf of y?

Py(y)dy=Px(x)dx

What happens when g is not
monotonic?

x

y=g(x)

()() x

x

P x
y dg

dx

P y =

ceperley random walks 6

Central Limit Theorem (Gauss)

Sample N values from p(x)dx. (X1, X2, X3,… XN)
Estimate mean from
What is the pdf of mean?
Solve by fourier transforms.
If you add together two random variables, you multiply together their

characteristic functions:

Then

Taylor expand

cumulants

1

1

N

iN
i

y x
=

= ∑

1 ...

1

() ()

() () ()

() ()

() (/)

()ln(())
!

N

ikx ikx
x

x y x y

N
x x x

N
y x

n

x n
n

c k e dxp x e

c k c k c k

c k c k

c k c k N

ikc k
n

κ

+

+

∞

=

= =

=

=

=

=

∫

∑

ceperley random walks 7

What happens to the reduced moments?

Hence the n=1 moment remains invariant.
The rest get reduced by higher and higher powers of N.

Given enough averaging almost anything becomes a Gaussian
distribution.

1

2

3

4

mean=
variance=
skewness

cumula

=
kurtosis

n s

=

t n

κ
κ
κ

κ

κ

1 n
n nNκ κ −=

()

2 3 2
1 2 3

2()1
2 2

/ 2 / 6

1/ 2
2

lim ()

() / 2
N y

ik k N ik N
N yc k e

p y N e
κ

κ

κ κ κ

πκ
−

− −
→∞

−

=

=

ceperley random walks 8

Approach to normality

ceperley random walks 9

Conditions on Central Limit Theorem

• We need the first three moments to exist.
– If I0 is not defined⇒not a pdf
– If I1 does not exist ⇒not mathematically well-posed.
– If I2 does not exist ⇒ infinite variance. Important to know

if variance is finite for Monte Carlo.
• Divergence could happen because of tails of distribution

• Or because of singular points, e.g. at x=0

()n n
nI x dxp x x= = ∫

2
2 ()I dxp x x

∞

−∞

= ∫ 3lim () 0x x p x→±∞ →

3
0lim ()→± →x x p x finite

ceperley random walks 10

Random Number Generation
Also read “Numerical Recipes”.

What is a random number?
– A single number is not random. Only an infinite sequence

can be described as random.
– Random means the absence of order (a negative

property).
– Can an intelligent gambler make money by betting on

the next numbers that will turn up?
– All subsequences are equally distributed. This is the

property that MC uses to do integrals and that you will
test for in the homework.

ceperley random walks 11

Random numbers on a computer

• Truly random--the result of a physical process such as timing
clocks, circuit noise, bad memory
– Too slow (we need 1010/sec)
– Too expensive
– Low quality
– Not reproducible

• Pseudo-random. prng (pseudo means fake)
– Deterministic sequence
– But if you don’t know the algorithm they appear to be

random
• Quasi-random (quasi means almost random)

– “half way” between random and a uniform grid

ceperley random walks 12

Pseudo Random Sequence

S: State and initial seed.

T: Iteration process,

F: Mapping from state to integer RN (I) or real RN (U).

ceperley random walks 13

Cycle length

• rand (1 processor) ~ 100 second
• drand48 (1 processor) ~ 1 year
• drand48 (100 processor) ~ 3 days
• SPRNG LFG (105 procs) ~ 10375 years

Assuming 107 RN/sec per processor

•If internal state has M bits, total state space is 2M values.

•If mapping is 1-1, then it will divide up space into a finite of
cycles.

•Best case is a single cycle of length 2M.

•Entire period of the RNG is exhausted in:

•It is easy to achieve very long cycle length but 32 or 24 bit
generators are no longer adequate!

ceperley random walks 14

Common PRNG Generators
• Multiplicative Lagged

Fibonacci
• Modified Lagged Fibonacci

• Combined Multiple
Recursive

• 48 bit LCG
• 64 bit LCG
• Prime Modulus LCG

zn = zn-k * zn-l

zn = zn-k + zn-l

(modulo 2m)

zn = a*zn-1 + p

(modulo m)

zn = an-1*zn-1 + ...+
an-k*zn-k + LCG

vary
initialization

vary a

vary p

vary LCG

ParallelizationRecurrence

ceperley random walks 15

Uniformity

• Output consists of taking N bits from state and making an
integer in (0,2N-1) “Ik”

• One gets a uniform real “Uk” by mulitiplying by 2-N.
• We will discuss how to get other distributions.
• If there is a single cycle, then integers must be uniform in

the range (0,2N-1)
• Uniformity of numbers taken 1 at a time is usually easy to

guarantee.
• But what we need is higher dimensional uniformity

ceperley random walks 16

Sequential RNG Problems

• Correlations non-uniformity in higher dimensions

Uniform in 1-D but
non-uniform in 2-D

This is the important property to guarantee:

MC uses numbers many at a time--they need to be uniform.
1 2() () () ()i i i if x g x f x g x+ + =

ceperley random walks 17

LCG Numbers fall in planes.
Good LCG generators have the planes close together.

For a k-bit generator, do not use them more than k/2
together.

ceperley random walks 18

SPRNG Functions
• int *init_sprng(int streamnum, int nstreams, int seed, int param)
• double sprng(int *stream)
• int isprng(int *stream)
• int print_sprng(int *stream)
• int make_sprng_seed()
• int pack_sprng(int *stream, char **buffer)
• int *unpack_sprng(char *buffer)
• int free_sprng(int *stream)
• int spawn_sprng(int *stream, int nspawned, int ***newstreams)

•A library of many well tested excellent parallel PRNGs
•Callable from FORTRAN.C, C++, and JAVA
•Ported to popular parallel and serial platforms

SPRNG

ceperley random walks 19

Chi-squared test of randomness
• HW exercise: do test of several generators
• Divide up “cube” into “N” bins.
• Sample many “P” triplets.
• Number/bin should be n=P/N ±(P/N)1/2

GOOD BAD

N=100

P=1000

ceperley random walks 20

• Chi-squared statistic is

• Where ni is the expected number in bin i.
• The probability of a given chi-squared is Q(x2|N-1)

(N-1) because of “sum rule”.

For more details see “Numerical Recipes”

2()2 i i

i

N n
n

i
χ −=∑

ceperley random walks 21

Recommendation:
For careful work use several generators!

• For most real-life MC simulations, passing existing statistical
tests is necessary but not sufficient.

• Random number generators are still a black art.
• Rerun with different generators, since algorithm may be

sensitive to different RNG correlations.
• Computational effort is not wasted, since results can be

combined to lower error bars.
• In SPRNG, relinking is sufficient to change RNGs

ceperley random walks 22

Parallel Simulations

• Parallel Monte Carlo is easy? Or is it?
• Two methods for easy parallel MC:

–– CloningCloning: same serial run, different random numbers.
–– ScanningScanning: different physical parameters (density,…).

• Any parallel method (MPI, ..) can be used.
• Problems:

– Big systems require excessive wall clock time.
– Excessive amounts of output data generated.
– Random number correlation?

ceperley random walks 23

Parallelization of RNGs

• Cycle Parameterization: If PRNG has several cycles, assign
different cycles to each stream

• Iteration Parameterization: Assign a different iteration
function to each stream

Set of possible states Each cycle gets a disjoint subset

•Cycle Division: Leapfrog or Partition. Correlation
problems

ceperley random walks 24

Examples of Parallel MC codes and Problems

• Embarrassingly parallel simulations. Each processor has its
own simulation. Scanning and cloning. Unlikely to lead to
problems unless they stay in phase.

• Lots of integrals in parallel (e.g. thousands of Feynman
diagrams each to an accuracy of 10-6). Problem if cycle
length is exhausted.

• Particle splitting with new particles forking off new
processes. Need lots of generators. Problem if generators are
correlated initially.

• Space-time partitioning. Give each local region a processor
and a generator. Problem if generators are correlated.

ceperley random walks 25

Sampling Distributions
“Numerical Recipes” on random numbers

How to generate non-uniform probability distributions.

These are used in importance sampling to reduce the variance
of a Monte Carlo evaluation or to simulate various physical
processes.

We start by assuming that there is software to generate udrn’s
in the range (0,1).

How do we sample an arbitrary p(x)dx ?

There are lots of tricks.

ceperley random walks 26

Any discrete distribution pk can be sampled by constructing the
cumulant.

0 u 1

p a pb pc pd

• Sample 0<u<1.
• Find which region it is in. i.e. find k: ck-1<u<ck

• Return label “k”.

• The search operation can be done by bisection in log2(N)
steps.

• For simple distributions, it might be even easier.
• There is a faster O(1) method, using a precomputed table.

Discrete Distributions

1

k

k k
i

c p
=

=∑

ceperley random walks 27

Continuous Distributions
Generalize to a continuous function.
This is the mapping method.

• Construct the cumulant:
• Sample u in (0,1)
• Find x=c-1(u) (Can always perform with a table lookup.)

Some analytic examples:
• P(x)=a e-ax 0<x then x=-ln(u)/a

• P(x)=(a+1)xa 0<x<1 then x=u1/(a+1)

Problem occurs if inverse mapping is difficult.

() ()
y

c y dxp x
−∞

= ∫

ceperley random walks 28

Rejection technique

• Sample x from q(x)dx

• Accept x with probability c(x), otherwise repeat

What is distribution of accepted x’s?

p(x)dx= c(x)q(x)dx/normalization
Hence choose

Where a is set so that

1/a is the acceptance probability, a is the efficiency.

If inefficient will use lots of prns/step.

Do not undersample, or else efficiency will be low.

() () / ()
() 1 min(() / ())
c x a p x q x
c x a q x p x

=
≤ ⇒ ≤

ceperley random walks 29

Composition method
Combine several random numbers
• Add several udrn’s.

Remember characteristic function
Limit for large k is a Gaussian

Example: add two integers in (1,6)

• Multiply or divide 2 udrns?

• Take maximum of ‘k’ udrns.
x= max(u1, .., uk) Prove that P(x)= k xk-1

ceperley random walks 30

Normal distribution
• Inverse mapping is a little slow, also of infinite range.
• Trick: generate 2 at a time: r=(x,y)

• Or sample angle using rejection technique:
– Sample (x,y) in square
– Accept if x2+y2 <1
– Normalize to get the correct r.

2
1

/ 2 2

1 2

1 2

(,) (2) exp() ()
2

1() with
2

2ln() cos(2)

2ln() sin(2)

v

rp x y dxdy p r rdrd

p v dv e v r

x u u

y u u

π θ

π

π

−

−

= − =

= =

= −

= −

ceperley random walks 31

Code to sample normal distribution

Normal distribution <x>=x0 and <(x-x0)2>=σ2

1 x=sprng()-0.5
y=sprng()-0.5
r2=x*x+y*y
if (r2>0.25) go to 1
radius= sigma*sqrt (-2*ln(sprng())/r2)
xnormal=x0+x*radius
ynormal=y0+y*radius

•No trig functions, 1 log, 1 sqrt, 1 divide
•Mixes up regularity of random numbers
•Efficiency of angle generation is 4/π.
•Can get 2 ndrn’s each time.

ceperley random walks 32

Multivariate normal distributions
How to sample a correlated Gaussian? (say with D components)
• Assume we want <xixj> =Tij

• Make Choleski decomposition of T, (take square root).
(see Numerical Recipes or notes)

SSt = T
• We can assume S is a triangular matrix 0

• Generate D normally distributed numbers y.
• Transform to correlated random distribution

X=Sy

ceperley random walks 33

Bias vs statistical error
• Bias is a systematic error caused by using a quantity with

fluctuations in a non-linear expression.
• You will get a result systematically too high or low.
• Suppose Z+δZ is the result of a MC evaluation of <Z>.
• But we quote F(Z). Example: F=-kT ln(Z).
• What is the statistical error and bias on F?
• Expand Z in power series about <Z>

()

()

()

2
2

2

2
2

2

1/ 2

1 2

1/ 22 2
/

1()
2

1() () 1orde
2

()

r

1o() () rd er

dF d FF Z F Z Z Z
dZ dZ

d Fbias F F Z F Z Z
dZ

dFerror F F Z

N

N
F Z Z

dZ

δ δ

δ

δ

= + +

= − =

= − =

ceperley random walks 34

Efficiency of MC
statistical error ~ sqrt(variance/computer time).

DEFINE:

One can either:
– write faster code,
– get a faster computer or
– work on reducing the variance/step.

2

1efficiency=

error of mean
total computer time

T

T

ζ
υ

ν

=

=
=

ceperley random walks 35

Importance Sampling
Given the integral

How should we sample x to maximize the efficiency?
Estimator

Transform the integral to:

The variance is:

Optimal sampling:

()I dxf x= ∫

() ()()
() ()

p

f x f xI dxp x
p x p x

= =

∫

2 2
2() ()

() ()

0 with constraints
()

p

f x f xI dx I
p x p x

p x

υ

δυ
δ

= − = −

=

∫

ceperley random walks 36

Parameterize as:

Solution:

Estimator:

If f(x) is entirely positive or negative, estimator is constant. “zero
variance principle.”

We can’t sample p*(x), but its form can guide us.
Importance sampling is a general technique: it works in many

dimensions.

2

2

()()
()

q xp x
dxq x

=
∫

* ()
()

()
f x

p x
dx f x

=
∫

* (())() / ()
()

sign f xf x p x
dx f x

=
∫

ceperley random walks 37

Example of important sampling.
2

2
2

2

1/ 2

()
1

() (2)
x
a

xef x
x

p x a eπ

−

−−

=
+

=Optimize “a”

Mean value is independent of a. CPU time is not

ceperley random walks 38

Importance sampling functions Variance integrand

()
()

2 1(2)
22 2

22
() () / ()

1

x
aedxp x f x p x I dxc I

x
ν

− −
∞

−∞
= − = −

+
∫ ∫

ceperley random walks 39

What are allowed values of a?

• Clearly for p(x) to exist: 0<a
0 .5 .6 1. a

• For finite estimator .5<a

• For finite variance .25<a

• Obvious value a=0.5

• Optimal value a=0.6.

2 12 1/ 2 2
2

2

() (2)
() 1

x
af x adx dx e

p x x
πν

 − −
 = =

+∫ ∫

ceperley random walks 40

What does infinite
variance look like?

Spikes

Long tails on the
distributions

ceperley random walks 41

• Basic idea of importance sampling is to sample more in
regions where function is large.

• Find a convenient approximation to |f(x)|.
• Do not under-sample. That could cause infinite variance.
• Over-sampling results in loss of efficiency but not infinite

variance.
• Always derive analytically conditions for finite variance.
• To debug: test that estimated value is independent of

important sampling.

• Sign problem: zero variance is not possible for oscillatory
integral. “Monte Carlo can add but not subtract.”

ceperley random walks 42

Correlated Sampling
Suppose we want a function of 2 integrals:

Use the same p(x) and random numbers to get both integrals.

What is optimal p(x)?

It is a weighted average of the distributions for F1 and F2.
Consider G=F1/F2 (like Boltzmann distribution)

1 2(,) where ()k kG F F F dx f x= ∫

*
1 2

1 2

() () ()dG dGp x f x f x
dF dF

∝ +

* 1
2

2

()() ()
()
f xp x f x G
f x

∝ −

ceperley random walks 43

Sampling Boltzmann distribution
• Suppose we want to calculate a whole set of averages:

• Optimal sampling is:

• We need to sample this only. Avoid undersampling.
• The Boltzmann distribution is very highly peaked.

()* () /

constant
variable

() ()V R kT
k k kp x e O R O−∝ −142431442443

() /

() /

() V R kT
k

k V R kT

dRO R e
O

dRe

−

−
= ∫

∫

ceperley random walks 44

Random Walks

• It is very difficult to sample directly
a general probability distribution.
If we sample from another

distribution, the overlap will be
order exp(-aN) where N is the
number of variables.

• Markov chains (random walks)
allow you sample any distribution
based on detailed balance and
transition rules.

• These methods were introduced by
Metropolis et al in 1953 who
applied it to a hard sphere liquid.

• One of the most powerful and most
used algorithms.

Markov 1856-1922

ceperley random walks 45

ceperley random walks 46

Markov chain or Random Walk
• Markov chain is a random walk through phase space:

s1⇒s2 ⇒ s3 ⇒ s4 ⇒…
Here “s” is the state of the system

• The transition probability is: P(sn→sn+1) stochastic matrix

• In a Markov chain, the distribution of sn+1 depends only on sn
(by definition). A drunkard has no memory.

• Let fn(s) be the probability after “n” steps. It evolves
according to a “master equation.”

• The stationary states are eigenfunctions of P.

() () ()1 ' 'n n
s

f s f s P s s+ = →∑

() ()' (')
s

s P s s sπ επ→ =∑

ceperley random walks 47

• Because P is positive, the eigenvalues have ε ≤ 1. An
equilibrium state must have ε =1.

• How many equilibrium states are there?
• If it is ergodic, then it will converge to a unique stationary

distribution (only one eigenfunction=1)
• In contrast to MD, ergodicity can be proven
• Conditions:

– One can move everywhere in a finite number of steps
with non-zero probability. No barriers

– Non-periodic transition rules. (for example hopping on a
bi-partite lattice)

– Average return time is finite. (no expanding universe) Not
a problem in a finite system.

• If ergodic, convergence is geometrical and monotonic.

() () ()n
nf s s c sλ λ λ

λ

π ε φ= +∑

ceperley random walks 48

Metropolis algorithm
Three key concepts:

1. Sample by using an ergodic random walk.
2. Determine equilibrium state by using detailed balance

3. Achieve detailed balance by using rejections.

Detailed balance: π (s) P(s → s’) = π (s’)P (s’ → s).
Rate balance from s to s’.

Put π (s) into the master equation.

• Hence π(s) is an eigenfunction.

• If P(s ⇒s’) is ergodic then π (s) is the unique steady state
solution.

() () () () () ()' ' ' ' ' (')
s s s

s P s s s P s s s P s s sπ π π π→ = → = → =∑ ∑ ∑

ceperley random walks 49

Rejection Method

() (') (')' min 1,
(') ()

T s s sA s s
T s s s

π
π

 →
→ = →

Metropolis achieves detailed balance by rejecting moves.
Break up transition probability into sampling and acceptance:

The optimal acceptance probability that gives detailed balance
is:

Note that normalization of π(s) is not needed or used!

() () ()
()
()

' ' '

' sampling probability

' acceptance probability

P s s T s s A s s

T s s

A s s

→ = → →

→ =

→ =

ceperley random walks 50

The “Classic” Metropolis method

Metropolis-Rosenbluth -Teller (1953) method for

sampling the Boltzmann distribution is:

• Move from s to s’ with probability T(s→s’)= constant
• Accept with move with probability:

A(s→s’)= min [1 , exp (- (E(s’)-E(s))/kBT)]

• Repeat many times

• Given ergodicity, the distribution of s will be the canonical

distribution: π(s) = exp(-E(s)/kBT)/Z

• Convergence is guaranteed but the rate is not!

ceperley random walks 51

How to sample

S_new = S_old + ∆ (sprng - 0.5)

Uniform distribution in
a cube of side “∆”.

∆

Note: It is more efficient to move one particle at a time because
only the energy of that particle comes in and the movement and
acceptance ratio will be larger.

() () ()()() () ()()' exp ' exp 'i j i j
j i

A s s V s V s v r r v r rβ β
≠

→ = − − = − − − −

∑

ceperley random walks 52

MONTE CARLO CODE

call initstate(s_old)
E_old = action(s_old)
LOOP{

call sample(s_old,s_new,T_new,1)
E_new = action(s_new)

call sample(s_new,s_old,T_old,0)
A=exp(-E_new+E_old) T_old/T_new
if(A.gt.sprng()) {

s_old=s_new
E_old=E_new
naccept=naccept+1}

call averages(s_old) }

Initialize the state

Sample snew
Trial action
Find prob. of going

backward
Acceptance prob.

Accept the move
Collect statistics

ceperley random walks 53

Overview of MCMC

• Decide how to move from state to state.
• Initialize the state
• Throw away first k states as being out of equilibrium.
• Then collect statistics but be careful about correlations.

Common errors:
1. If you can move from s to s’, the reverse move must also be

possible.
2. Accepted and rejected states count the same!

Exact: no time step error, no ergodic problems in principle but
no dynamics either.

ceperley random walks 54

Always measure acceptance ratio. Adjust to roughly 0.5 by
varying the “step size”

A 20% acceptance ratio actually achieves better diffusion.

ceperley random walks 55

Acceptable range of efficiency.

Variance of energy (local quantity) is not as sensitive to step
size. MC is a robust method!

ceperley random walks 56

Comparison between MC and MD
Which is better?

• MD can compute dynamics. MC has a kinetics but dynamics
is not necessarily physical. MC dynamics is useful for
studying long-term diffusive process.

• MC is simpler: no forces, no time step errors and a direct
simulation of the canonical ensemble.

• In MD you can only work on how to make the
CPUtime/physical time faster by inventing better transition
rules. Ergodicity is less of a problem. MD is sometimes very
effective in highly constrained systems.

• MC is more general, it can handle discrete degrees of
freedom (e. g. spin models, quantum systems), grand
canonical ensemble...

So you need both! The best is to have both in the same code so
you can use MC to warm up the dynamics.

ceperley random walks 57

Optimizing the moves

• Any transition rule is allowed as long as you can go
anywhere in phase space with a finite number of steps.
(ergodic)

• Try to find a T(s ⇒ s’) ≈ π (s’). If you can the acceptance
ratio will be 1.

• We can use the forces to push the walk in the right direction.
Taylor expand about the current point.

V(r)=V(r0)-F(r)(r-ro)
• Set T(s ⇒ s’) ≈ exp[-β(V(r0)- F(r0)(r-ro))]
• Leads to Force-Bias Monte Carlo
• Related to Brownian motion (Smoluchowski Eq.)

ceperley random walks 58

Brownian Dynamics

Consider a big molecule in a solvent. In the high viscosity limit
the “master equation” is:

Enforce detailed balance by rejections! (hybrid method)

2

2

(,) (,) [() (,)]

() () (()) ()

() 0 () 2

R t D R t D F R R t
t

R t R t DF R t t

t t Dh

ρ ρ β ρ

τ τβ η

η η

∂
= ∇ − ∇

∂
+ = + +

= =

2(' ())(') exp
2

R R D F RT R R c
D
β τ
τ

 − −
→ = −

Also the equation for Diffusion Quantum Monte Carlo!

ceperley random walks 59

Problems with estimating errors

• Any good simulation quotes systematic and
statistical errors for anything important.

• The error and mean are simultaneously determined from the
same data. HOW?

• Central limit theorem: the distribution of an average
approaches a normal distribution (if the variance is finite).
One standard deviation means ~2/3 of the time the correct
answer is within σ of the sample average.

• Problem in simulations is that data is correlated in time. It
takes a “correlation” time to be “ergodic”

• We must throw away the initial transient
• Get rid of autocorrelation.
• We need ≥20 independent data points to estimate errors.

ceperley random walks 60

Estimating Errors

• Trace of A(t):

• Equilibration time.

• Histogram of values of A (P(A)).

• Mean of A (a).

• Variance of A (v).

• estimate of the mean: ΣA(t)/N

• estimate of the variance

• Autocorrelation of A (C(t)).

• Correlation time (κ).

• The (estimated) error of the (estimated) mean (σ).

• Efficiency [= 1/(CPU time * error 2)]

ceperley random walks 61

DataSpork

Interactive code to
perform statistical
analysis of data

ceperley random walks 62

Correlated data Uncorrelated data

ceperley random walks 63

Estimating Errors

• Uncorrelated data

• Correlated data

• Blocking method: average together data in blocks longer
than the correlation time until it is uncorrelated.

{ }

() ()
1/ 22

1/ 22

 0
1

(1)

t

t t
t

t
t

t t

a t N

a a a
N

a
error a a a

N N

a a a

δ

δ

< ≤

≈ =

 = − ≈ −

≡ −

∑

∑

() ()
()

1/ 22

1/ 22

0
2

1

(1)

1 2 correlation time

t
t

t

t

a a
error a a a

N N

a a
a

κ

δ δ
κ

δ

∞

=

−
= − ≈

−

= + =

∑

∑

ceperley random walks 64

Proof of variance estimator

() ()
()

()

()

1/ 22

1/ 22

0
2

1 0

'
2

2 2
2 2

' '2 2 2
, ' , ' ' 1

(1)

1 2 correlation time 2 C(t)

(, ') ' =autocorrelation function

1

t
t

t

t

t t

N N N

t t tt t
t t t t t t

a a
error a a a

N N

a a dt
ta

a a
C t t C t t

a

a a
a a a a C C a

N N N N

κ

δ δ
κ

δδ

δ δ
δ

δ δ κδ δ δ

∞∞

=

∞

−
= =−∞

−
= − ≈

−

= + = ≈

≡ = −

− = = ≈ =

∑

∑ ∫

∑ ∑ ∑∑

t

t’

κ

ceperley random walks 65

Statistical thinking is slippery: be careful

• “Shouldn’t the energy settle down to a constant”
– NO. It fluctuates forever. It is the overall mean which

converges.
• “The cumulative energy has converged”.

– BEWARE. Even pathological cases have smooth
cumulative energy curves.

• “Data set A differs from B by 2 error bars. Therefore it must
be different”.
– This is normal in 1 out of 10 cases. If things agree too

well, something is wrong!
• “My procedure is too complicated to compute errors”

– NO. Run your whole code 10 times and compute the
mean and variance from the different runs. If it is
important, you MUST estimate its errors.

	Landscape.pdf
	

