

the **abdus salam** international centre for theoretical physics

ICTP 40th Anniversary

SMR 1595 - 2

Joint DEMOCRITOS - ICTP School on CONTINUUM QUANTUM MONTE CARLO METHODS

12 - 23 January 2004

INTRODUCTION TO MONTE CARLO

The "Variational Method"

David M. CEPERLEY

Beckman Institute for Advanced Studies & Technology University of Illinois at Urbana-Champaign - N.C.S.A. II-61801 Urbana, U.S.A.

These are preliminary lecture notes, intended only for distribution to participants.

The "Variational Method"

The theorem + restrictions Basis sets Mcdonald theorem Upper and lower bounds: variance How to do the variation.

The "Variational Theorem"

Assume $\psi(R;a)$ is a trial function where R are the quantum degrees of freedom (positions, spin) and a are parameters.

$$E_{V}(a) = \frac{\langle \psi(a)H\psi(a)\rangle}{\langle \psi(a)\psi(a)\rangle} \ge E_{0} = \text{exact ground state energy}$$

$$\langle \psi(a)H\psi(a)\rangle \equiv \int dR\psi^{*}(R;a)H\psi(R;a)$$

$$E_{V}(a) = E_{0} \Leftrightarrow \psi(R;a) = \phi_{0}(R)$$

$$E_{L}(R;a) \equiv \frac{1}{\psi(R;a)}H\psi(R;a) = \text{"local energy" of trial function}$$

$$E_{V}(a) = \left\langle \left\langle E_{L}(R;a) \right\rangle \right\rangle_{\psi^{2}} \text{ where } \left\langle \left\langle O \right\rangle \right\rangle_{\psi^{2}} \equiv \frac{\langle \psi(a)O\psi(a) \rangle}{\langle \psi(a)\psi(a) \rangle}$$

$$\sigma^{2}(a) \equiv \frac{\langle \psi(a)(H-E_{V}(a))^{2}\psi(a) \rangle}{\langle \psi(a)\psi(a) \rangle} = \left\langle \left\langle \left(E_{L}(R;a) - E_{V}(a)\right)^{2} \right\rangle \right\rangle_{\psi^{2}} = \text{variance of the trial function}$$

$$\frac{dE_{V}(a)}{da} = 2 \left\langle \left\langle \frac{d\ln\psi(R;a)}{da} \left(E_{L}(R;a) - E_{V}(a)\right) \right\rangle \right\rangle = 0$$

Conditions: matrix elements exist, symmetries and boundary conditions are correct.

Expand trial function in terms of the exact eigenfunctions:

$$\psi(R;a) = \sum_{\alpha} \phi_{\alpha}(R) \langle \alpha | \psi(a) \rangle$$

$$E_{V}(a) = \frac{\sum_{\alpha} E_{\alpha} |\langle \alpha | \psi(a) \rangle|^{2}}{\sum_{\alpha} |\langle \alpha | \psi(a) \rangle|^{2}} = \int dE \rho_{a}(E) E$$

$$\rho_{a}(E) = \sum_{\alpha} \delta(E - E_{\alpha}) \frac{|\langle \alpha | \psi(a) \rangle|^{2}}{\langle |\psi(a)|^{2} \rangle} \ge 0 \qquad \int_{-\infty}^{\infty} dE \rho(E) = 1$$

$$E_{0}$$

Energy and variance are second order in (1-overlap). Other properties are first order. Temple lower bound:

$$E_v - \frac{\sigma^2}{E_1 - E_0} \le E_0 \le E_v$$

Linear Basis approach

• Assume trial function is a linear combination of known functions: a basis $f_n(R)$.

$$\psi(R; \mathbf{a}) = \sum_{n=1}^{m} a_n f_n(R)$$

$$E_V(\mathbf{a}) = \frac{\sum_{n,m} \mathbf{a}_n^* \mathbf{a}_m H_{nm}}{\sum_{n,m} \mathbf{a}_n^* \mathbf{a}_m S_{nm}}$$

$$S_{nm} = \langle f_n f_m \rangle = \text{overlap matrix}$$

$$H_{nm} = \langle f_n H f_m \rangle = \text{Hamiltonian matrix } H$$

$$S_{nm} = \delta_{nm} \text{ in an orthonormal basis} \quad S$$

$$\frac{dE}{da} = 2[Ha - E_V Sa]$$

$$Ha_{\lambda} = E_{\lambda} S_{\lambda} \quad \text{generalized eigenvalue problem}$$

Problem that MC solves:

Unless we use 1-particle basis, integrals are too slow to perform.

Properties of solution to GEP

• For a basis of size m, there exist "m" eigenvalues and orthonormal eigenfunctions:

$$\psi_n(R) = \sum_{k=1}^m a_{k,n} f_k(R)$$

$$\left\langle \psi_n \psi_m \right\rangle = a_n^* S_{nm} a_m = \delta_{nm}$$

• McDonald's theorem: the nth eigenvalue in a basis is an upper bound to the nth "exact eigenvalue.

$$\begin{split} E_0 &\leq E_1 \leq E_2 \leq \ldots \leq E_m \\ E_n^{ex} &\leq E_n \end{split}$$

- We can always lower all the energies by augumenting the basis
- When basis is complete, we get exact answers!

E

Symmetry reduces complexity

- If an operator P commutes with H: [P,H]=0 we can reduce complexity by working in a basis with that symmetry.
 - rotational symmetry use Y_{lm} .
 - Translation symmetry: use plane waves.
 - Inversion symmetry: even/odd functions
- Matrix elements are non-zero only for states within the same "sector".
- By reordering we can block diagonalize
- Reduces complexity from M^3 to $k(M/k)^3 = M^3/k^2$.
- McDonald's theorem applies to each sector individually.

l		

The Variational Method

- Approximate the solution to an eigenvalue problem with a trial function
- Upper bound guaranteed.
- In a linear basis, problem reduces to the generalized eigenvalue problem for a finite-sized matrix.
- Problems:
 - What goes in, comes out.
 - How do access convergence?
 - Have to do the matrix elements
 - What is the complexity?
 - Eigenvalue problem is M³
 - Basis needs to scale exponentially with number of particles.

First Major QMC Calculation

- PhD thesis of W. McMillan (1964) University of Illinois.
- VMC calculation of ground state of liquid helium 4.
- Applied MC techniques from classical liquid theory.
- Ceperley, Chester and Kalos (1976) generalized to fermions.

Ground State of Liquid He⁴†

W. L. MCM1LLAN^{*} Department of Physics, University of Illinois, Urbana, Illinois (Received 16 November 1964)

The properties of the ground state of liquid He⁴ are studied using a variational wave function of the form $\prod_{i < j} f(r_{ij})$. The Lennard-Jones 12-6 potential is used with parameters determined from the gas data by deBoer and Michiels. The configuration space integrals are performed by a Monte Carlo technique for 32 and 108 atoms in a cube with periodic boundary conditions. With $f(r) = \exp[-(2.6 \text{ Å}/r)^4]$, the ground-state energy is found to be -0.78×10^{-16} ergs/atom, which is 20% above the experimental value. The liquid structure factor and the two-particle correlation function are in reasonably good agreement with the x-ray and neutron scattering experiments.

•Zero temperature (single state) method

•Can be generalized to finite temperature by using "trial" density matrix instead of "trial" wavefunction. Ceperley Variational Methods

Notation

- Individual coordinate of a particle r_i
- All 3N coordinates $R = (r_1, r_2, \dots, r_N)$
- R will also depend on "imaginary time", "time slice" or "Trotter index" "t"
- Total potential energy V(R)
- Kinetic energy $-\lambda \sum_{i}^{N} \nabla_{i}^{2}$ where $\lambda \equiv \frac{\hbar^{2}}{2m}$
 - Hamiltonian $\hat{H} = \hat{T} + \hat{V}$

Variational MC

- Variational Principle. Given an appropriate trial function:
 - Continuous
 - Proper symmetry
 - Normalizable
 - Finite variance
- Quantum chemistry uses a product of single particle functions
- With MC we can use any "computable" function.
 - Sample R from $|\psi|^2$ using MCMC.
 - Take average of local energy:
 - Optimize ψ to get the best upper bound
- Better wavefunction, lower variance! "Zero variance" principle. (non-classical)

$$E_{V} = \frac{\int dR \langle \psi | H | \psi \rangle}{\int dR \langle \psi \psi \rangle} \ge E_{0}$$

$$\sigma^{2} = \frac{\int dR \langle \psi | H^{2} | \psi \rangle}{\int dR \langle \psi \psi \rangle} - E_{V}^{2}$$

$$E_L(R) = \Re \Big[\psi^{-1}(R) H \psi(R) \Big]$$
$$E_V = \left\langle E_L(R) \right\rangle_{\psi^2} \ge E_0$$

Liquid helium the prototypic quantum fluid

- Interatomic potential is known more accurately than any other atom because electronic excitations are so high.
- A helium atom is an elementary particle. A weakly interacting hard sphere.

FIG. 1. The semiempirical pair potential between two helium atoms: solid line, Aziz *et al.* (1992); dashed line, Lennard-Jones 6-12 potential with $\epsilon = 10.22$ K and $\sigma = 2.556$ Å.

- •Two isotopes:
 - ³He (fermion: antisymmetric trial function, spin 1/2)
 - ⁴He(boson: symmetric trial function, spin zero)

Helium interaction

- Repulsion at short distances because of overlap of atomic cores.
- Attraction at long distance because of the dipole-induceddipole force. Dispersion interaction is $c_6r^{-6} + c_8r^{-8} + \dots$
- He-He interaction is the most accurate. Use all available low density data (virial coefficients, quantum chemistry calculations, transport coefficients,) Good to better than 0.1K (work of Aziz over last 20 years).
- Three body interactions are small but not zero.

Helium phase diagram

- •Because interaction is so weak helium does not crystallize at low temperatures. Quantum exchange effects are important
- •Both isotopes are quantum fluids and become superfluids below a critical temperature.
- •One of the goals of computer simulation is to understand these states, and see how they differ from classical liquids starting from non-relativistic Hamiltonian:

FIG. 2. The phase diagram of 4 He.

Trial function for helium

- We want finite variance of the local energy.
- Whenever 2 atoms get close together wavefunction should vanish.
- The pseudopotential u(r) is similar to classical potential
- Local energy has the form: G is the pseudoforce:
- If v(r) diverges as εr⁻ⁿ how should u(r) diverge? Assume: U(r)=αr^{-m}

Gives a cusp condition on u.

$$-e^{2}r^{-1} = 2\lambda\nabla^{2}u(r) = 2\lambda\left(u'' + \frac{D-1}{r}u'\right)$$
$$u'(0) = -\frac{e^{2}}{2\lambda(D-1)}$$

$$\psi(R) = \prod_{i < j} e^{-u(r_{ij})}$$
$$E_{\psi}(R) = \sum_{i < j} v(r_{ij}) - 2\lambda \nabla^2 u(r_{ij}) - \lambda \sum_i G_i^2$$
$$G_i = \sum \nabla_i u(r_{ij})$$

$$\varepsilon r^{-n} = 2\lambda \left(\alpha m r^{-m-1}\right)^2 \text{ for } n > 2$$
$$m = \frac{n}{2} - 1$$
$$\alpha = \frac{1}{m} \sqrt{\frac{\varepsilon}{2\lambda}}$$

Optimization of trial function

- Try to optimize u(r) using <u>reweighting</u> (correlated sampling)
 - Sample R using $P(R) = \psi^2(R, a_0)$
 - Now find minima of the analytic function $E_v(a)$
 - Or minimize the variance (more stable but wavefunctions less accurate).
- Statistical accuracy declines away from a_0 .

$$E_{V}(a) = \frac{\int \psi(a) H\psi(a)}{\int |\psi(a)|^{2}}$$
$$= \frac{\sum_{k} w(R_{i}, a) E(R_{i}, a)}{\sum_{k} w(R_{i}, a)}$$
$$w(R_{i}, a) = \frac{\left|\psi(R, a)\right|^{2}}{P(R)}$$
$$E(R, a) = \psi^{-1}(R, a) H\psi(R, a)$$
$$N_{eff} = \frac{\left[\sum_{i} w_{i}\right]^{2}}{\sum_{i} w_{i}^{2}}$$