the
abdus salam
international centre for theoretical physics
lcre hoth Anniversaxy CONTINUUM QUANTUM MONTE CARLO METHODS

12-23 January 2004

AUXILIARY FIELD QUANTUM MONTE CARLO

Shiwei ZHANG

College of William and Mary,
Dept. of Physics
Williamsburge, VA, USA

These are preliminary lecture notes, intended only for distribution to participants.

Quantum Monte Carlo methods using auxiliary fields

Shiwei Zhang
College of William and Mary, USA

Outline

1) Introduction to auxiliary-field (AF) methods

- What is the relation with diffusion Monte Carlo? Why are they useful?
- Toy problem to set up "the language"
- Standard AF QMC and sign problem

2) Branching random walks in Slater determinant space

- Connection with DMC
- Bosons?

3) Sign problem for model Hamiltonians and how to control it
4) Phase problem for realistic Hamiltonians and how to control it
5) Finite-temperature formulation
6) Illustrative results

Overview of QMC methods

QMC methods loosely divide into two catagories according to primary applications:

	Continuum	Lattice
Applications	- electronic structure - quantum chemistry - ${ }^{3} \mathrm{He}$ - few-body nuclei	- correlated electron models - nuclear shell model - quantum field theory
	Ground-State:	
Algorithm	Diffusion MC	auxiliary-field/projector $\mathrm{QMC} \leftarrow(\mathbf{1}$
Description	- random walks	- auxiliary-fields
	- 1st quantized form	- 2nd quantized form
	- in configuration space	
Sign problem	fixed-node approximation	constrained path MC $\leftarrow(2)+(3)$

Overview of QMC methods

QMC methods loosely divide into two catagories according to primary applications:

	Continuum	Lattice
Applications	- electronic structure - quantum chemistry - ${ }^{3} \mathrm{He}$ - few-body nuclei	- correlated electron models - nuclear shell model - quantum field theory
	Finite-TEmperature:	
Algorithm	Path-Integral MC	$\mathrm{QMC} / \mathrm{BSS} \leftarrow(1)$
Description	- Mapping to classical ring-polymer system.	- related to above - grand canonical ensemble
Sign problem	restricted path appr.	"new" finite- T method \leftarrow (5)

- Cross-fertilization: e.g., GFMC \Rightarrow lattice models (Ceperley, Sorella,)
- The reverse: auxiliary-field \Rightarrow continuum (realistic systems) has appealing features but had phase problem \leftarrow a new method now makes this practical (2) $+(4)$

Standard ground-state QMC methods

To project ground state $\left|\Psi_{0}\right\rangle$ of many-body Hamiltonian \hat{H},

$$
\left|\Psi^{(n+1)}\right\rangle=e^{-\tau \hat{H}}\left|\Psi^{(n)}\right\rangle \quad \xrightarrow{n \rightarrow \infty} \quad\left|\Psi_{0}\right\rangle
$$

τ : small positive cnst $\quad\left|\Psi^{(0)}\right\rangle$: arbitrary

Difference in methods:
different ways of realizing above process stochastically $1 /$ sqrt scaling of MC

- Diffusion Monte Carlo (DMC)
- Auxiliary-field methods

Diffusion Monte Carlo (DMC)

Summary

- $\Psi_{0}(R)=<R\left|\Psi_{0}\right\rangle$ obtained by random walks in electronic configuration space $|R\rangle=\left|\mathbf{r}_{1}, \mathbf{r}_{2}, \cdots, \mathbf{r}_{M}\right\rangle$
- Has been applied to atoms, molecules, clusters, solids, etc
- Is the more mature and more established method for continuum systems

Issues

- Reducing systematic errors - we would like the calculation to find the right answer even when we can't be as sure about the quality of the trial w.f.
- Fermion sign problem: fixed-node approximation depends on trial w.f.
- Technical problem with treating core electrons: locality approximation - used to deal with non-local pseudo-potentials - depends on overall quality of trial w.f. (not just the node)
- Calculations of off-diagonal observables and correlation functions
- Efficiency: human (e.g., trial w.f. optimization) and machine

Auxiliary-field quantum Monte Carlo (AF QMC)

Why study it?

- It is a different QMC method, applied to many "lattice" problems, with interesting and useful connections to DMC/PIMC
- It is developing into a method for continuum systems also, complementary to DMC. Early results show much promise in addressing some of the issues of DMC.

What is the basic idea?

- For any given single-particle basis, the Hamiltonian of a many-body system with 2-body interactions can be written as

$$
\hat{H}=\hat{H}_{1}+\hat{H}_{2}=\sum_{i, j} T_{i j} c_{i}^{\dagger} c_{j}+\sum_{i, j, k, l} V_{i j l k} c_{i}^{\dagger} c_{j}^{\dagger} c_{k} c_{l}
$$

where i, j, k, l run through the basis, and all matrix elements are known.

- The QMC method calculates the ground-state (or finite-T) properties of \hat{H}.
- The "walker" in this case is a Slater determinant formed by single-particle orbitals, i.e., it looks like the occupied manifold of a DFT or HF solution, except the orbitals undergo random walks.

AF QMC - introduction

A toy model of trapped alkali fermion atoms:

- 3 fermions in a box, two with \uparrow spin and one with \downarrow spin; contact interaction $V(R)=a_{s} \delta\left(r_{\mathrm{a}}-r_{\mathrm{c}}\right)+a_{s} \delta\left(r_{\mathrm{b}}-r_{\mathrm{c}}\right)$

- Use a crude lattice basis with $i=1,2,3,4$ sites (circles). In second quantized form:

$$
H=K+V=-t \sum_{\substack{\langle i j\rangle \sigma\\}}\left(c_{i \sigma}^{\dagger} c_{j \sigma}+c_{j \sigma}^{\dagger} c_{i \sigma}\right)+U \sum_{i} n_{i \uparrow} n_{i \downarrow}
$$

- Parameters: $t ; U \propto a_{s}$

A toy problem

Hubbard model of trapped atoms:

- What is the ground state when $U=0$, i.e., without interaction?
- Diagonalize single-particle Hamiltonian directly

A toy problem

Hubbard model of trapped atoms:

- What is the ground state when $U=0$, i.e., without interaction?
- Diagonalize single-particle Hamiltonian directly
- Alternatively, use power method to obtain $\left|\Psi_{0}\right\rangle$

$$
e^{-\tau H}: \quad(4 \times 4) \otimes(4 \times 4) \equiv B_{K} \text { operate on any }\left|\Psi^{(0)}\right\rangle \text { repeatedly } \quad \Rightarrow\left|\Psi_{0}\right\rangle
$$

$$
\begin{aligned}
& \text { Theorem: For any } \hat{v}=\sum_{i j} v_{i j} c_{i}^{\dagger} c_{j}, \\
& e^{\hat{v}}|\phi\rangle=\left|\phi^{\prime}\right\rangle \text { where } \Phi^{\prime} \equiv e^{v} \Phi \text { in matrix form }
\end{aligned}
$$

* Note re-orthogonalizing the orbitals prevents fermions from collapsing to the bosonic state - eliminates DMC sign problem for non-interacting systems

AF QMC - introduction

Properties of Slater determinants:

$$
|\phi\rangle: \Phi=\left(\begin{array}{cc}
0.37 & -0.60 \\
0.60 & -0.37 \\
0.60 & 0.37 \\
0.37 & 0.60
\end{array}\right) \otimes\left(\begin{array}{c}
0.37 \\
0.60 \\
0.60 \\
0.37
\end{array}\right) \quad \begin{array}{cccc}
1 & 2 & 3 & 4 \text { site label } \\
& & &
\end{array}
$$

- What is the probability to find the electron configuration shown in the picture? That is, how to calculate $\langle R \mid \phi\rangle$?
- How to calculate $E_{0}=\langle\phi| H|\phi\rangle$ from the wave function?
- How to calculate the density matrix? The spin-spin correlation function?

AF QMC - introduction

Properties of Slater determinants:

$$
|\phi\rangle: \Phi=\left(\begin{array}{cc}
0.37 & -0.60 \\
0.60 & -0.37 \\
0.60 & 0.37 \\
0.37 & 0.60
\end{array}\right) \otimes\left(\begin{array}{c}
0.37 \\
0.60 \\
0.60 \\
0.37
\end{array}\right) \quad \begin{array}{cccc}
1 & 2 & 3 & 4 \text { site label } \\
& & &
\end{array}
$$

- What is the probability to find the electron configuration shown in the picture? That is, how to calculate $\langle R \mid \phi\rangle$?
- How to calculate $E_{0}=\langle\phi| H|\phi\rangle$ from the wave function?
- How to calculate the density matrix? The spin-spin correlation function?

A: Simple matrix manipulations (See Lab exercises)

A toy problem

Hubbard model of trapped atoms:

- What is the ground state when $U=0$, i.e., without interaction?
- Diagonalize single-particle Hamiltonian directly
- Alternatively, use power method to obtain $\left|\Psi_{0}\right\rangle$

$$
e^{-\tau H}: \quad(4 \times 4) \otimes(4 \times 4) \equiv B_{K} \text { operate on any }\left|\Psi^{(0)}\right\rangle \text { repeatedly } \quad \Rightarrow\left|\Psi_{0}\right\rangle
$$

- What is the ground state, now $U \neq 0$, i.e., with interaction?
- Diagonalizing many-body H involves a matrix whose size grows rapidly with N and M_{\uparrow} or M_{\downarrow} (Lanczos method)
- Can we still write $e^{-\tau H}$ in one-body form? Yes - Hubbard-Stratonivich transformation

AF QMC - introduction

Hubbard-Stratonivich transformation

- Interacting two-body problem can be turned into a linear combination of non-interacting probems living in fluctuating external fields ('completion of square'):

$$
e^{\tau \hat{v}^{2}} \xrightarrow{\text { Hubbard-Strotonivich transformation }} \int e^{-\sigma^{2} / 2} e^{\sigma \sqrt{\tau} \hat{v}} d \sigma \quad \sigma: \text { auxiliary field }
$$

$$
\hat{v}=\sum v_{i j} c_{i}^{\dagger} c_{j}: \text { one-body operator }
$$

- Illustration of HS transformation - Hubbard-like interaction:

$$
\begin{gathered}
e^{-\tau U n_{i \uparrow} n_{i \downarrow}} \rightarrow e^{\tau U\left(n_{i \uparrow}-n_{i \downarrow}\right)^{2} / 2}=\text { factor } \times \int e^{-\frac{1}{2} x^{2}} e^{\sqrt{\tau U} x\left(n_{i \uparrow}-n_{i \downarrow}\right)} d x \\
e^{-\tau U n_{i \uparrow} n_{i \downarrow}} \rightarrow e^{-\tau U\left(n_{i \uparrow}+n_{i \downarrow}\right)^{2} / 2}=\text { factor } \times \int e^{-\frac{1}{2} x^{2}} e^{\sqrt{\tau U} \mathrm{i} x\left(n_{i \uparrow}+n_{i \downarrow}\right)} d x
\end{gathered}
$$

Or trick by Hirsch:

$$
e^{-\tau U n_{i \uparrow} n_{i \downarrow}}=e^{-\tau U\left(n_{i \uparrow}+n_{i \downarrow}\right) / 2} \cdot \sum x= \pm 1 \frac{1}{2} e^{\gamma x\left(n_{i \uparrow}-n_{i \downarrow}\right)} \quad \cosh \gamma=e^{\tau U / 2}
$$

AF QMC - introduction

Back to toy problem

Hubbard-Stratonivich transformation

$$
e^{-\tau U n_{i \uparrow} n_{i \downarrow}}=\text { factor } \times \sum x= \pm 1 \frac{1}{2} e^{\gamma x n_{i \uparrow}} e^{-\gamma x n_{i \downarrow}} \quad \cosh \gamma=e^{\tau U / 2}
$$

$$
e^{-\tau H}=\int d \mathrm{x} p(\mathrm{x}) \quad\left(\begin{array}{cccc}
e^{\gamma x_{1}} & 0 & 0 & 0 \\
0 & e^{\gamma x_{2}} & 0 & 0 \\
0 & 0 & e^{\gamma x_{3}} & 0 \\
0 & 0 & 0 & e^{\gamma x_{4}}
\end{array}\right) \cdot B_{K, \uparrow}
$$

$$
\otimes\left(\begin{array}{cccc}
e^{-\gamma x_{1}} & 0 & 0 & 0 \\
0 & e^{-\gamma x_{2}} & 0 & 0 \\
0 & 0 & e^{-\gamma x_{3}} & 0 \\
0 & 0 & 0 & e^{-\gamma x_{4}}
\end{array}\right) \cdot B_{K, \downarrow}
$$

$$
B(\mathrm{x}) \quad \text { 1-particle propagator }
$$

$$
e^{-\tau H}=\int p(\mathrm{x}) B(\mathrm{x}) d \mathrm{x}
$$

$$
\mathbf{x} \equiv\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}
$$

$U \neq 0$ is the same as $U=0$, except integral/sum over x - Monte Carlo!

Auxiliary-field quantum Monte Carlo (AF QMC)

Standard ground-state AF QMC Sugiyama \& Koonin ' 86
$\langle\hat{O}\rangle=\frac{\left\langle\Psi^{(0)}\right| e^{-\tau H} \cdots e^{-\tau H} \hat{O} e^{-\tau H} \cdots e^{-\tau H}\left|\Psi^{(0)}\right\rangle}{\left\langle\Psi^{(0)}\right| e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} \cdots e^{-\tau H}\left|\Psi^{(0)}\right\rangle}$
$\Downarrow \quad e^{-\tau H}=\int p(\mathbf{x}) B(\mathbf{x}) d \mathbf{x}$

$$
\frac{\int p\left(\mathrm{x}^{(1)}\right) \cdots p\left(\mathrm{x}^{(2 L)}\right)\left\langle\Psi^{(0)}\right| B\left(\mathrm{x}^{(2 L)}\right) \cdots B\left(\mathrm{x}^{(L+1)}\right) \hat{O} B\left(\mathrm{x}^{(L)}\right) \cdots B\left(\mathrm{x}^{(1)}\right)\left|\Psi^{(0)}\right\rangle d \mathrm{x}^{(1)} \cdots d \mathrm{x}^{(2 L)}}{\int p\left(\mathrm{x}^{(1)}\right) \cdots p\left(\mathrm{x}^{(2 L)}\right)\left\langle\Psi^{(0)}\right| B\left(\mathrm{x}^{(2 L)}\right) \cdots B\left(\mathrm{x}^{(L+1)}\right) B\left(\mathrm{x}^{(L)}\right) \cdots B\left(\mathrm{x}^{(1)}\right)\left|\Psi^{(0)}\right\rangle d \mathrm{x}^{(1)} \cdots d \mathrm{x}^{(2 L)}}
$$

Choose $\left|\Psi^{(0)}\right\rangle$ as a Slater determinant $\quad B(\mathrm{x})|\phi\rangle=\left|\phi^{\prime}\right\rangle$
Many-dim integral can be done by Monte Carlo: $\frac{\int O_{\mathrm{Gr}}(X) p(X) \operatorname{det}[X] d X}{\int p(X) \operatorname{det}[X] d X} \quad X \equiv\left\{\mathbf{x}^{(l)}\right\}$
Applications mostly to "simple models":

- Hubbard model, impurity models in condensed matter
- nuclear shell model
- lattice QCD

Auxiliary-field quantum Monte Carlo (AF QMC)

Sign problem in standard AF QMC:

As system size grows, average sign of $\operatorname{det}[] \rightarrow 0$ exponentially.
\Rightarrow exponential scaling

- Sign problem is often most severe where the physics is most interesting, for example, in 2-D Hubbard model when number of electrons $\sim 85 \%$ number of lattice sites, where it is thought to model the CuO planes of high- T_{c} cuprates
- In fact, a phase (not just sign) problem appears for general 2-body interactions.

Random walks in Slater determinant space:
Zhang, Carlson, Gubernatis, '97; Zhang E3 Krakauer, '03

- Reformulate ground-state projection as random walks in Slater determinant space
- Necessary to control the sign/phase problem \leftarrow subtlety of projection in AF space

Random walks in Slater determinant space: preliminaries

- In general, we can choose any single-particle basis $\left\{\left|\chi_{i}\right\rangle\right\}$, with $i=1,2, \cdots, N$
- A single-particle orbital (labeled by m) is given by $\hat{\varphi}_{m}{ }^{\dagger}|0\rangle \equiv \sum_{i=1}^{N} \varphi_{i, m}\left|\chi_{i}\right\rangle$
- If we have M identical fermions $(M \leq N)$, a Slater determinant $|\phi\rangle$ is given by:

$$
|\phi\rangle \equiv \hat{\varphi}_{1}^{\dagger} \hat{\varphi}_{2}^{\dagger} \cdots \hat{\varphi}_{M}^{\dagger}|0\rangle
$$

- $|\phi\rangle$ is represented by an $N \times M$ matrix:

$$
\Phi \equiv\left(\begin{array}{cccc}
\varphi_{1,1} & \varphi_{1,2} & \cdots & \varphi_{1, M} \\
\varphi_{2,1} & \varphi_{2,2} & \cdots & \varphi_{2, M} \\
\vdots & \vdots & & \vdots \\
\varphi_{N, 1} & \varphi_{N, 2} & \cdots & \varphi_{N, M}
\end{array}\right)
$$

- E.g., $\left\langle\phi \mid \phi^{\prime}\right\rangle=\operatorname{det}\left(\Phi^{\mathrm{T}} \Phi^{\prime}\right) ; \quad G_{i j} \equiv \frac{\langle\phi| c_{c}^{\dagger} c_{j}\left|\phi^{\prime}\right\rangle}{\left\langle\phi \mid \phi^{\prime}\right\rangle}=\left[\Phi^{\prime}\left(\Phi^{\mathrm{T}} \Phi^{\prime}\right)^{-1} \Phi^{\mathrm{T}}\right]_{i j}$; any 2-body correlation $\leftarrow\left\{G_{i j}\right\}$

Random walks in Slater determinant space: preliminaries II

For example in electronic systems:

$$
H=K+V_{\mathrm{e}-\mathrm{I}}+V_{\mathrm{e}-\mathrm{e}}+V_{\mathrm{I}-\mathrm{I}}
$$

In plane-wave one-particle basis $|k\rangle \equiv \frac{1}{\sqrt{\Omega}} e^{i \mathbf{G}_{k} \cdot \mathbf{r}}$:

$$
\left.\left.\begin{array}{rl}
V_{\mathrm{e}-\mathrm{I}} & =\sum_{i \neq j} V_{\mathrm{local}}\left(\mathbf{G}_{i}-\mathbf{G}_{j}\right) c_{i}^{\dagger} c_{j}+\sum_{i, j} V_{\mathrm{NL}}\left(\mathbf{G}_{i}, \mathbf{G}_{j}\right) c_{i}^{\dagger} c_{j} \\
V_{\mathrm{e}-\mathrm{e}} & =\frac{1}{2 \Omega} \sum_{i, j, \mathbf{Q} \neq 0} \frac{4 \pi}{|\mathbf{Q}|^{2}} c_{\mathbf{G}_{i}+\mathbf{Q}}^{\dagger} c_{\mathbf{G}_{j}-\mathbf{Q}^{c} c_{\mathbf{G}_{j}} c_{\mathbf{G}_{i}}} \\
& \rightarrow-\frac{1}{2 \Omega} \sum_{\mathbf{Q} \neq 0} \frac{4 \pi}{|\mathbf{Q}|^{2}} \rho^{\dagger}(\mathbf{Q}) \underline{\rho(\mathbf{Q})} \sqrt[\sum_{i}]{ } c_{\mathbf{G}_{i}+\mathbf{Q}^{c} \mathbf{G}_{\mathbf{G}_{i}}} \\
& \rightarrow \sum_{\mathbf{Q} \neq 0} \sqrt{\frac{4 \pi}{|\mathbf{Q}|^{2}}}\left(\frac{\left[\rho^{\dagger}(\mathbf{Q})+\rho(\mathbf{Q})\right.}{i \hat{v}}\right]^{2}-\left[\frac{\rho^{\dagger}(\mathbf{Q})-\rho(\mathbf{Q})}{\hat{v}^{\prime}}\right.
\end{array}\right]\right)
$$

Random walks in Slater determinant space

For any given one-particle basis: $\quad \hat{H}=H_{1}+H_{2}=\sum_{i, j} T_{i j} c_{i}^{\dagger} c_{j}-\sum \hat{v}^{2}$
$\left|\Psi^{(n+1)}\right\rangle=e^{-\tau H}\left|\Psi^{(n)}\right\rangle \rightarrow\left|\Psi_{0}\right\rangle$

$$
\hat{v}=\sum v_{i j} c_{i}^{\dagger} c_{j} \text { or } \mathbf{i} \sum v_{i j} c_{i}^{\dagger} c_{j}
$$

Write $e^{-\tau \hat{H}}$ in non-interacting form: $\quad e^{-\tau \hat{H}} \propto e^{-\tau \hat{H}_{1}} \prod \int e^{-\sigma^{2} / 2} e^{\sigma \sqrt{\tau} \hat{v}} d \sigma$
For any 1-body $\hat{h}: \quad e^{\hat{h}}|\phi\rangle \longrightarrow\left|\phi^{\prime}\right\rangle$
Random walk in Slater determinant space:

$$
\begin{aligned}
& \left|\Psi^{(0)}\right\rangle \xrightarrow{e^{-\tau \hat{H}}}\left|\Psi^{(1)}\right\rangle \quad \ldots . \quad \rightarrow\left|\Psi_{0}\right\rangle \\
& \text { sample } \sigma \text { from } e^{-\frac{\sigma^{2}}{2}} \text {; } \\
& \left|\phi^{(0)}\right\rangle \xrightarrow{\text { apply 1-body propag.'s }}\left|\phi^{(1)}(\sigma)\right\rangle \quad \rightarrow|\phi\rangle \\
& \cdot \\
& \text { • } \\
& \text { • . } \\
& \text { • • } \\
& \text { • • } \\
& \left|\Psi_{0}\right\rangle \doteq \sum_{\phi}|\phi\rangle
\end{aligned}
$$

Connection with Diffusion Monte Carlo

Many-dim. electronic configuration space: $R=\left\{\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots ., \mathbf{r}_{M}\right\}$

$$
\begin{array}{cl}
\hat{H}=\sum_{i}^{M} \frac{\hat{\mathbf{p}}_{i}^{2}}{2 m}+\hat{V} & \left|\Psi^{(n+1)}\right\rangle=e^{-\tau \hat{H}}\left|\Psi^{(n)}\right\rangle \rightarrow\left|\Psi_{0}\right\rangle \\
e^{-\tau \hat{\mathbf{p}}_{i}^{2} / 2 m}=\int e^{-\sigma^{2} / 2} e^{i \hat{\mathbf{p}}_{i} \cdot(\gamma \sigma)} d \sigma & \gamma=\sqrt{\frac{\tau}{m}} \\
e^{-\tau \hat{H}}=\int e^{-\vec{\sigma}^{2} / 2} e^{i \hat{P} \cdot(\gamma \vec{\sigma})} d \vec{\sigma} e^{-\tau \hat{V}} & \vec{\sigma}: 3 M \text {-dim vector } \\
\text { translation op. } &
\end{array}
$$

Random walk realization of $\quad \cdots$: basic idea (importance sampling can also be derived)

$$
\begin{aligned}
& \left|\Psi^{(0)}\right\rangle \xrightarrow{e^{-\tau H}}\left|\Psi^{(1)}\right\rangle \quad \ldots . \quad \rightarrow\left|\Psi_{0}\right\rangle \\
& \left|R^{(0)}\right\rangle \quad \frac{\text { multiply weight by } e^{-\tau V\left(R^{(0)}\right)}}{\text { sample } \vec{\sigma} \text { from Gaussian; }}\left|R^{(1)}\right\rangle \quad \rightarrow|R\rangle \quad \text { diffusion }+ \text { branching } \\
& \text { translate } R^{(0)} \text { by }(-\gamma \vec{\sigma})
\end{aligned}
$$

New QMC method: Random walks in Slater determinant space

Standard DMC

$$
\begin{aligned}
|R\rangle & =\left|\mathbf{r}_{1}, \mathbf{r}_{2}, \cdots, \mathbf{r}_{M}\right\rangle \\
\left|\Psi_{0}\right\rangle & =\sum_{R} \Psi_{0}(R)|R\rangle \\
& \Downarrow \\
\left|\Psi_{0}\right\rangle & \doteq \sum_{\mathrm{MC}}|R\rangle
\end{aligned}
$$

Slater determinant RW

$$
\begin{aligned}
|\phi\rangle= & \left|\psi_{1}, \psi_{2}, \cdots, \psi_{M}\right\rangle \\
& \sum_{k} c_{k, i}\left|\chi_{k}\right\rangle \quad \text { basis } \\
\left|\Psi_{0}\right\rangle= & \sum_{\phi} \Psi_{\phi}|\phi\rangle \\
& \Downarrow \\
\left|\Psi_{0}\right\rangle & \stackrel{y}{\rightleftharpoons} \sum_{\mathrm{MC}}|\phi\rangle
\end{aligned}
$$

- The formalism is appealing - each random walker is a full Slater determinant
- Close formal relation to mean-field approaches. The QMC thus shares the same machinery as DFT or Hartree-Fock, using any one-particle basis
- Second-quantization, antisymmetry automatically imposed
- The single-particle problem (\hat{H}_{1}) is solved exactly, with no statistical error
- Correlation effects are obtained by building stochastic ensembles of independent-particle solutions
- Core-electron problem: non-local pseudopotential can be implemented straightforwardly - locality approximation eliminated
- Convenient calculation of observables (including off-diagonal) and correlation functions, e.g., $\left\langle\phi^{\prime}\right| c_{i}^{\dagger} c_{j}^{\dagger} c_{k} c_{l}|\phi\rangle$
- But

Sign problem for model Hamiltonians

Sign problem (if \hat{v} is real):

- $e^{-\tau \hat{H}}$ leads to paths in determinant space; paths are "fractal"-like

Sign problem for model Hamiltonian

Sign problem (if \hat{v} is real):

- $e^{-\tau \hat{H}}$ leads to paths in determinant space; paths are "fractal"-like

Sign problem for model Hamiltonians

Sign problem (if \hat{v} is real):

- $e^{-\tau \hat{H}}$ leads to paths in determinant space; paths are "fractal"-like

Sign problem for model Hamiltonians

Sign problem (if \hat{v} is real):

- $e^{-\tau \hat{H}}$ leads to paths in determinant space; paths are "fractal"-like
- At $\tau \rightarrow 0$, paths are continuous
- Suppose the exact w.f. $\left|\Psi_{0}\right\rangle$ is known:
- Define 'Node' $\mathcal{N}:\left\langle\Psi_{0} \mid \phi\right\rangle=0$

Sign problem for model Hamiltonians

Sign problem (if \hat{v} is real):

- $e^{-\tau \hat{H}}$ leads to paths in determinant space; paths are "fractal"-like
- At $\tau \rightarrow 0$, paths are continuous
- Suppose the exact w.f. $\left|\Psi_{0}\right\rangle$ is known:
- Define 'Node' $\mathcal{N}:\left\langle\Psi_{0} \mid \phi\right\rangle=0$
- Consider a path that reaches \mathcal{N} for the first time * $\left\langle\Psi_{0} \mid \phi\right\rangle=0$
$\Rightarrow\left\langle\Psi_{0}\right| e^{-n \tau H}|\phi\rangle=0$
\Rightarrow descendents of $|\phi\rangle$ collectively contribute 0 to $\left|\Psi_{0}\right\rangle$

* i.e., paths that reach \mathcal{N} become noise

Sign problem for model Hamiltonians

Sign problem (if \hat{v} is real):

- $e^{-\tau \hat{H}}$ leads to paths in determinant space; paths are "fractal"-like
- At $\tau \rightarrow 0$, paths are continuous
- Suppose the exact w.f. $\left|\Psi_{0}\right\rangle$ is known:
- Define 'Node' $\mathcal{N}:\left\langle\Psi_{0} \mid \phi\right\rangle=0$
- Consider a path that reaches \mathcal{N} for the first time
* $\left\langle\Psi_{0} \mid \phi\right\rangle=0$
$\Rightarrow\left\langle\Psi_{0}\right| e^{-n \tau H}|\phi\rangle=0$
\Rightarrow descendents of $|\phi\rangle$ collectively contribute 0 to $\left|\Psi_{0}\right\rangle$

* i.e., paths that reach \mathcal{N} become noise
- Only constrained paths contribute
- As n increases, MC Signal is exponentially small compared to noise (except for special cases e.g., $1 / 2$-filled Hubbard where symmetry confines paths to one side)

Sign problem for model Hamiltonians - how to control it

The constrained path approximation: Zhang, Carlson, Gubernatis, '97
Paths that reach \mathcal{N} should be eliminated - require $\left\langle\Psi_{T} \mid \phi\right\rangle>0$ for every $|\phi\rangle$, with a trial wave function $\left|\Psi_{T}\right\rangle$

- Eliminates sign decay
- Becomes exact if $\left|\Psi_{T}\right\rangle$ is exact
- Is similar in spirit to fixed-node in DMC, but in different space - opportunities to do better?

Phase problem for realistic Hamiltonians

Phase problem (if \hat{v} is complex):
"Rotational invariance" in Slater determinant space:

Problem!

Trajectories of 5 walkers (color) during the random walk, shown in the complex plane $\left\langle\Psi_{T} \mid \phi\right\rangle$.

- For all but a few special forms of interactions, this problem occurs, severely limiting the applicability of AF QMC.
- Straightforward generalization of constrained path approximation is not good.

New method: how to control the phase problem

Zhang and Krakauer, '03
(a) Phaseless formalism

- Seek MC representation of $\left|\Psi_{0}\right\rangle$ in the form: $\quad\left|\Psi_{0}\right\rangle \doteq \sum_{\phi} \frac{|\phi\rangle}{\left\langle\Psi_{T} \mid \phi\right\rangle}$
i.e., the contribution of each $|\phi\rangle$ is independent of its phase (if $\left|\psi_{T}\right\rangle$ is exact)
- This is accomplished by an "importance-sampling" transformation to modify the propagator:

$$
\begin{array}{ll}
\int\left\langle\Psi_{T} \mid \phi^{\prime}(\sigma)\right\rangle e^{-\frac{1}{2} \sigma^{2}} B(\sigma) d \sigma \frac{1}{\left\langle\Psi_{T} \mid \phi\right\rangle}=e^{-\tau \hat{H}_{1}} & \int e^{-\sigma^{2} / 2} e^{(\sigma-\bar{\sigma}) \sqrt{\tau} \hat{v}} d \sigma e^{-\tau \operatorname{Re}\left\{E_{L}(\phi)\right\}} \\
& \star \text { Force bias: } \bar{\sigma} \equiv-\frac{\left\langle\Psi_{T}\right| \sqrt{\tau} \hat{v}|\phi\rangle}{\left\langle\Psi_{T} \mid \phi\right\rangle} \\
& \star \text { Local energy: } E_{L}(\phi) \equiv \frac{\left\langle\Psi_{T}\right| \hat{H}|\phi\rangle}{\left\langle\Psi_{T} \mid \phi\right\rangle}
\end{array} \quad \leftarrow \text { complex! } \quad \text {. }
$$

(b) Projection to break "rotational invariance"

- With (a), we can confine the RW to one overall phase (e.g., 0)
- This is accomplished by projecting the RW onto 1D: reducing the weight of a walker according to its phase change, e.g., by $\cos (\Delta \theta)$

New method for realistic Hamiltonians

Comments

- Approximate - becomes exact if $\left|\Psi_{T}\right\rangle$ is exact
- No upper bound property - the mixed estimate of the ground-state energy is not variational.
- In "importance sampling" transformation in (a), it is crucial to use $\left\langle\Psi_{T} \mid \phi\right\rangle$ (complex). Our conventional notion of probabilistic importance functions (real positive, or modulus) is not 'forward-compatible' with this, and leads to poor results.
- The "two-dimensionality" here seems unique, different from fixed-node or fixed-phase DMC, or Slater det. RW with a real \hat{v}. This makes step (b) necessary.
- The method reduces to the constrained path Monte Carlo method when \hat{v} is real.

New method for realistic Hamiltonians

Two-electron jellium:

- $r_{s}=10, N=19$ plane wave basis functions
- Correlation energy (in Ry) vs. projection time:

Periodic box (supercell)

○
electron, $\operatorname{spin} \uparrow$
electron, spin \downarrow

New method for realistic Hamiltonians

Two-electron jellium:

- $r_{s}=10, N=19$ plane wave basis functions
- Correlation energy (in Ry) vs. projection time:

Periodic box (supercell)
\bigcirc
electron, $\operatorname{spin} \uparrow$
electron, spin \downarrow

New method for realistic Hamiltonians

Two-atom Si fcc cell:

- 8 valence electrons
- Starting from LDA solution:

Bulk Si, 2-atom fcc primitive cell

New method for realistic Hamiltonians

Two-atom Si fcc cell:

- 8 valence electrons
- Starting from LDA solution:

Bulk Si, 2-atom fcc primitive cell

Finite- T method: preliminaries

Standard finite-T method Blankenbecler, Scalapino, and Sugar, '81

Partition function for Hamiltonian H is: $\quad(\beta=1 / k T)$

$$
\operatorname{Tr}\left(e^{-\beta H}\right)=\operatorname{Tr}\left(e^{-\tau H} e^{-\tau H} \cdots e^{-\tau H}\right)
$$

Need:

$$
e^{-\tau H}=\sum_{\mathrm{x}} B(\mathrm{x})
$$

$$
\langle O\rangle=\frac{\operatorname{Tr}\left(O e^{-\beta H}\right)}{\operatorname{Tr}\left(e^{-\beta H}\right)}=\frac{\sum_{\left\{\mathrm{x}_{l}\right\}} \operatorname{Tr}\left(O B\left(\mathrm{x}_{L}\right) B\left(\mathrm{x}_{L-1}\right) \cdots B\left(\mathrm{x}_{1}\right)\right)}{\sum_{\left\{\mathrm{x}_{l}\right\}} \operatorname{Tr}\left(B\left(\mathrm{x}_{L}\right) B\left(\mathrm{x}_{L-1}\right) \cdots B\left(\mathrm{x}_{1}\right)\right)}
$$

Analytically evaluate trace: $\quad \operatorname{Tr}\left(e^{-\beta H}\right)=\sum_{\left\{\mathrm{x}_{l}\right\}} \operatorname{det}\left[I+B\left(\mathrm{x}_{L}\right) B\left(\mathrm{x}_{L-1}\right) \cdots B\left(\mathrm{x}_{1}\right)\right]$
Sample fields $\left\{\mathrm{x}_{l}\right\}$ by Metropolis Monte Carlo to compute sum.
Sign Problem in standard finite-T AF QMC:

- As T lowers, average sign of $\operatorname{det}[] \rightarrow 0$ exponentially.
- We need to control the sign problem - focus on real auxiliary fields, i.e., real \hat{v}

Finite- T method: origin of the sign problem
Imagine introducing path integrals one time slice at a time: Zhang, '99

$$
\begin{array}{rlrl}
Z & =\operatorname{Tr}\left(e^{-\tau H} e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H}\right) & P_{0} & \\
& =\sum_{\left\{\mathbf{x}_{1}\right\}} \operatorname{Tr}\left(e^{-\tau H} e^{-\tau H} \cdots e^{-\tau H} B\left(\mathbf{x}_{1}\right)\right) & P_{1}\left(\left\{\mathbf{x}_{1}\right\}\right) & \leftarrow \text { integrand } \\
& =\sum_{\left\{\mathbf{x}_{1}, \mathbf{x}_{\mathbf{2}}\right\}} \operatorname{Tr}\left(e^{-\tau H} e^{-\tau H} \cdots B\left(\mathbf{x}_{2}\right) B\left(\mathbf{x}_{1}\right)\right) & P_{2}\left(\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}\right) \\
& =\cdots & \\
& =\sum_{\left\{\mathbf{x}_{l}\right\}} \operatorname{det}\left[I+B\left(\mathbf{x}_{L}\right) B\left(\mathbf{x}_{L-1}\right) \cdots B\left(\mathbf{x}_{1}\right)\right] & P_{L}\left(\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{L}\right\}\right)
\end{array}
$$

Suppose we know $e^{-\tau H}$. Consider P_{l} :

- If $P_{l}=0$, all future paths $\left\{\mathbf{x}_{l+1}, \mathbf{x}_{l+2}, \cdots, \mathbf{x}_{L}\right\}$ collectively contribute 0 in Z.
- A complete path $\left\{\mathbf{x}_{l}\right\}$ contributes to Z iff $P_{l}>0$ for all l.

Finite- T method: How to control the sign problem?
Constraint to control the sign problem
Require: $P_{1}\left(\left\{\mathbf{x}_{1}\right\}\right)>0 ; P_{2}\left(\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}\right)>0 ; \ldots ; P_{L}\left(\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{L}\right\}\right)>0$.

- Constraint eliminates all noise paths ('dashed lines').
- In practice, we use trial B_{T} for $e^{-\tau H}$ - approximate.

Monte Carlo sampling algorithm to incorporate constraint
If B_{T} is \sum (mean-field), then $\operatorname{Tr} \rightarrow \operatorname{det}[]$ in P_{l}.
Sampling - random walk of L steps:

Test results

Benchmark results on 2-D Hubbard model for finite-T method
Benchmark on $4 x 4$ with $U=4$ at $<n>=0.875$ sign problem severe

- Standard method limited to $\beta \sim 6$
- New method shown up to $\beta=20$
- Excellent agreement:
- high T: BSS

- low $T: \rightarrow 0 \mathrm{~K}$ exact
- B_{T} gives wrong physics
- Method still accurately predicts AF correlation

Test applications

Test applications of new phaseless Slater determinant RW method

- Plane-wave basis
- Kleinman-Bylander (KB) norm-conserving non-local pseudopotentials straightforward to implement
- Same set-up as in a DFT calculation $\left(G, G^{\prime}<E_{\text {cut }}\right)$
- Trial w.f. $\left|\psi_{T}\right\rangle$: single Slater determinant from LDA or HF
- Systems:
- Si atom, dimer, and bulk (54 atom fcc supercell, 216 electrons)
- Be, P, S atoms and dimers, TiO molecule
- Collaborators:

Henry Krakauer, Wissam Al-Saidi, Hendra Kwee, Milliga (Cherry) Suewattana

Test applications

Cohesive energy of bulk $\mathbf{S i}(\mathrm{eV})$:

	16 -atom fcc	54-atom fcc	∞
LDA	3.836	4.836	5.086
QMC	$3.79(4)$	$4.51(3)$	$4.59(3)$
experiment			$4.62(8)$
DMC			$4.63(2)^{\dagger}$
			\dagger Leung et.al. 1999

- QMC results at ∞ are from 54 -atom with finite-size corrections:
- independent-particle correction (from LDA)
- Coulomb correction from Kent et.al., 1999
- Computational details:
- $E_{\text {cut }}=12.25 R \mathrm{Ry}$; 5,209 plane waves
- 216 electrons for 54 -atom fcc supercell
- KB pseudopotential (OPIUM); LDA done using ABINIT

Test applications

Binding energy of Be_{2} (in eV) at expt bond length $4.63 a_{B}$:

HF	unbound	
LDA	0.53	
present QMC	$0.07(2)$	LDA trial w.f.
experiment	$0.11(1)$	
DMC (psp)	$0.05(3)$	multi-determinant trial w.f.
		\quad (Schautz at al, '98)
AF QMC (psp)	$0.0(2)$	phase problem

- Difficult case because of near $2 s$ and $2 p$ degeneracy; full CI up to 1 billion det.'s !
- Standard DMC does not bind with optimized single Slater-determinant (\times Jastrow) trial wave functions

Test applications

Molecular binding energies:

- large supercells
- expt bond length
- s -,p-, and d-electrons
- P_{2} :
- Bad case for DMC (Grossman, '02)
- Multi-det trial w.f.: det's (66 for P; 269 for P_{2}) \times Jastrow

Relative error compared to experimental value

- S_{2} :
- Hartree-Fock w.f. (-40% error) gives same answer with present QMC method
- TiO: (preliminary)
- $\mathrm{Ti}(3 s 3 p 3 d 4 s)$ included as valence electrons; $E_{\text {cut }}=50 \mathrm{Ry} ; 11,197$ plane waves
- DMC results shown are with single- and multi-det HF trial w.f.'s (from Wagner and Mitas, Chem. Phys. Lett, '03)

What we have not covered

- Ground-state method for bosons (Purwanto EB Zhang, '04)
- Walker $|\phi\rangle$ is a permanent in which all bosons occupy identical orbitals, i.e., Φ is a matrix with 1 column
- Permutation symmetry automatically imposed
- Exact when \hat{v} is real (e.g., attractive interaction); has phase problem when \hat{v} is complex - can be controlled using the phaseless approach for fermions
- Will be subject of the afternoon Lab (trapped boson atoms)
- The back-propagation approach for observables to correct for bias of mixed estimator - similar to forward walking in DMC, but you can calculate off-diagonal expectations (see References, Zhang et. al. '97, Purwanto '04)
- Twisted averaging boundary condition (Ceperley) - straightforward to implement for any k -point.

Summary and outlook

- Introduction to QMC methods with auxiliary fields
- Constrained path Monte Carlo methods for "lattice models" of correlated systems -ground-state and finite-temperature
- A new QMC method for realistic materials
- allows choice of any single-particle basis
- reduces the reliance of QMC on trial w.f. (so far)
- Potentially a general method for ab initio calculations of materials which systematically goes beyond mean-field (e.g., LDA) while using much of its existing machinery
- Further development - many opportunities for improvement, for example
- different single-particle basis (PAW, Gaussian,)
- different HS transformation
- calculation of observables and correlation functions
- Applications - much to do, including to strongly correlated systems

References

Lecture notes:

- Shiwei Zhang, "Constrained Path Monte Carlo For Fermions," in "Quantum Monte Carlo Methods in Physics and Chemistry," Ed. M. P. Nightingale and C. J. Umrigar, NATO ASI Series (Kluwer Academic Publishers, 1998).
cond-mat/9909090
- Shiwei Zhang, "Quantum Monte Carlo Methods for Strongly Correlated Electron Systems," in "Theoretical Methods for Strongly Correlated Electrons," Ed. by D. Senechal, A.-M. Tremblay, and C. Bourbonnais, Springer-Verlag (2003)
physics.wm.edu/~ shiwei
- and references therein

References

Papers:

- Papers on DMC from previous lectures.
- Papers for fermion path-integral MC.
- R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Phys. Rev. D 24, 2278 (1981)
- G. Sugiyama and S. E. Koonin, Ann. Phys. 168, 1 (1986)
- S. R. White et. al., Phys. Rev. B 40, 506 (1989)
- D. R. Hamann and S. B. Fahy, Phys. Rev. B 41, 11352 (1990)
- P. L. Silvestrelli and S. Baroni and R. Car, Phys. Rev. Lett. 71, 1148 (1993)
- S. Zhang and J. Carlson and J. E. Gubernatis, Phys. Rev. B 55, 7464 (1997)
- S. Zhang, Phys. Rev. Lett. 83, 2777 (1999)
- S. Zhang and H. Krakauer, Phys. Rev. Lett. 90, 136401 (2003)
- W. Purwanto and S. Zhang, preprint (2004)

