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Outline

1) Introduction to auxiliary-field (AF) methods

• What is the relation with diffusion Monte Carlo? Why are they useful?

• Toy problem to set up “the language”

• Standard AF QMC and sign problem

2) Branching random walks in Slater determinant space

• Connection with DMC

• Bosons?

3) Sign problem for model Hamiltonians and how to control it

4) Phase problem for realistic Hamiltonians and how to control it

5) Finite-temperature formulation

6) Illustrative results



Overview of QMC methods

QMC methods loosely divide into two catagories according to primary applications:

Continuum Lattice

Applications • electronic structure

• quantum chemistry

• 3He

• few-body nuclei

• correlated electron models

• nuclear shell model

• quantum field theory

Ground-state:

Algorithm Diffusion MC auxiliary-field/projector QMC ← (1)

Description - random walks

- 1st quantized form

- in configuration space

- auxiliary-fields

- 2nd quantized form

Sign problem fixed-node approximation constrained path MC ← (2) + (3)



Overview of QMC methods

QMC methods loosely divide into two catagories according to primary applications:

Continuum Lattice

Applications • electronic structure

• quantum chemistry

• 3He

• few-body nuclei

• correlated electron models

• nuclear shell model

• quantum field theory

Finite-temperature:

Algorithm Path-Integral MC QMC/BSS ← (1)

Description - Mapping to classical

ring-polymer system.

- related to above

- grand canonical ensemble

Sign problem restricted path appr. “new” finite-T method ← (5)

• Cross-fertilization: e.g., GFMC ⇒ lattice models (Ceperley, Sorella, ....)

• The reverse: auxiliary-field ⇒ continuum (realistic systems) has appealing features

but had phase problem ← a new method now makes this practical (2) + (4)



Standard ground-state QMC methods

To project ground state |Ψ0〉 of many-body Hamiltonian Ĥ,

|Ψ(n+1)〉 = e−τĤ |Ψ(n)〉
n→∞
−−−−−→ |Ψ0〉

τ : small positive cnst |Ψ(0)〉: arbitrary

Difference in methods:

different ways of realizing above process stochastically 1/sqrt scaling of MC

• Diffusion Monte Carlo (DMC)

• Auxiliary-field methods



Diffusion Monte Carlo (DMC)

Summary

• Ψ0(R) =< R|Ψ0〉 obtained by random walks in electronic configuration space

|R〉 = |r1, r2, · · · , rM 〉

• Has been applied to atoms, molecules, clusters, solids, etc

• Is the more mature and more established method for continuum systems

Issues

• Reducing systematic errors — we would like the calculation to find the right answer

even when we can’t be as sure about the quality of the trial w.f.

– Fermion sign problem:

fixed-node approximation depends on trial w.f.

– Technical problem with treating core electrons:

locality approximation — used to deal with non-local pseudo-potentials — depends

on overall quality of trial w.f. (not just the node)

• Calculations of off-diagonal observables and correlation functions

• Efficiency: human (e.g., trial w.f. optimization) and machine



Auxiliary-field quantum Monte Carlo (AF QMC)

Why study it?

• It is a different QMC method, applied to many “lattice” problems, with interesting

and useful connections to DMC/PIMC

• It is developing into a method for continuum systems also, complementary to DMC.

Early results show much promise in addressing some of the issues of DMC.

What is the basic idea?

• For any given single-particle basis, the Hamiltonian of a many-body system with

2-body interactions can be written as

Ĥ = Ĥ1 + Ĥ2 =
∑

i,j

Tijc
†
i cj +

∑

i,j,k,l

Vijlkc
†
i c
†
jckcl

where i, j, k, l run through the basis, and all matrix elements are known.

• The QMC method calculates the ground-state (or finite-T ) properties of Ĥ.

• The “walker” in this case is a Slater determinant formed by single-particle orbitals,

i.e., it looks like the occupied manifold of a DFT or HF solution, except the orbitals

undergo random walks.



AF QMC — introduction

A toy model of trapped alkali fermion atoms:

• 3 fermions in a box, two with ↑ spin and one with ↓ spin;

contact interaction V (R) = asδ(ra − rc) + asδ(rb − rc) (no s-wave bt. a & b)

introduce lattice

3 41 2

ba c particle label

site label

• Use a crude lattice basis with i = 1, 2, 3, 4 sites (circles). In second quantized form:

H = K + V = −t
∑

〈ij〉σ

(c†iσcjσ + c
†
jσciσ) + U

∑

i

ni↑ni↓

↖ near-neighbor

• Parameters: t; U ∝ as



A toy problem

Hubbard model of trapped atoms:

3 41 2 site label

a particle labelc b

• What is the ground state when U = 0, i.e., without interaction?

– Diagonalize single-particle Hamiltonian directly



A toy problem

Hubbard model of trapped atoms:

3 41 2 site label

a particle labelc b

• What is the ground state when U = 0, i.e., without interaction?

– Diagonalize single-particle Hamiltonian directly

– Alternatively, use power method to obtain |Ψ0〉

e
−τH :

(

4× 4

)

⊗
(

4× 4

)

≡ BK operate on any |Ψ(0)〉 repeatedly ⇒ |Ψ0〉

Theorem: For any v̂ =
∑

ij vijc
†
i cj ,

ev̂|φ〉 = |φ′〉 where Φ′ ≡ evΦ in matrix form

∗ Note re-orthogonalizing the orbitals prevents fermions from collapsing to the

bosonic state — eliminates DMC sign problem for non-interacting systems



AF QMC — introduction

Properties of Slater determinants:

3 41 2 site label

a particle labelc b

|φ〉 : Φ =
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← matrix rep.

• What is the probability to find the electron configuration shown in the picture?

That is, how to calculate 〈R|φ〉 ?

• How to calculate E0 = 〈φ|H|φ〉 from the wave function?

• How to calculate the density matrix? The spin-spin correlation function?



AF QMC — introduction

Properties of Slater determinants:

3 41 2 site label

a particle labelc b

|φ〉 : Φ =
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← matrix rep.

• What is the probability to find the electron configuration shown in the picture?

That is, how to calculate 〈R|φ〉 ?

• How to calculate E0 = 〈φ|H|φ〉 from the wave function?

• How to calculate the density matrix? The spin-spin correlation function?

A: Simple matrix manipulations (See Lab exercises)



A toy problem

Hubbard model of trapped atoms:

3 41 2 site label

a particle labelc b

• What is the ground state when U = 0, i.e., without interaction?

– Diagonalize single-particle Hamiltonian directly

– Alternatively, use power method to obtain |Ψ0〉

e
−τH :

(

4× 4

)

⊗
(

4× 4

)

≡ BK operate on any |Ψ(0)〉 repeatedly ⇒ |Ψ0〉

• What is the ground state, now U 6= 0, i.e., with interaction?

– Diagonalizing many-body H involves a matrix whose size grows rapidly with N

and M↑ or M↓ (Lanczos method)

– Can we still write e−τH in one-body form?

Yes — Hubbard-Stratonivich transformation



AF QMC — introduction

Hubbard-Stratonivich transformation

• Interacting two-body problem can be turned into a linear combination of

non-interacting probems living in fluctuating external fields (‘completion of square’):

eτv̂
2 Hubbard−Strotonivich transformation
−−−−−−−−−−−−−−−−−−−−−−−−→

∫

e−σ
2/2 eσ

√
τ v̂ dσ σ : auxiliary field

+ v̂ =
∑

vijc
†
i cj : one-body operator

• Illustration of HS transformation — Hubbard-like interaction:

e−τUni↑ni↓ → eτU(ni↑−ni↓)2/2 = factor×

∫

e−
1
2x

2

e
√
τU x (ni↑−ni↓) dx

e−τUni↑ni↓ → e−τU(ni↑+ni↓)
2/2 = factor×

∫

e−
1
2x

2

e
√
τU i x (ni↑+ni↓) dx

Or trick by Hirsch:

e−τUni↑ni↓ = e−τU(ni↑+ni↓)/2 ·
∑

x=±1
1

2
eγ x (ni↑−ni↓) cosh γ = eτU/2



AF QMC — introduction

Back to toy problem

Hubbard-Stratonivich transformation

e−τUni↑ni↓ = factor×
∑

x=±1
1

2
eγ xni↑ e−γ xni↓ cosh γ = eτU/2

e
−τH =

∫

dx p(x)













eγx1 0 0 0

0 eγx2 0 0

0 0 eγx3 0

0 0 0 eγx4













·BK,↑

⊗













e−γx1 0 0 0

0 e−γx2 0 0

0 0 e−γx3 0

0 0 0 e−γx4













·BK,↓

B(x) 1-particle propagator

e−τH =
∫

p(x)B(x)dx x ≡ {x1, x2, x3, x4}

U 6= 0 is the same as U = 0, except integral/sum over x — Monte Carlo!



Auxiliary-field quantum Monte Carlo (AF QMC)

Standard ground-state AF QMC Sugiyama & Koonin ’86

〈Ô〉 =
〈Ψ(0)|e−τH · · · e−τH Ô e−τH · · · e−τH |Ψ(0)〉

〈Ψ(0)|e−τH · · · e−τH e−τH · · · e−τH |Ψ(0)〉

⇓ e−τH =
∫

p(x)B(x)dx

∫

p(x(1)) · · · p(x(2L)) 〈Ψ(0)|B(x(2L)) · · ·B(x(L+1)) Ô B(x(L)) · · ·B(x(1))|Ψ(0)〉 dx(1) · · · dx(2L)
∫

p(x(1)) · · · p(x(2L)) 〈Ψ(0)|B(x(2L)) · · ·B(x(L+1)) B(x(L)) · · ·B(x(1))|Ψ(0)〉 dx(1) · · · dx(2L)

Choose |Ψ(0)〉 as a Slater determinant B(x)|φ〉 = |φ′〉

Many-dim integral can be done by Monte Carlo:

∫

OGr(X)p(X)det[X]dX
∫

p(X)det[X]dX
X ≡ {x(l)}

Applications mostly to “simple models”:

• Hubbard model, impurity models in condensed matter

• nuclear shell model

• lattice QCD



Auxiliary-field quantum Monte Carlo (AF QMC)

Sign problem in standard AF QMC:
det[]

X

As system size grows, average sign of det[ ] → 0 exponentially.

⇒ exponential scaling

• Sign problem is often most severe where the physics is most interesting, for example,

in 2-D Hubbard model when number of electrons ∼ 85% number of lattice sites,

where it is thought to model the CuO planes of high-Tc cuprates

• In fact, a phase (not just sign) problem appears for general 2-body interactions.

Random walks in Slater determinant space:

Zhang, Carlson, Gubernatis, ’97 ; Zhang & Krakauer, ’03

• Reformulate ground-state projection as random walks in Slater determinant space

• Necessary to control the sign/phase problem ← subtlety of projection in AF space



Random walks in Slater determinant space: preliminaries

• In general, we can choose any single-particle basis {|χi〉}, with i = 1, 2, · · · , N

• A single-particle orbital (labeled by m) is given by ϕ̂m
†|0〉 ≡

∑N
i=1 ϕi,m|χi〉

• If we have M identical fermions (M ≤ N), a Slater determinant |φ〉 is given by:

|φ〉 ≡ ϕ̂1
†ϕ̂2

† · · · ϕ̂M
†|0〉

• |φ〉 is represented by an N ×M matrix:

Φ ≡

















ϕ1,1 ϕ1,2 · · · ϕ1,M

ϕ2,1 ϕ2,2 · · · ϕ2,M
...

...
...

ϕN,1 ϕN,2 · · · ϕN,M

















• E.g., 〈φ|φ′〉 = det(ΦTΦ′); Gij ≡
〈φ|c†

i
cj |φ′〉

〈φ|φ′〉 = [Φ′(ΦTΦ′)−1ΦT]ij ;

any 2-body correlation ← {Gij}



Random walks in Slater determinant space: preliminaries II

For example in electronic systems:

H = K + Ve−I + Ve−e + VI−I

In plane-wave one-particle basis |k〉 ≡ 1√
Ω
eiGk·r :

Ve−I =
∑

i6=j
Vlocal(Gi −Gj)c

†
i cj +

∑

i,j

VNL(Gi,Gj)c
†
i cj

Ve−e =
1

2Ω

∑

i,j,Q6=0

4π

|Q|2
c†Gi+Qc

†
Gj−QcGj

cGi

→ −
1

2Ω

∑

Q6=0

4π

|Q|2
ρ†(Q) ρ(Q)

→
∑

Q6=0

√

4π

|Q|2

(

[ ρ†(Q) + ρ(Q) ]2 − [ ρ†(Q)− ρ(Q) ]2
)

↖
∑

i c
†
Gi+QcGi

i v̂ v̂′



Random walks in Slater determinant space

For any given one-particle basis: Ĥ = H1+H2 =
∑

i,j

Tijc
†
i cj−

∑

v̂2

v̂ =
∑

vijc
†
i cj or i

∑

vijc
†
i cj|Ψ(n+1)〉 = e−τH |Ψ(n)〉 → |Ψ0〉

Write e−τĤ in non-interacting form: e−τĤ ∝ e−τĤ1

∏

∫

e−σ
2/2e σ

√
τ v̂dσ

For any 1-body ĥ : eĥ|φ〉 −−→ |φ′〉

Random walk in Slater determinant space:

|Ψ(0)〉
e−τĤ

−−−−−−−−−−−−−−−−−−→ |Ψ(1)〉 .... → |Ψ0〉

|φ(0)〉

sample σ from e−
σ2

2 ;

apply 1-body propag.’s
−−−−−−−−−−−−−−−−→ |φ(1)(σ)〉 → |φ〉

. . .

. . .

. . .

. . .
|Ψ0〉

.
=
∑

φ |φ〉



Connection with Diffusion Monte Carlo

Many-dim. electronic configuration space: R = { r1, r2, ...., rM }

Ĥ =
M
∑

i

p̂2i
2m

+ V̂ |Ψ(n+1)〉 = e−τĤ |Ψ(n)〉 → |Ψ0〉

e−τ p̂
2
i /2m =

∫

e−σ
2/2 eip̂i·(γ σ) dσ γ =

√

τ
m

e−τĤ =

∫

e−~σ
2/2 eiP̂ ·(γ ~σ) d~σ e−τV̂ ~σ: 3M -dim vector

translation op.

Random walk realization of · · · : basic idea (importance sampling can also be derived)

|Ψ(0)〉
e−τH
−−−−−−−−−−−−−−−−−−−−−−→ |Ψ(1)〉 .... → |Ψ0〉

|R(0)〉
multiply weight by e−τV (R(0))

sample ~σ from Gaussian;

translate R(0) by (−γ~σ)

−−−−−−−−−−−−−−−−−−−→ |R(1)〉 → |R〉 diffusion + branching

. . .

. . .

. . .



New QMC method: Random walks in Slater determinant space

Standard DMC

|R〉 = |r1, r2, · · · , rM 〉

|Ψ0〉 =
∑

RΨ0(R)|R〉

⇓

|Ψ0〉
.
=
∑

MC |R〉

Slater determinant RW

|φ〉 = |ψ1, ψ2, · · · , ψM 〉
∑

k ck,i|χk〉 basis

|Ψ0〉 =
∑

φΨφ|φ〉

⇓

|Ψ0〉
.
=
∑

MC |φ〉

• The formalism is appealing — each random walker is a full Slater determinant

• Close formal relation to mean-field approaches. The QMC thus shares the same

machinery as DFT or Hartree-Fock, using any one-particle basis

– Second-quantization, antisymmetry automatically imposed

– The single-particle problem ( Ĥ1 ) is solved exactly, with no statistical error

– Correlation effects are obtained by building stochastic ensembles of

independent-particle solutions

• Core-electron problem: non-local pseudopotential can be implemented

straightforwardly — locality approximation eliminated

• Convenient calculation of observables (including off-diagonal) and correlation

functions, e.g., 〈φ′|c†i c
†
jckcl|φ〉

• But ....



Sign problem for model Hamiltonians

Sign problem (if v̂ is real): |φ〉

n

• e−τĤ leads to paths in determinant space;

paths are “fractal”-like
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Sign problem (if v̂ is real): |φ〉

n

• e−τĤ leads to paths in determinant space;

paths are “fractal”-like



Sign problem for model Hamiltonians

Sign problem (if v̂ is real): 〈Ψ0|φ〉 < 0 N |φ〉

n

• e−τĤ leads to paths in determinant space;

paths are “fractal”-like

• At τ → 0, paths are continuous

• Suppose the exact w.f. |Ψ0〉 is known:

– Define ‘Node’ N : 〈Ψ0|φ〉 = 0



Sign problem for model Hamiltonians

Sign problem (if v̂ is real): N |φ〉

n

• e−τĤ leads to paths in determinant space;

paths are “fractal”-like

• At τ → 0, paths are continuous

• Suppose the exact w.f. |Ψ0〉 is known:

– Define ‘Node’ N : 〈Ψ0|φ〉 = 0

– Consider a path that reaches N for the first time

∗ 〈Ψ0|φ〉 = 0

⇒ 〈Ψ0| e
−n τH |φ〉 = 0

⇒ descendents of |φ〉 collectively contribute 0 to |Ψ0〉

∗ i.e., paths that reach N become noise



Sign problem for model Hamiltonians

Sign problem (if v̂ is real): N |φ〉

n

• e−τĤ leads to paths in determinant space;

paths are “fractal”-like

• At τ → 0, paths are continuous

• Suppose the exact w.f. |Ψ0〉 is known:

– Define ‘Node’ N : 〈Ψ0|φ〉 = 0

– Consider a path that reaches N for the first time

∗ 〈Ψ0|φ〉 = 0

⇒ 〈Ψ0| e
−n τH |φ〉 = 0

⇒ descendents of |φ〉 collectively contribute 0 to |Ψ0〉

∗ i.e., paths that reach N become noise

– Only constrained paths contribute

• As n increases, MC Signal is exponentially small compared to noise

(except for special cases e.g., 1/2-filled Hubbard where symmetry

confines paths to one side)



Sign problem for model Hamiltonians — how to control it

The constrained path approximation: Zhang, Carlson, Gubernatis, ’97

Paths that reach N should be eliminated — require 〈ΨT |φ〉 > 0 for every |φ〉,

with a trial wave function |ΨT 〉

• Eliminates sign decay

• Becomes exact if |ΨT 〉 is exact

• Is similar in spirit to fixed-node in DMC, but in different space — opportunities to do

better ?



Phase problem for realistic Hamiltonians

Phase problem (if v̂ is complex):

“Rotational invariance” in Slater determinant space:

−1 −0.5 0 0.5 1
Re<ΨT|φ>

−1

−0.5

0

0.5

1

Im
<Ψ

T
|φ

>

Problem!

Trajectories of 5 walkers (color) during the random walk,

shown in the complex plane 〈ΨT |φ〉.

• For all but a few special forms of interactions, this problem occurs, severely limiting

the applicability of AF QMC.

• Straightforward generalization of constrained path approximation is not good.



New method: how to control the phase problem

Zhang and Krakauer, ’03

(a) Phaseless formalism

• Seek MC representation of |Ψ0〉 in the form: |Ψ0〉
.
=
∑

φ
|φ〉

〈ΨT |φ〉

i.e., the contribution of each |φ〉 is independent of its phase (if |ψT 〉 is exact)

• This is accomplished by an “importance-sampling” transformation to modify the

propagator:

∫

〈ΨT |φ
′(σ)〉 e−

1
2 σ

2

B(σ) dσ
1

〈ΨT |φ〉
= e−τĤ1

∫

e−σ
2/2 e (σ−σ̄)

√
τ v̂ dσ e−τRe{EL(φ)}

? Force bias: σ̄ ≡ − 〈ΨT |
√
τ v̂|φ〉

〈ΨT |φ〉 ← complex!

? Local energy: EL(φ) ≡
〈ΨT |Ĥ|φ〉
〈ΨT |φ〉

(b) Projection to break “rotational invariance”

• With (a), we can confine the RW to one overall phase (e.g., 0)

• This is accomplished by projecting the RW onto 1D: reducing the weight of a walker

according to its phase change, e.g., by cos(∆θ)



New method for realistic Hamiltonians

Comments

• Approximate — becomes exact if |ΨT 〉 is exact

• No upper bound property — the mixed estimate of the ground-state energy is not

variational.

• In “importance sampling” transformation in (a), it is crucial to use 〈ΨT |φ〉 (complex).

Our conventional notion of probabilistic importance functions (real positive, or

modulus) is not ‘forward-compatible’ with this, and leads to poor results.

• The “two-dimensionality” here seems unique, different from fixed-node or fixed-phase

DMC, or Slater det. RW with a real v̂. This makes step (b) necessary.

• The method reduces to the constrained path Monte Carlo method when v̂ is real.



New method for realistic Hamiltonians

Two-electron jellium:

• rs = 10, N = 19 plane wave basis functions

• Correlation energy (in Ry) vs. projection time:
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New method for realistic Hamiltonians

Two-atom Si fcc cell:

• 8 valence electrons

• Starting from LDA solution:
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nτ

-15

-14.8

-14.6

-14.4

E (Ry)

Phase problem (free projection)

Bulk Si,  2-atom fcc primitive cell
nwlk=10,000, τ=0.05



New method for realistic Hamiltonians

Two-atom Si fcc cell:

• 8 valence electrons

• Starting from LDA solution:

0 1 2 3 4 5
nτ

-15
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-14.6

-14.4

E (Ry)

new method
Phase problem (free projection)

Bulk Si,  2-atom fcc primitive cell
nwlk=10,000, τ=0.05



Finite-T method: preliminaries

Standard finite-T method Blankenbecler, Scalapino, and Sugar, ’81

Partition function for Hamiltonian H is: (β = 1/k T )

Tr(e−βH) = Tr( e−τH e−τH · · · e−τH )

Need:

〈O〉 =
Tr(O e−βH)

Tr(e−βH)
=

∑

{xl} Tr(OB(xL)B(xL−1) · · ·B(x1))
∑

{xl} Tr(B(xL)B(xL−1) · · ·B(x1))

e−τH =
∑

xB(x)

Analytically evaluate trace: Tr(e−βH) =
∑

{xl} det[ I +B(xL)B(xL−1) · · ·B(x1) ]

Sample fields {xl} by Metropolis Monte Carlo to compute sum.

Sign Problem in standard finite-T AF QMC:

• As T lowers, average sign of det[ ] → 0 exponentially.

• We need to control the sign problem — focus on real auxiliary fields, i.e., real v̂



Finite-T method: origin of the sign problem

Imagine introducing path integrals one time slice at a time: Zhang, ’99

Z = Tr( e−τH e
−τH · · · e−τH e

−τH ) P0

=
∑

{x1}

Tr( e−τH e
−τH · · · e−τH B(x1) ) P1({x1}) ← integrand

=
∑

{x1,x2}

Tr( e−τH e
−τH · · · B(x2)B(x1) ) P2({x1,x2})

= · · ·

=
∑

{xl}

det[ I +B(xL)B(xL−1) · · ·B(x1) ] PL({x1,x2, · · · ,xL})

Suppose we know e−τH . Consider Pl:

det[]

 l

lP

L

Z

0

• If Pl = 0, all future paths {xl+1,xl+2, · · · ,xL} collectively contribute 0 in Z.

• A complete path {xl} contributes to Z iff Pl > 0 for all l.



Finite-T method: How to control the sign problem?

Constraint to control the sign problem

Require: P1({x1}) > 0; P2({x1,x2}) > 0; ....; PL({x1,x2, · · · ,xL}) > 0.

• Constraint eliminates all noise paths (’dashed lines’).

• In practice, we use trial BT for e−τH — approximate.

Monte Carlo sampling algorithm to incorporate constraint

If BT is
∑

(mean-field), then Tr → det[ ] in Pl.

Sampling — random walk of L steps:
step

L

2

0

1

L--1

P0

P1/P0

P2/P1

PL−1/PL−2

PL/PL−1

Note:

PL =
PL

PL−1

PL−1

PL−2
· · ·

P2

P1

P1

P0
P0



Test results

Benchmark results on 2-D Hubbard model for finite-T method
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BSS
current
BT

CPMC T=0K  

• Standard method limited to β ∼ 6

• New method shown up to β = 20

• Excellent agreement:

- high T : BSS

- low T : → 0K exact

• BT gives wrong physics

• Method still accurately predicts AF correlation



Test applications

Test applications of new phaseless Slater determinant RW method

• Plane-wave basis

• Kleinman-Bylander (KB) norm-conserving non-local pseudopotentials —

straightforward to implement

• Same set-up as in a DFT calculation (G,G′ < Ecut)

• Trial w.f. |ψT 〉: single Slater determinant from LDA or HF

• Systems:

– Si atom, dimer, and bulk (54 atom fcc supercell, 216 electrons)

– Be, P, S atoms and dimers, TiO molecule

• Collaborators:

Henry Krakauer, Wissam Al-Saidi, Hendra Kwee, Milliga (Cherry) Suewattana



Test applications

Cohesive energy of bulk Si (eV):

16-atom fcc 54-atom fcc ∞

LDA 3.836 4.836 5.086

QMC 3.79(4) 4.51(3) 4.59(3)

experiment 4.62(8)

DMC 4.63(2)†

† Leung et.al. 1999

• QMC results at ∞ are from 54-atom with finite-size corrections:

– independent-particle correction (from LDA)

– Coulomb correction from Kent et.al., 1999

• Computational details:

– Ecut = 12.25Ry; 5,209 plane waves

– 216 electrons for 54-atom fcc supercell

– KB pseudopotential (OPIUM); LDA done using ABINIT



Test applications

Binding energy of Be2 (in eV) at expt bond length 4.63aB :

HF unbound

LDA 0.53

present QMC 0.07(2) LDA trial w.f.

experiment 0.11(1)

DMC (psp) 0.05(3) multi-determinant trial w.f.

(Schautz at al, ’98)

AF QMC (psp) 0.0(2) phase problem

(Baer et al ’00)

• Difficult case because of near 2s and 2p degeneracy; full CI up to 1 billion det.’s !

• Standard DMC does not bind with optimized single Slater-determinant (× Jastrow)

trial wave functions



Test applications

Molecular binding energies:

Si
2

P
2 S

2 TiO PbO
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Relative error compared to experimental value

preliminary

• large supercells

• expt bond length

• s-, p-, and d-electrons

• P2:

– Bad case for DMC

(Grossman, ’02)

– Multi-det trial w.f.:

det’s (66 for P; 269 for P2)

× Jastrow

• S2:

– Hartree-Fock w.f. (−40% error) gives same answer with present QMC method

• TiO: (preliminary)

– Ti (3s3p3d 4s) included as valence electrons; Ecut = 50Ry; 11,197 plane waves

– DMC results shown are with single- and multi-det HF trial w.f.’s

(from Wagner and Mitas, Chem. Phys. Lett, ’03)



What we have not covered

• Ground-state method for bosons (Purwanto & Zhang, ’04 )

– Walker |φ〉 is a permanent in which all bosons occupy identical orbitals,

i.e., Φ is a matrix with 1 column

– Permutation symmetry automatically imposed

– Exact when v̂ is real (e.g., attractive interaction); has phase problem when v̂ is

complex — can be controlled using the phaseless approach for fermions

– Will be subject of the afternoon Lab (trapped boson atoms)

• The back-propagation approach for observables to correct for bias of mixed estimator

— similar to forward walking in DMC, but you can calculate off-diagonal expectations

(see References, Zhang et. al. ’97 , Purwanto ’04 )

• Twisted averaging boundary condition (Ceperley) — straightforward to implement for

any k-point.



Summary and outlook

• Introduction to QMC methods with auxiliary fields

• Constrained path Monte Carlo methods for “lattice models” of correlated systems —

ground-state and finite-temperature

• A new QMC method for realistic materials

– allows choice of any single-particle basis

– reduces the reliance of QMC on trial w.f. (so far)

– Potentially a general method for ab initio calculations of materials which

systematically goes beyond mean-field (e.g., LDA) while using much of its existing

machinery

• Further development — many opportunities for improvement, for example

– different single-particle basis (PAW, Gaussian, ....)

– different HS transformation

– calculation of observables and correlation functions

• Applications — much to do, including to strongly correlated systems

Email: shiwei@physics.wm.edu Supported by US NSF, ONR, and Research Coporation
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