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Monte Carlo and Random Walks

Today we discuss basic Monte Carlo techniques.

• What is Monte Carlo?
– Any computational method which uses random numbers as an 

essential part of the algorithm
– Equivalent to performing integrals by sampling the integrand
– Often a Markov chain, in particular Metropolis MC

• References
– Allen&Tildesley “Computer Simulation of Liquids”
– Frenkel&Smit
– Thijssen, “Computational Physics”
– Kalos&Whitlock, “Monte Carlo Methods” 
– “Numerical Recipes”
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MC is advantageous for high 
dimensional integrals

Consider an integral in the unit hypercube:

By conventional deterministic methods:
• Lay out a grid with L points in each direction with h=1/L

• Number of points is N=LD ∝ CPU time.
HOW DOES ERROR GO WITH CPU TIME and DIMENSIONALITY?
• Error in trapizoidal rule goes as ε=f’’(x) h2.

• The  CPU time ∝ ε-D/2.
• But by sampling we find ε-2. To get another decimal place takes 

100 times longer!

1
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0

... ( ,.... )D DI dx dx f x x= ∫
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Other reasons to do Monte Carlo:
– Conceptually and practically simple.
– Comes with built in error bars.

Many methods of integration have been tried, and will be tried in this 
world of sin and woe. No one pretends that Monte Carlo is perfect 
or all-wise. Indeed, it has been said that Monte Carlo is the worst 
method except all those other methods that have been tried from 
time to time. Churchill 1947

Good Log(error)         Bad

Log(cpuTime)
MC

2D

4D 6D 8D
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Probability Distributions
• P(x)dx= probability of observing a value in (x,x+dx) is a 

probability distribution function (p.d.f.)

• x can be either a continuous or discrete variable.
• Cumulative distribution:

Probability of x<y.
Useful for sampling

• Average or expectation 
• Moments:

– Zeroth moment I0=1
– Mean <x>=I1

– Variance <(x-<x>)2> =I2-(I1)2

( ) 1   ( ) 0dxP x P x= ≥∫

( ) ( )   0 c(y) 1.
y

c y dxP x
−∞

= ≤ ≤∫

( )n n
nI x dxp x x= = ∫

( ) ( ) ( )g x g dxP x g x= = ∫
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Mappings of random variables

Let Px(x)dx be a probability 
distribution

Let y=g(x)  be a new variable

What is  the pdf of y?

Py(y)dy=Px(x)dx

What happens when g is not 
monotonic?

x

y=g(x)

( )( ) x

x

P x
y dg

dx

P y =
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Central Limit Theorem (Gauss)

Sample N values from p(x)dx. (X1, X2, X3,… XN)
Estimate mean from 
What is the pdf of mean?
Solve by fourier transforms.
If you add together two random variables, you multiply together their 

characteristic functions:

Then 

Taylor expand

cumulants
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What happens to the reduced moments?

Hence the n=1 moment remains invariant.
The rest get reduced by higher and higher powers of N.

Given enough averaging almost anything becomes a Gaussian 
distribution.
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Approach to normality
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Conditions on Central Limit Theorem

• We need the first three moments to exist.
– If I0 is not defined⇒not a pdf
– If I1 does not exist ⇒not mathematically well-posed.
– If I2 does not exist ⇒ infinite variance. Important to know 

if variance is finite for Monte Carlo.
• Divergence could happen because of tails of distribution

• Or because of singular points, e.g. at x=0

( )n n
nI x dxp x x= = ∫

2
2 ( )I dxp x x

∞

−∞

= ∫ 3lim ( ) 0x x p x→±∞ →

3
0lim ( )→± →x x p x finite
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Random Number Generation
Also read “Numerical Recipes”.

What is a random number?
– A single number is not random. Only an infinite sequence 

can be described as random.
– Random means the absence of order  (a negative 

property). 
– Can an intelligent gambler make money by betting on 

the next numbers that will turn up?
– All subsequences are equally distributed. This is the 

property that MC uses to do integrals and that you will 
test for in the homework.
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Random numbers on a computer

• Truly random--the result of a physical process such as timing 
clocks, circuit noise, bad memory
– Too slow (we need 1010/sec)
– Too expensive
– Low quality
– Not reproducible

• Pseudo-random. prng (pseudo means fake)
– Deterministic sequence
– But if you don’t know the algorithm they appear to be 

random
• Quasi-random (quasi means almost random)

– “half way” between random and a uniform grid
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Pseudo Random Sequence

S: State and initial seed. 

T: Iteration process, 

F: Mapping from state to integer RN (I ) or real RN (U).
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Cycle length

• rand (1 processor)           ~  100 second
• drand48 (1 processor)     ~  1 year 
• drand48 (100 processor) ~  3 days
• SPRNG LFG (105 procs) ~  10375 years

Assuming 107 RN/sec per processor

•If internal state has M bits, total state space is 2M values.

•If mapping is 1-1, then it will divide up space into a finite of  
cycles.

•Best case is a single cycle of length 2M.

•Entire period of the RNG is exhausted in:

•It is easy to achieve very long cycle length but 32 or 24 bit 
generators are no longer adequate!
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Common PRNG Generators
• Multiplicative Lagged 

Fibonacci 
• Modified Lagged Fibonacci

• Combined Multiple 
Recursive

• 48 bit LCG
• 64 bit LCG
• Prime Modulus LCG

zn = zn-k * zn-l 

zn = zn-k + zn-l 

(modulo 2m )

zn = a*zn-1 + p

(modulo m )

zn = an-1*zn-1 + ...+ 
an-k*zn-k + LCG

vary
initialization

vary a

vary p

vary LCG

ParallelizationRecurrence
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Uniformity

• Output consists of taking N bits from state and making an 
integer in (0,2N-1)  “Ik” 

• One gets a uniform real “Uk” by mulitiplying by 2-N.
• We will discuss how to get other distributions.
• If there is a single cycle, then integers must be uniform in 

the range (0,2N-1) 
• Uniformity of numbers taken 1 at a time is usually easy to 

guarantee.
• But what we need is higher dimensional uniformity
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Sequential RNG Problems

• Correlations       non-uniformity in higher dimensions

Uniform in 1-D but 
non-uniform in 2-D

This is the important property to guarantee:

MC uses numbers many at a time--they need to be uniform.
1 2( ) ( ) ( ) ( )i i i if x g x f x g x+ + =
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LCG Numbers fall in planes.
Good LCG generators have the planes close together.

For a k-bit generator, do not use them more than k/2 
together.
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SPRNG Functions
• int *init_sprng(int streamnum, int nstreams, int seed, int param)
• double sprng(int *stream)
• int isprng(int *stream)
• int print_sprng(int *stream)
• int make_sprng_seed()
• int pack_sprng(int *stream, char **buffer)
• int *unpack_sprng(char *buffer)
• int free_sprng(int *stream)
• int spawn_sprng(int *stream, int nspawned, int ***newstreams)    

•A library of many well tested excellent parallel PRNGs
•Callable from FORTRAN.C, C++, and JAVA
•Ported to popular parallel and serial platforms

SPRNG
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Chi-squared test of randomness
• HW exercise: do test of several generators
• Divide up “cube” into “N” bins.
• Sample many “P” triplets. 
• Number/bin should be n=P/N ±(P/N)1/2

GOOD                                       BAD

N=100

P=1000
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• Chi-squared statistic is

• Where ni is the expected number in bin i.
• The probability of a given chi-squared is Q(x2|N-1)

(N-1) because of “sum rule”.

For more details see “Numerical Recipes”

2( )2 i i

i

N n
n

i
χ −=∑
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Recommendation:
For careful work use several generators!

• For most real-life MC simulations, passing existing statistical 
tests is necessary but not sufficient.

• Random number generators are still a black art.
• Rerun with different generators, since algorithm may be 

sensitive to different RNG correlations.
• Computational effort is not wasted, since results can be 

combined to lower error bars.
• In SPRNG, relinking is sufficient to change RNGs 
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Parallel Simulations

• Parallel Monte Carlo is easy? Or is it?
• Two methods for easy parallel MC:

–– CloningCloning: same serial run, different random numbers.
–– ScanningScanning: different physical parameters (density,…).

• Any parallel method (MPI, ..) can be used.
• Problems:

– Big systems require excessive wall clock time.
– Excessive amounts of output data generated.
– Random number correlation?
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Parallelization of RNGs

• Cycle Parameterization: If PRNG has several cycles, assign 
different cycles to each stream

• Iteration Parameterization: Assign a different iteration 
function to each stream

Set of possible states Each cycle gets a disjoint subset

•Cycle Division: Leapfrog or Partition. Correlation 
problems
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Examples of Parallel MC codes and Problems

• Embarrassingly parallel simulations. Each processor has its 
own simulation. Scanning and cloning. Unlikely to lead to 
problems unless they stay in phase.

• Lots of integrals in parallel (e.g. thousands of Feynman 
diagrams each to an accuracy of 10-6). Problem if cycle 
length is exhausted.

• Particle splitting with new particles forking off new 
processes. Need lots of generators. Problem if generators are 
correlated initially.

• Space-time partitioning. Give each local region a processor 
and a generator. Problem if generators are correlated.
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Sampling Distributions
“Numerical Recipes” on random numbers

How to generate non-uniform probability distributions.

These are used in importance sampling to reduce the variance 
of a Monte Carlo evaluation or to simulate various physical 
processes.

We start by assuming that there is software to generate udrn’s
in the range (0,1).

How do we sample an arbitrary p(x)dx ?

There are lots of tricks.
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Any discrete distribution pk can be sampled by  constructing the 
cumulant.

0 u 1

p a pb pc pd

• Sample 0<u<1.
• Find which region it is in.  i.e. find k:  ck-1<u<ck

• Return label “k”.

• The search operation can be done by bisection in log2(N)   
steps.

• For simple distributions, it might be even easier.
• There is a faster O(1) method, using a precomputed table.

Discrete Distributions

1

k

k k
i

c p
=

=∑



ceperley                  random walks 27

Continuous Distributions
Generalize to a continuous function.
This is the mapping method.

• Construct the cumulant:
• Sample u in (0,1)
• Find x=c-1(u) (Can always perform with a table lookup.)

Some analytic examples:
• P(x)=a e-ax 0<x then     x=-ln(u)/a

• P(x)=(a+1)xa 0<x<1    then   x=u1/(a+1)

Problem occurs if  inverse mapping is difficult.

( ) ( )
y

c y dxp x
−∞

= ∫
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Rejection technique

• Sample x from q(x)dx

• Accept x  with probability c(x), otherwise repeat

What is distribution of accepted x’s? 

p(x)dx= c(x)q(x)dx/normalization
Hence choose

Where  a is set so that 

1/a is the acceptance probability, a is  the efficiency.

If inefficient will use lots of prns/step. 

Do not undersample, or else efficiency will be low.

( )  ( ) / ( )
( ) 1 min( ( ) / ( ))
c x a p x q x
c x a q x p x

=
≤ ⇒ ≤
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Composition method
Combine several random numbers
• Add several udrn’s.

Remember characteristic function
Limit for large k is a Gaussian

Example: add two integers in (1,6)

• Multiply or divide 2 udrns?

• Take maximum of ‘k’ udrns.     
x= max(u1, .., uk)  Prove that   P(x)= k xk-1     
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Normal distribution
• Inverse mapping is a little slow, also of infinite range.
• Trick: generate 2 at a time: r=(x,y)

• Or sample angle using rejection technique:
– Sample (x,y) in square
– Accept if x2+y2 <1
– Normalize to get the correct r.

2
1

/ 2 2

1 2

1 2

( , ) (2 ) exp( ) ( )
2

1( )  with 
2

2ln( ) cos(2 )

2ln( ) sin(2 )

v

rp x y dxdy p r rdrd

p v dv e v r

x u u

y u u

π θ

π

π

−

−

= − =

= =

= −

= −
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Code to sample normal distribution

Normal distribution <x>=x0 and <(x-x0)2>=σ2

1 x=sprng()-0.5
y=sprng()-0.5
r2=x*x+y*y
if (r2>0.25) go to 1
radius= sigma*sqrt (-2*ln(sprng())/r2)
xnormal=x0+x*radius
ynormal=y0+y*radius

•No trig functions, 1 log, 1 sqrt, 1 divide
•Mixes up regularity of random numbers
•Efficiency of angle generation is 4/π.
•Can get 2 ndrn’s each time.
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Multivariate normal distributions
How to sample a correlated Gaussian? (say with D components)
• Assume  we want <xixj> =Tij

• Make Choleski decomposition of T, (take square root).  
(see Numerical Recipes or notes)

SSt = T
• We can assume S is a triangular  matrix 0

• Generate D normally distributed numbers y.
• Transform to correlated random distribution

X=Sy



ceperley                  random walks 33

Bias vs statistical error
• Bias is a systematic error caused by using a quantity with 

fluctuations in a non-linear expression.
• You will get a result systematically too high or low.
• Suppose Z+δZ is the result of a MC evaluation of <Z>.
• But we quote F(Z). Example: F=-kT ln(Z).
• What is the statistical error and bias on F?
• Expand Z in power series about <Z>

( )

( )

( )

2
2

2

2
2

2

1/ 2

1 2

1/ 22 2
/

1( )
2

1( ) ( )            1orde
2

( )

r 

1o( ) ( )  rd   er

dF d FF Z F Z Z Z
dZ dZ

d Fbias F F Z F Z Z
dZ

dFerror F F Z

N

N
F Z Z

dZ

δ δ

δ

δ

= + +

= − =

= − =
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Efficiency of MC
statistical error ~ sqrt(variance/computer time).

DEFINE:

One can either: 
– write faster code, 
– get a faster computer or 
– work on reducing the variance/step.

2

1efficiency=

error  of mean
total computer time

T

T

ζ
υ

ν

=

=
=
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Importance Sampling
Given the integral

How should we sample x to maximize the efficiency? 
Estimator

Transform the integral to:

The variance is:

Optimal sampling:

( )I dxf x= ∫

( ) ( )( )
( ) ( )

p

f x f xI dxp x
p x p x

   
= =   

   
∫

2 2
2( ) ( )

( ) ( )

0 with constraints 
( )

p

f x f xI dx I
p x p x

p x

υ

δυ
δ

 
= − = − 

 

=

∫
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Parameterize as:

Solution: 

Estimator: 

If f(x) is entirely positive or negative, estimator is constant. “zero 
variance principle.”

We can’t sample p*(x), but its form can guide us.
Importance sampling is a general technique: it works in many 

dimensions.

2

2

( )( )
( )

q xp x
dxq x

=
∫

* ( )
( )

( )
f x

p x
dx f x

=
∫

* ( ( ))( ) / ( )
( )

sign f xf x p x
dx f x

=
∫
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Example of important sampling.
2

2
2

2

1/ 2

( )
1

( ) (2 )
x
a

xef x
x

p x a eπ

−

−−

=
+

=Optimize “a”

Mean value is independent of a.          CPU  time is not
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Importance sampling functions Variance integrand

( )
( )

2 1(2 )
22 2

22
( ) ( ) / ( )

1

x
aedxp x f x p x I dxc I

x
ν

− −
∞

−∞
= − = −

+
∫ ∫
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What are allowed values of a?

• Clearly for p(x) to exist: 0<a 
0         .5    .6       1.                   a

• For finite estimator  .5<a

• For finite variance  .25<a

• Obvious value a=0.5

• Optimal value a=0.6.

2 12 1/ 2 2
2

2

( ) (2 )
( ) 1

x
af x adx dx e

p x x
πν

 − − 
 = =

+∫ ∫
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What does infinite 
variance look like?

Spikes

Long tails on the 
distributions



ceperley                  random walks 41

• Basic idea of importance sampling is to sample more in 
regions where function is large.

• Find a convenient approximation to |f(x)|.
• Do not under-sample. That could cause infinite variance.
• Over-sampling results in loss of efficiency but not infinite 

variance.
• Always derive analytically conditions for finite variance.
• To debug: test that estimated value is independent of 

important sampling.

• Sign problem: zero variance is not possible for oscillatory 
integral. “Monte Carlo can add but not subtract.”
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Correlated Sampling
Suppose we want a function of 2 integrals:

Use the same p(x) and random numbers to get both integrals.

What is optimal p(x)?

It is a weighted average of the distributions for F1 and F2.
Consider  G=F1/F2  (like Boltzmann distribution)

1 2( , ) where ( )k kG F F F dx f x= ∫

*
1 2

1 2

( ) ( ) ( )dG dGp x f x f x
dF dF

∝ +

* 1
2

2

( )( ) ( )
( )
f xp x f x G
f x

 
∝ − 

 



ceperley                  random walks 43

Sampling Boltzmann distribution
• Suppose we want to calculate a whole set of averages:

• Optimal sampling is:

• We need to sample this only.  Avoid undersampling.
• The Boltzmann distribution is very highly peaked.

( )* ( ) /

constant
variable

( ) ( )V R kT
k k kp x e O R O−∝ −142431442443

( ) /

( ) /

( ) V R kT
k

k V R kT

dRO R e
O

dRe

−

−
= ∫

∫
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Random Walks

• It is very difficult to sample directly 
a general probability distribution.
If we sample from another 

distribution, the overlap will be 
order exp(-aN) where N is the 
number of variables.

• Markov chains  (random walks) 
allow you sample any distribution 
based on detailed balance and 
transition rules.

• These methods were introduced by 
Metropolis et al in 1953 who 
applied it to a hard sphere liquid.

• One of the most powerful and most 
used algorithms.

Markov 1856-1922
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Markov chain or Random Walk
• Markov chain is a random walk through phase space: 

s1⇒s2 ⇒ s3 ⇒ s4 ⇒…
Here “s” is the state of the system

• The transition probability is: P(sn→sn+1) stochastic matrix

• In a Markov chain, the distribution of sn+1 depends only on sn
(by definition). A drunkard has no memory.

• Let fn(s) be the probability after “n” steps. It evolves 
according to a “master equation.”

• The stationary states are eigenfunctions of P.

( ) ( ) ( )1 ' 'n n
s

f s f s P s s+ = →∑

( ) ( )' ( ')
s

s P s s sπ επ→ =∑
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• Because P is positive, the eigenvalues have ε ≤ 1. An 
equilibrium state must have ε =1.

• How many equilibrium states are there?
• If it is ergodic, then it will converge to a unique stationary 

distribution (only one eigenfunction=1)
• In contrast to MD, ergodicity can be proven
• Conditions:

– One can move everywhere in a finite number of steps 
with non-zero probability. No barriers

– Non-periodic transition rules. (for example hopping on a 
bi-partite lattice)

– Average return time is finite. (no expanding universe) Not 
a problem in a finite system.

• If ergodic, convergence is geometrical and monotonic.

( ) ( ) ( )n
nf s s c sλ λ λ

λ

π ε φ= +∑
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Metropolis algorithm
Three key concepts:

1. Sample by using an ergodic random walk.
2. Determine equilibrium state by using detailed balance

3. Achieve detailed balance by using rejections.

Detailed balance: π (s) P(s → s’) = π (s’)P (s’ → s ).
Rate balance from s to s’.

Put π (s) into the master equation.

• Hence π(s) is an eigenfunction.

• If P(s ⇒s’) is ergodic then π (s)  is the unique steady state 
solution.

( ) ( ) ( ) ( ) ( ) ( )' ' ' ' ' ( ')
s s s

s P s s s P s s s P s s sπ π π π→ = → = → =∑ ∑ ∑
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Rejection Method

( ) ( ' ) ( ')' min 1,
( ') ( )

T s s sA s s
T s s s

π
π

 →
→ =  → 

Metropolis achieves detailed balance by rejecting moves.
Break up transition probability into sampling and acceptance:

The optimal acceptance probability that gives detailed balance 
is:

Note that normalization of π(s) is not needed or used!

( ) ( ) ( )
( )
( )

' ' '

' sampling probability

' acceptance probability

P s s T s s A s s

T s s

A s s

→ = → →

→ =

→ =
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The “Classic” Metropolis method

Metropolis-Rosenbluth -Teller (1953) method for 

sampling the Boltzmann distribution is:

• Move from s to s’ with  probability T(s→s’)= constant
• Accept with move with probability:

A(s→s’)= min [ 1 , exp ( - (E(s’)-E(s))/kBT ) ]

• Repeat many times

• Given ergodicity, the distribution of s will be the canonical 

distribution: π(s) = exp(-E(s)/kBT)/Z

• Convergence is guaranteed but the rate is not!
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How to sample

S_new = S_old + ∆ (sprng - 0.5)

Uniform distribution in 
a cube  of side “∆”.

∆

Note: It is more efficient to move one particle at a time  because 
only the energy of that particle comes in  and the movement  and
acceptance ratio will be larger.

( ) ( ) ( )( )( ) ( ) ( )( )' exp ' exp 'i j i j
j i

A s s V s V s v r r v r rβ β
≠

 
→ = − − = − − − − 

 
∑
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MONTE CARLO CODE

call initstate(s_old) 
E_old = action(s_old)
LOOP{

call  sample(s_old,s_new,T_new,1)
E_new = action(s_new) 

call sample(s_new,s_old,T_old,0) 
A=exp(-E_new+E_old) T_old/T_new 
if(A.gt.sprng()) {

s_old=s_new
E_old=E_new
naccept=naccept+1}

call averages(s_old)           }

Initialize the state

Sample snew
Trial action
Find prob. of going 

backward 
Acceptance prob.

Accept the move
Collect statistics
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Overview of MCMC

• Decide how to move from state to state.
• Initialize the state
• Throw away first k states as being out of equilibrium.
• Then collect statistics but be careful about correlations.

Common errors:
1. If you can move from s to s’, the reverse move must also be 

possible.
2. Accepted and rejected states count the same!

Exact: no time step error, no ergodic problems in principle but 
no dynamics either.
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Always measure acceptance ratio. Adjust to  roughly 0.5 by 
varying the “step size”

A 20% acceptance ratio actually achieves better diffusion.
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Acceptable range of efficiency.

Variance of energy (local quantity) is not as sensitive to step 
size.      MC is a robust method!
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Comparison between MC and MD
Which is better?

• MD can compute dynamics. MC has a kinetics but dynamics 
is not necessarily physical. MC dynamics  is useful for 
studying long-term diffusive process.  

• MC is simpler: no forces, no time step errors and a direct 
simulation of the canonical ensemble.

• In MD you can only work on how to make the 
CPUtime/physical time faster  by inventing better transition 
rules. Ergodicity is less of a problem. MD is sometimes very 
effective in highly constrained systems.

• MC is more general, it can handle discrete degrees of 
freedom (e. g. spin models, quantum systems), grand 
canonical ensemble...

So you need both! The best is to have both in the same code so 
you can use MC to warm up the dynamics. 
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Optimizing the moves

• Any transition rule is allowed as long as you can go 
anywhere in phase space with a finite number of steps. 
(ergodic)

• Try to find a  T(s ⇒ s’) ≈ π (s’). If you can the acceptance 
ratio will be 1.

• We can use the forces to push the walk in the right direction. 
Taylor expand about the current point.

V(r)=V(r0)-F(r)(r-ro)
• Set T(s ⇒ s’) ≈ exp[ -β(V(r0)- F(r0)(r-ro))]
• Leads to Force-Bias Monte Carlo
• Related to Brownian motion (Smoluchowski Eq.)
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Brownian Dynamics

Consider a big molecule in a solvent. In the high viscosity limit 
the “master equation” is:

Enforce detailed balance by rejections! (hybrid method)
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Also the equation for Diffusion Quantum Monte Carlo! 
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Problems with estimating errors

• Any good simulation quotes systematic and 
statistical errors for anything important. 

• The error and mean are simultaneously determined from the  
same data.  HOW?

• Central limit theorem: the distribution of an average 
approaches a normal distribution (if the variance is finite). 
One standard deviation means ~2/3 of the time the correct 
answer is within σ of the sample average. 

• Problem in simulations is that data is correlated in time. It 
takes a “correlation” time to be “ergodic”

• We must throw away the initial transient
• Get rid of autocorrelation.
• We need ≥20 independent data points to estimate errors.
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Estimating Errors

• Trace of A(t): 

• Equilibration time. 

• Histogram of values of A ( P(A) ). 

• Mean of A (a). 

• Variance of A ( v ). 

• estimate of the mean:     ΣA(t)/N

• estimate of the variance

• Autocorrelation of A (C(t)).

• Correlation time (κ ). 

• The (estimated) error of the (estimated) mean (σ ). 

• Efficiency [= 1/(CPU time * error 2)]
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DataSpork

Interactive code to 
perform  statistical 
analysis of data
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Correlated data Uncorrelated data
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Estimating Errors

• Uncorrelated data

• Correlated data

• Blocking method: average together data in blocks longer 
than the correlation time until it is uncorrelated.
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Proof of variance estimator
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Statistical thinking is slippery: be careful

• “Shouldn’t the energy settle down to a constant” 
– NO. It fluctuates forever.  It is the overall mean which 

converges.
• “The cumulative energy has converged”.

– BEWARE. Even pathological cases have smooth 
cumulative energy curves.

• “Data set A differs from B by 2 error bars. Therefore it must 
be different”.  
– This is normal in 1 out of 10 cases. If things agree too 

well, something is wrong!
• “My procedure is too complicated to compute errors”

– NO. Run your whole code 10 times and compute the 
mean and variance from the different runs. If it is 
important, you MUST estimate its errors.
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