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Ceperley Variational Methods 1

The “Variational Method”

The theorem + restrictions
Basis sets
Mcdonald theorem
Upper and lower bounds: variance
How to do the variation.
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The “Variational Theorem”
Assume                    is a trial function where R are the quantum degrees of 

freedom (positions, spin) and a are parameters.

Conditions: matrix elements exist, symmetries and boundary conditions are 
correct.
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Expand trial function in terms of the exact eigenfunctions:

Energy and variance are second order in (1-overlap).
Other properties are first order.
Temple lower bound:
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Linear Basis approach

• Assume trial function is a linear combination of known 
functions: a basis  fn(R).
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Unless we use 1-particle basis, 
integrals are too slow to 
perform.
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Properties of solution to GEP
• For a basis of size m, there exist “m” eigenvalues and 

orthonormal eigenfunctions:

• McDonald’s theorem: the nth eigenvalue in a basis is an 
upper bound to the nth “exact eigenvalue.

• We can always lower all the energies by augumenting
the basis 

• When basis is complete, we get exact answers!
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Symmetry reduces complexity
• If an operator P commutes with H:  [P,H]=0 we can 

reduce complexity by working in a basis with that 
symmetry.
– rotational symmetry use Ylm.
– Translation symmetry: use plane waves.
– Inversion symmetry: even/odd functions

• Matrix elements are non-zero only for states within 
the same “sector”.  

• By reordering we can block diagonalize
• Reduces complexity from M3 to k(M/k)3=M3/k2.
• McDonald’s theorem applies to each sector 

individually.
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The Variational Method
• Approximate the solution to an eigenvalue problem with a  trial 

function
• Upper bound guaranteed.
• In a linear basis, problem reduces to the generalized eigenvalue

problem for a finite-sized matrix.
• Problems:

– What goes in, comes out.
– How do access convergence?
– Have to do the matrix elements
– What is the complexity?

• Eigenvalue problem is M3

• Basis needs to scale exponentially with number of particles.
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First Major QMC Calculation
• PhD thesis of W. McMillan (1964) University of Illinois.
• VMC calculation of ground state of liquid helium 4.
• Applied MC techniques from classical liquid theory.
• Ceperley, Chester and Kalos (1976) generalized to fermions.

•Zero temperature (single state) method

•Can be generalized to finite 
temperature by using “trial” density 
matrix instead of “trial” wavefunction.   
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Notation
• Individual coordinate of a particle  ri

• All 3N coordinates   R= (r1,r2, …. rN)
• R will also depend on “imaginary time”, “time slice” or “Trotter

index”  “t”

• Total potential energy    V(R)

• Kinetic energy 

• Hamiltonian 
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Variational MC
• Variational Principle. Given an appropriate 

trial function:
– Continuous
– Proper symmetry
– Normalizable
– Finite variance

• Quantum chemistry uses a product of single 
particle functions

• With MC we can use any “computable” 
function.

– Sample  R from |ψ|2 using MCMC.
– Take average of local energy:
– Optimize ψ to get the best upper bound  

• Better wavefunction, lower variance! “Zero 
variance” principle. (non-classical) 
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Liquid helium
the prototypic quantum fluid

• Interatomic potential is known more 
accurately than any other atom because 
electronic excitations are so high. 

• A helium atom is an elementary particle. A 
weakly interacting hard sphere.

•Two isotopes: 
• 3He (fermion: antisymmetric trial function, spin 1/2) 
• 4He(boson: symmetric trial function, spin zero)
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– Repulsion at short distances because of overlap of atomic 
cores.

– Attraction at long distance because of the dipole-induced-
dipole force.  Dispersion interaction is 
c6r-6  + c8 r-8 + ….

– He-He interaction is the most accurate. Use all available low 
density data (virial coefficients, quantum chemistry 
calculations, transport coefficients, ….) Good to better than 
0.1K (work of Aziz over last 20 years). 

– Three body interactions are small but not zero.

Helium interaction
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Helium phase diagram

•Because interaction is so weak helium 
does not crystallize at low temperatures. 
Quantum exchange effects are important
•Both isotopes are quantum fluids and 
become superfluids below a critical 
temperature.
•One of the goals of computer 
simulation is to understand these states, 
and see how they differ from classical 
liquids starting from non-relativistic 
Hamiltonian:
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Trial function for helium
• We want finite variance of the local 

energy.
• Whenever 2 atoms get close together 

wavefunction should vanish.
• The pseudopotential u(r) is similar to 

classical potential
• Local energy has the form:

G is the pseudoforce:

If v(r) diverges as εr-n how should u(r) 
diverge?  Assume:

U(r)=αr-m

Gives a cusp condition on u.

( )

2 2

( )

( ) ( ) 2 ( )

( )

iju r

i j

ij ij i
i j i

i i ij

R e

E R v r u r G

G u r

ψ

ψ

λ λ

−

<

<

=

= − ∇ −

= ∇

∏

∑ ∑

∑

( )212  for  2

1
2
1

2

n mr mr n

nm

m

ε λ α

εα
λ

− − −= >

= −

=
2 1 2

2

12 u(r)= 2 '' '

'(0)
2 ( 1)

De r u u
r

eu
D

λ λ

λ

− − − = ∇ + 
 

= −
−



Ceperley Variational Methods 15

Optimization of trial function

• Try to optimize u(r) using reweighting
(correlated sampling)
– Sample R using  P(R)= ψ2(R,a0)
– Now find minima of the analytic function 

Ev(a)
– Or minimize the variance (more stable 

but wavefunctions less accurate).
• Statistical accuracy declines away from a0.
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