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Nuclear scattering and reactions

Elastic scattering — (n, n), (p, p), (o ,a), ...

Inelastic Scattering -- (n, n'), (p, p’), (o ,a’), ...
Knockout/emission — (n, 2n), (n, np), (p, pn), (p, 2p), ...
Stripping — (d, p), (d, n), (t, d), ...

Pickup — (p, d), (n, d), (d, t), ...

Charge exchange — (n,p), (p,n), (t,’He), (°*He, t), ...

The optical model is particularly important for the study of
the direct (fast) contribution to nuclear reactions.

However, it also plays an important role in the analysis of
the statistical (slow) contribution to nuclear reactions.



The Classical Cross Section

b — the impact parameter

- perpendicular distance

between particle trajectory

and center of target b+db

==\

d db
Assuming no dependence on ¢, d—g =27 b(0) ‘%
Since

dQ =27rsinfdb )

do b(0) db‘
dQ) sinf|do



An example — Hard sphere scattering

We have
b(¢) = Rsin ¢
and
T—0
b{ ¢ = o
so that ‘
> 800 -
d—o-:27rb(6?)‘db‘=7[R sin & ) _
do | 2 £ 00 _
and e '
do  b(O)|db| R’ S A0
dQ sinf|do| 4 = 200t !
For 28U, R ~ 7.5 fm and O30 60 90 120 150 180
0 (deg)

R?/4 ~ 14 fm? = 140 mb.



Another example — a sticky hard sphere

Now, suppose that a fraction of the incoming particles do not scatter, but
instead stick to the target. Let us assume, for instance, that the fraction

0

P(0) =acos¢ =asin5

(which decreases as the collision becomes more grazing) is absorbed by

the target.
S | | 1000 . ——
Decomposition of the differential - i ‘:“uf o ‘
. —= 4o JC
cross section: = 800 - do,, /d6)|
5 _ s |
do, 7R’ . = 600f P " ;
abs — P(0)sin0 = | / %
a0 2 = A
; e g a0r .
o, T . | T
défl == (1-P(0))sind el 3 e W\
2 . .HI-’. | | I | | I -\II.':\:I:‘:.
do, _doy  dog _7R . . %730 60 90 120 150 180
0 (deg)
do do do B

Only do,/d0 1s observed as scattered particles.

In the figure, = 0.4



Integrated cross sections

We can integrate the differential cross sections over angle to obtain

2
o =2 j P(@)sm&d@—%aﬂRz
2
aelz’f j(1—P(9))sin9d9=(1—§ajme2
0

_ _ 2
O-z‘ol — O-abs + O-el _ 7Z-R

The total cross section of zR’ is what we would expect and what we
would obtain in the simple hard sphere case.

In the general case, when there is a value of the impact parameter
b, ..such that (b)=0 for b>b, , we have

max>

= b>

max

0, = 22 [ B(O)| 52| a0 = b
fot . d@ 0



Attenuation and the total cross section

Both elastic scattering and absorption remove particles from the incident
beam. The sum of the two — the total cross section — determines how the
beam is attenuated as it passes through the target.

From the definition of the
cross section, we have in any >

dZ . dl’l

Gtot

- n(Z)ptar dZ nO

or

@
dz

= ~Prar Oor I”l(Z)

‘ n(Z) — n() eXp(_ptarO-totZ)
, For our example of hard scattering
The mverse of the product p,, 5, from U-like spheres, assuming a

deﬁ.nes. i il 7S pefth A @ i density close to that of U, we have
projectile through the target.

A=1/ l=(19*6x1029*177x1030m1j1%012111
_ IOtarGtot 238 .




Yet another example — Coulomb scattering

Conservation of energy:

pr2 n pfm b’ + ZPZTe2 _E

2u 2ur’ r !
H 2H b I

with p_ the radial momentum and

the radial coordinate and E,,, = p’. /2. . Target

When b = 0, the point of Dty 1PESORIEE

closest approach a, 1s given by b’ =a(a-a,)

Ay R Z,Z.e The orbit for repulsive Coulomb

a, “ ! E_ scattering forms a hyperbola

. _ satisfying ¢

For arbitary b, the point of b = atan 2

closest approach a satisfies o .
Substituting in the expression

p., b N Z,7.¢ above, we obtain

2 :E
21 a a

cm

a
b=-—"tan
> ¢



Coulomb scattering — the differential cross section

Combining
0 = 7Z'—2¢ and ) :a—zotan¢

we have b I

The differential cross section is then

0 lE+06: ' — T — |
COS| — E + 2387 ]
do 7,(“0 jz (2) le+05} P ]
40 = ; E_=15MeV i
a0 2/ sin’ (Qj £ 10000¢ -
2 = :
> 2 2 1000k
do | a, 1 £ }0:
= . 100E
aQ 4 ) . {9)
Sln ” i | L | 1 1 I | I | I ]
10030 60 90 120 150 180

8 (deg)



No integrated Coulomb cross section

It 1s obvious from its explicit form,

do _(a) 1
dQ 4 .4(9)
S1n

as well as from the figure, that the
Coulomb angular distribution
diverges at small angles.

This expression may be
integrated formally,

G:2ﬂjd—gsin8dﬁ
) a0
0

) ﬂ[2sin(08/2)j

but 1s also divergent.

le+06g 7— T T 1
; p+ 238U

: E. =15MeV |
10000 y

[a—
T
+
=
LN
RALL
|

1000

do/d€2 (mb/sr)

100¢

030 60 90 120
0 (deg)

: ] ] 1 ] | 1 |
19 ' 150 180

The long range of the Coulomb
potential is the physical reason for the
divergences in the Coulomb angular
distribution and cross section. There is
no value of the impact parameter b, .
for which scattering no longer occurs.



Coulomb scattering from a charge distribution

100—— o
In scattering calculations, the nuclear . 5' —_—_

. . . . = — Point Coulom 1
charge distribution 1s usually taken as : s i s Colliedi|4
that of a uniformly charged sphere of & Al ' ‘
radius R =1.25*A!3 (fm). 2

(2,2,¢ = |
P2 (3—(r/R.)?) r<Re - /
2R DS s |
Ve(r) = , '
Lplre s R 305 25
C
L7
Since the nuclear potential 1s short- le+06¢
ranged, the scattering at large values  le+05}
of the impact parameter 1s Coulomb Z '
. = 10000k
scattering. E f
. S 1000k .
In the example given here, the [ ' j
scattering at angles below about 95° 100 Coulomb M
would be pure point-like Coulomb - ]
% 30 60 90 120 150 180

scattering. 0 (deg)



The Coulomb barrier for charged particles

The Coulomb + nuclear potential forms a barrier to charged particles that
reaches its maximum just outside the nucleus. Outside the barrier
maximum, the potential is very similar to the Coulomb potential of
pointlike particles. At relative energies below the Coulomb barrier or at
distances of closest approach greater than the barrier position, the
scattering is almost purely point-like Coulomb scattering.

We can estimate the barrier ST
position as
R, ~1.254"° +2.0 (fm)
1 S 10
and its height as <
Z,7.¢ 3
Vv, ~Z22TC (MeV), > 5
RB
The barrier height V', for o/ o
protons is shown at the 0 50 100 150 200 250

right.



A (fm)

Waves and particles

We know that the wave-like nature of the scattering particles may be neglected
only if their wavelength is much smaller than the length scale on which the
scattering system varies. For nuclear scattering, the appropriate length scale
would be at most the size of the nucleus and should probably be of the size of
the nuclear surface — about 0.5 to 1.0 fm.

Comparing the wavelength of a nucleon to a typical nuclear radius, taken to be
R =1.254'3 (fm), we find that the wavelike nature must be taken into account
over the entire energy range we will consider — up to about 20 MeV.

10000+
1000

1001

10L

1&06 00001 o001 T O30 100 150 200 250

E_ (MeV) A



The quantum view of scattering

Accelerator

Far from the scattering center,
we take the scattering wave
function to be the sum of a

plane wave and a scattered The differential cross section is the
outgoing spherical wave, squared magnitude of the scattering
. amplitude,
. - e
w(r) = e* + f(0)—. do 2
r — = | f (6?)| :
dQ)

when r— oo, (k2 =2uE_ /hz)



Back to the basics

We defined the differential cross section as

Jo — particle intensity entering detector of solid angle Q2 n(0)dQ

~ (incident intensity/area) * (no. of target particles in beam) (1, / A)(p,tA)

How did we relate this with the asymptotic form of the wave function

ikr
y(F)= e+ f0)—.  oobtain 27| r@) 2
dQ

r

* First, we assume that we have but one target nucleus, p, (4 =1.

* Next, we note that n,/4 is proportional to the plane wave current density,

oo ‘ hk .
nO/A:f(WinVWin _(Vl//in)l//in):_zv Since Win :elk :
2ip M
* Finally, we write the particle intensity entering the detector in terms of the

current density of scattered particles,

n(r.0)dQ=——(y0.y, ~(0.37. v, ) (A ———>v| £ O] d

2iu



The partial-wave expansion

Neglecting spin for the moment, we use conservation of angular momentum
to expand the wave function in partial waves of the orbital angular

momentum, e
w(r,0) =) u,(r)F(cosb).
[=0
The plane wave may be expanded as

=Y (21 +1)i' j,(kr)B(cos 6)
with =0

Ji (kr) = (h( (k) —h" (kr)) where h (kr)ﬁ)(@')l €

In analogy with the plane wave, we write

w(r,0) =Y (21 +1)i'y, () B (cos 0)

where each of the partial waves satisfies the Schrodinger equation

5 ., 2 I(1+1
[ar”f hélU(")— (: )j(’”l//z(r)):




More on the partial-wave expansion
Outside the scattering region defined by the

h” (kr) potential U(r),”th.e wave fun.ction (1) satisties
the same Schrodmger. equation as th.e plane
S hP (kr) wave and must be a linear combination of the
_ same incoming / outgoing waves h® (kr),
r

v, (r) > — . (h< (k) — S, (kr) ).

The incoming wave must be the same as that of the plane wave, so that the
only difference with the plane wave 1s in the outgoing scattered wave.

Substituting in the partial wave expansion

w(r, 9)—>Z(2l+1)1 ( () + 2= - h”)(kr)jP(cosH)

ikr

e+ S 21 +1)(S =1) P (cos8) S
21.]%;( )(S, —1) B (cos ) -

so that

I & 47 n
f(&)zﬁ;;(zlﬂ)( )P(cos&)—ﬁZ( -1)Y,, (MY, (k).

Im



Solving the scattering problem

How do we obtain the asymptotic
form of the wave function,

y,(r) > %(hz(_) (kr)— Szhz(ﬂ (k’”))?

First, we fix a radius 7, , called the
matching radius, that is beyond the
range of the interaction.

The wave function inside the
matching radius, ¢, , 1s determined
numerically, up to a multiplicative

factor. Outside the matching radius,
the wave function has the asymptotic

form,
e "
NG E(hz( )(k’”)_Szhz( )(kr)).

We require continuity of the wave
function and its derivative at the
matching radius.

—- Re[y(r)] ff"H\
.= Im[yi(r)] / \
{}.5_ ! I"'.,L 0
i win wfex b
i N z'f. "‘-."Jr\.. 4
—a AT WA 1 ; Fin / S T 1}\ d
! \
/ '
-0.5¢ / N
/ \
/ \
\'_.-/ -
L 3 | 3 | | | i
s 10 15 20 25
r (fm)

This gives us two equation in two
unknowns, 4, and §,,

L (1 v
All/jl,in(rm)za(hl( )(krm)_Sth( )(krm))

and the derivative equation. We solve
these for each value of /, stopping
when S 1s sufficiently close to one.



Integrated cross sections

We obtain the elastic cross section by integrating over the differential one,
o, =27[|/(0)] sin0d6 = kﬁzZ(zz +1)[S, -1 .
0 [=0

We may calculate the absorption cross section by taking into account all of
the flux entering and leaving the scattering region. Integrating the flux over
a sphere whose radius tends to infinity, we have

o :_%gﬁsj.d* %fﬂ: @1+D(1-IS,).

The total cross section takes into account all flux lost from the incident
plane wave, either by scattering or absorption,

c,,=0,+0, =i—fi(2l+1)(l—ReSl).
[=0

The total cross section satisfies the optical theorem,

A

o 7Imf(6’ 0°).

tot



Low-energy neutron scattering — a simple example

Because of the Coulomb barrier, only neutral particles can reach the
nucleus in a low-energy scattering. At extremely low energies, the
centripetal barrier keeps all but /=0, s-waves away from the nucleus.

Let us re-examine hard-sphere scattering in the case of low-energy
neutron scattering.

Scattering from the hard sphere requires
that the wave-function vanish at the B

. y=0 | ¥
radius of the sphere. The s-wave wave
function 1s then >

i bt r
—ikr —2ikR _ikr
Vo (r) = —— (e — M), |
’ 2kr When k-0, the elastic cross

The S-matrix element is S, = e”"". section tends to a constant,

2
. . o, —>4rR".
The elastic cross section is o k>0

do & ‘ o 1‘2 This 1s 4 times the classical

o, =4r =— i
d0  k Cross section.

€



Low-energy neutron scattering -- resonances

Although the neutron-nucleus interaction is attractive, its rapid variation at
the nuclear surface has the same effect on low energy neutrons as a hard-
sphere does— the neutrons are reflected. Absorption also usually occurs, so
that the total cross section is larger than the elastic one. However, if both
the elastic scattering and absorption are prompt processes, one would
expect them to vary slowly with energy. Behavior of this type can be seen

on the low energy side of the figure.

The cross section of the figure also
possesses a rapidly varying resonant
component, a feature common to all
low-energy neutron-nucleus systems.

The resonant contribution arises from
scattering through a quasi-bound
state (a compound nuclear state) of
the neutron+nucleus.

g (b)

150

100

%8Ni+n Total l
:

0.001

0.01
E, (McV)




Direct and compound nuclear scattering

At low energies, neutron-nucleus scattering occurs either directly or
through the quasi-bound compound nucleus states.

Direct scattering Compound nuclear scattering

Q > L
I BN NP

At ~107° =107 At ~107% -107s

In a direct scattering, the incident neutron interacts with the average field of
the nucleus. The duration of the collision is approximately the time it takes the
neutron to cross the nucleus.

In a compound nuclear scattering, the incident neutron loses energy upon
colliding with the nucleus and is trapped. After a fairly long interval, enough
energy is again concentrated on one neutron to allow it to escape.



Formalities - I
To formally separate the direct and compound nucleu contributions, we
assume that we can partition the space of states into two components:
P -- containing the continuum states, such as the n + 3®Ni ones, and

Q -- containing the quasi-bound states, such as the ground and excited
states of *Ni (and any other states that we don’t want in P).

We define projection operators, P and Q, onto the subspaces with the
properties

P'=P 0'=0,
PP=P Q=0
P+0=1

We then decompose the wave function into ¥ = PV + O¥, where PV is the
continuum component and QY the quasi-bound component of the wave
function.



Formalities - 11

Using P and Q, we decompose the Schrodinger equation, (£ - H) ¥ = 0,
into coupled equations for the two components of the wave function. We
then write the solution for the $-subspace component as,

PLPc = ¢c(+) T (E(+) - HPP)_I VPQ (E - HQQ - WQQ )_1 VQP¢<§+)'
where the wave function ¢(f+) satisfies the equation

(E _HPP)¢£+) = 0.
and

N _ P.P.
QP(E( )_HPP) 1VPQ =V,

W -
“E-H,,

00 = Vp

0~V (E—H )V,
The prompt contribution to the scattering 1s contained in the wave
function ¢ ”and in the P-subspace propagator. The compound nucleus
term takes into account passage through the continuum through the W,
term in the Q-subspace propagator. The open channels in the $ subspace
make a negative imaginary contribution to W, leading to poles of the
the wave function in the lower half of the complex energy plane.



Low-energy neutron scatterng -- resonances

We now apply the expression for the $-subspace wave function,
PLPc — ¢c(+) + (E(+) _ HPP)_I VPQ (E o HQQ _ WQQ )_1 VQP¢C(+) >

to s-wave neutron scattering, for which,

Lo i ikr
o (r) = %(e v _Soek ),
outside the range of the interaction. (We continue to neglect the spin of the

neutron.)

After a bit of work, we can approximate the S-matrix of the $-subspace
wave function in a multi-level Breit-Wigner form (among others) as

=] +h . gagb
SO,ab:e (¢, ¢)[5ab_lZE H ,L% /2}’
v E—¢, +il

where ¢, and ¢, are the initial and final channel phase shifts and the
amplitudes g . characterize the coupling of the compound state u to the
continuum channel ¢, with r,= Z gfw.

The phase shifts vary slowly with the energy while the resonance sum
varies quickly.



Low-energy neutron scattering — cross sections

The cross sections directly related to the elastic S-matrix element are
the elastic, absorption and total ones,
)

70
o k_2 0,aa

2 T

o-el

and 2

Gtot = Gel +O—abs = P(I_RGSZ)

The absorption cross section is non-zero when non-elastic channels,
such as y emission or fission, remove flux from the compound
nucleus. The cross sections for these take the form

2

T
o = —‘S
ac 2 0,ca
k

The total flux 1s conserved,so that

Gabs = Z Gca and Gtot = o-el + o-abs :

c#a

The elastic cross section is well described at energies below the
resonance region by a hard-sphere cross section of 47 R 2.



From resonances to fluctuations

At low energies, the resonance expression for the S-matrix permits the
separation of the direct and compound contributions to cross sections.
However, as the energy increases, both the resonance widths and the
density of compound nucleus states increase, so that the resonances
eventually overlap and can no longer be distinguished. The cross section
fluctuates rapidly, as in the figure, but the fluctuations, called Ericson
fluctuations, cannot be attributed to individual resonances.

It 1s in this context that the SO
optical model plays a g ., ™Ni+n Total i
fundamental role. The objective |\ |

N
of the model is to describe just 1.0 | H "J\l\bﬂl ¥ {\ | N l\ ||I y
the prompt, direct reactions in a i 'M |‘ r\/\ M [(I Ifl A H .“ll |1|||.J| HH\ H i
collision. To this end, one 3.9 ! M \{. \4 F'UJ 0 L
defines the optical potential as i f | |
the potential that furnishes the

energy-averaged (short time) Y T T T
scattering amplitudes. R TR, (MeV) '

g (b)




Energy averaging and the optical potential

To obtain the optical potential, we begin by calculating the energy average
of the P-subspace wave function, which depends linearly on the scattering
amplitude. After rewriting the wave function in the form of an equation,
we will obtain an expression for the optical potential.

The energy average of the $-subspace wave function may be written directly,

(P¥,) =4 +(E —H,p) Voo (1 €y ) V.
since the only rapidly varying quantity in the wave function is
Cop =E—Hgy =Woo.

By multiplying by (£-Hp) as well as solving formally for ¢~ and
substituting, we can write a Schrodinger-like equation for (PY.),

1
E-H,, -V, V,

e <1/eQQ >_1 + W, o

(PY¥,)=0.

The optical potential 1s then

1
=Vpp +Vpy v,

U
v <1/eQQ >_1 +W o

!

00



Performing the energy average

To conclude the derivation of the optical potential, we must calculate
(l/egp)- Although there are many ways to perform the average, the
simplest is to average over a normalized Lorentzian density,

E.E
<1/eQQ>:J‘dEO 10( ) O)
EO_HQQ_WQQ
where
A |

E,E )= |
P L) = E-Ey+A/4

Assuming that 1/e,, has no poles in the upper half of the complex E
plane (causality), we can perform the integral by closing the contour in
the UHP to find

(1/ ey ) = (E+iA/2—Hyy = W,p)™

so that |

v
0 . OP

E—-H,,+iA/2
The optical potential 1s energy-dependent, non-local and complex. Its

imaginary part is negative, resulting in a potential that is absorptive. The
absorption accounts for the flux that is lost to the Q-subspace.

Uppi =Vep +Vp

!



Low-energy neutron scattering — optical potential

One finds for the low-energy neutron s-wave S-matrix element S, = ¢ ",

where p 1s a complex scattering length. R = | ,0| is called the scattering
radius.

The resulting elastic cross section tends to a constant as the energy tends to
zero, while the absorption and total cross sections diverge at small energy
as 1/k.

We have, as k—0,

o, = 4%2—3 — 47 R?,

4
Oy =~ Imp(1+2kIm p).
and
Oy =0y T 0. ) e —




Experimental significance

An optical model calculation furnishes a wave function and a scattering
amplitude that should describe the prompt part of the scattering. The S-
matrix that results is an energy-averaged one. We could write the S-
matrix before averaging as

Sy =Sy + Sy pes With (S, .. )=0, sothat (&,)=(S,).

The energy-averaged total cross-section is just the optical one,

2

27[( pe —(1-ReS,),

1— Re(G >)

since it 1s linear in the S-matrix.

Gtot

However, the energy-averaged elastic and absorption cross sections are

2
0 =25 (18 ~17) = 51, =1 + (|, e

O =2 (1180 = 2 (11 ) =25 (S e )

Only the total optical cross section may be compared with the
experimental one.

and




The s-wave strength function

If we average the resonance expression for the elastic S-matrix,

. I
S = | 1—i £ : where ' =g’ |
e ( ;‘E—gﬂﬂfﬂ/J pa = S

over the Lorentzian that was used to obtain the optical potential, we find

_ | r . r
Soa =€ | 1-0) - L lxe [1 LY. j
w E—¢, +IA D

where T is the average neutron width and D the average s-wave resonance
spacing. Since the average is the same as that of the optical potential, the
average S-matrix should be the same as the optical one. In particular, we

expect T

1|8, =27 -

when ' << D. We define the strength function as

f E 1/2 1 E 1/2
So = N — ~ — 0 (1—‘S0‘2)
D\E 27\ E.

cm

where £, is usually taken to be 1 eV. The factor of 4/ £, cancels the
energy dependence of the neutron partial width.



Strength functions and SPRT

The s-wave strength function may be obtained from experimental data,
either from measurements of the total cross section or from averages over
resonances. When compared to optical model calculations, the agreement
1s quite good. The two peaks in the s-wave strength function occur in the
regions where the 3s1/2 and 4s1/2 neutron shell-model orbitals are
becoming bound and have a large overlap with continuum states.

A p-wave strength function e E——— e s
may also be associated with
p-wave absorption and
extracted from data. The two
strength functions, together
with the scattering radius and
the total cross section, may
be used to fit optical model :
parameters at low energy. 02 e e -
This 1s known as the SPRT il fatta? e o aoiipon b ol bepaestyes Uy 4% R0
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Higher partial waves 10000 T
The angular distribution for a pure s- . n+2¥U —0IMev | ]
wave is obviously constant. As the o 10{}0: l‘r*- — oMy |
energy increases, more partial waves }é Bl eSSweNg o
participate in the scattering and the 5 S A
angular distribution becomes more ¥ 100 E _ 3
forward peaked. ~ ; TR
The highest partial wave Lok L L
contributing to the scattering may be 0 30 60 90 120 150 180
crudely estimated as /, __~kR. For 0 (deg)
n+238U at an energy of 1 MeV, this 1 o
gives [ ~1.6. {}.8- 0+ 280
An important auxiliary quantity
determined in an optical model 0.6

calculation is the transnzlission e
coefficient, 7, =1- |S ;| » which 1s used

to calculate the fluctuating contribution 0'2-_

to the cross sections. The transmission

coefficient measures the fraction of flux  \h7—

that 1s absorbed from each partial wave.




The partial wave expansion for charged particles

The difference between the partial wave expansion for neutral and charged
particles is the long-range Coulomb potential. Rather than consider a plane
wave, one must consider a Coulomb wave,which contains an additional
logarithmic phase. The wave function may be expanded as

Z (21 +1)i' e F,(kr)P,(cos6),

kr 15
with ;
F, (kr) = 5 (e—ial Hl(_) (kr)— L Hl(+) (kl’))
where the o, are the Coulomb phase shifts and

)Z +l(kr nln 2kr)

H* )(kr)——>(+z with 7 =ka,.

One may proceed as before to extract the scattering amplitude as

7(0)= fc(6)+—2(21+1)ez’“f( —1) B(cos ).

where

£.(0)=- sth?z - exp| —inln (sin® 0/2) + 2ic, |

The quantum Coulomb scattering cross section is 1dentical to the classical one.



Proton scattering

The angular distribution for proton
scattering on 58N1 at 1 MeV is a
pure Coulomb one. Even at 4
MeV, the difference from the pure
Coulomb angular distribution
appears small. At 10 MeV,
substantial deviations have
appeared.

Nuclear effects are more easily
distinguished in the transmission
coefficients. They support the
observation that the scattering is
purely Coulomb at 1 MeV.
However, at 4 MeV, 40% of the s-
wave and about 10% of the p- and
d-wave have been absorbed.
Angular momenta through 1=4
contribute at 10 MeV.

le+05¢

=
-
S

do/dQ (mb/sr)

1000¢
100

10




The optical potential

We obtained a formal expression for the optical potential,

: V.
CE-H,,+iA/2
by rewriting the energy-average of the continuum component of the wave

function as an equation for itself. We observed that this potential 1s
complex, non-local and energy-dependent.

Ugpt =Vep +Vp

t

A good deal of work has been done to calculate the optical potential from
first principles. These potentials are usually non-local, except at very high
energies, which tends to complicate their use.

Phenomenological optical potentials are normally used to fit and compare
with experimental data. These potentials are usually taken to be local.
However, their geometrical characteristics and the general trend of their
energy dependence are quite similar to those of microscopic potentials.
They can furnish insight into what one should expect of a microscopic
potential. After all, both potentials are trying to describe the same physical
processes.



The phenomenological optical potential

Empirical optical potentials are determined by adjusting a limited set of
parameters to the data on hand. Over the years, a standard form of the
potential has evolved, which permits the parametrization of the scattering
of most light particles (n, p, d, t, 3He, or «) from most nuclei. This 1s

U o (r)y= V.(r) a Coulomb term,
=V, (r) — iWf, (r) volume terms,
+ Vg, (r)—iWsgy (r) surface terms,

~d -6V, h, (r)=iW,h,(r)), spin-orbit terms
where the spin-orbit constant1s d_ = (h/mﬂc)2 ~2 fm”.

The Coulomb potential 1s usually taken to be the interaction of a point
charge with a uniformly-charged sphere of radius R =1.25*A!3 (fm),

(7.7.¢
221 (3—(r/R.)) r<Re
2R
Vc(r):% ¢ ,
AW/ r>R.
A




The volume terms of the optical potential

The volume terms are usually taken T,
to be of Wood-Saxon form,

1 | 0.8
](i(r):1+exp[(r—Rl.)/ai] = £0.6r i
where R; and a; are the radi1 and 0.4L |
diffusivities of the two terms. -
The Wood-Saxon form is quite similar .Ul S 5 s |

[

to the nucleon density of a saturated 0
nucleus (4>30).

The real volume potential reflects the average interaction of the projectile with
the nucleons of the target. The strength of the real volume potential is roughly
proportional to the mass of the projectile and and decreases with energy, in
agreement with nuclear mean field calculations.

r (fm)

The 1maginary volume potential takes into account the loss of projectile flux
due to collisions with the nucleons in the target. It is zero at low energy, below
the threshold for single-particle excitations, and increases with energy as the
phase space of single-particle modes increases.



The surface terms of the optical potential

The surface terms are usually taken to be either the derivative of a Wood-

Saxon,

exp[(r—R))/a,]

gi(r) :_4aiifi(r) =4
dr

or a Gaussian,

(1 +exp|(r —Rl.)/azl.])2

i=V,W,

g(r)=exp| (r=R) /a] | i=V.W.

The two are practically indistinguishable when a=2.21 a .

I

The 1maginary surface term takes into

excitation of low-energy collective
modes, which have their couplings 0.6r
concentrated on the surface. '

g(r)

0.4

A real surface term can result from the
same coupling but can also be 0.2
explained using a dispersion relation.

0

- |— Derivative W-S
account the absorption due to the 0.8

== Gaussian

0



The spin-orbit terms of the optical potential

The spin-orbit terms are taken to have a Thomas form factor,

1 d 1 exp[(r-R)/a,]

h(r)=———Ff,(r)=

rdr ™ ra; (1vexp(r-R)/a])

i=V,w.

The spin-orbit interaction also acts between the bound states of a nucleus,
where 1t increases the binding of the j=/ + 2 levels and decreases the

binding of the j=/-1/2 levels.

The Thomas form factor and the spin-
orbit potential itself are obtained (for
spin 72) when the Dirac equation with
Wood-Saxon potentials 1s reduced to
an equivalent Schrodinger equation.
The spin-orbit interaction is thus
another manifestation of the volume
interaction of the projectile with the
nucleons of the target.

h(r)

0.05+




Optical potential parameters

The phenomenological optical potential is thus parametrized in terms of a
set of potential strengths and corresponding geometrical parameters.

The best modern reference for optical potential parameters is the Reference
Input Parameter Library (RIPL), available both online and in CD from the
Internationational Atomic Energy Agency.
For nucleons, typical values of the potential strengths are

V =(45-55)MeV -(0.2-0.3)E,

W =((2-7)MeV -(0.1-0.3)E E <8-10MeV,

V., ~(4-10) MeV.
Above 8-10 MeV, W 1s usually constant or slightly decreasing. V. and W

can normally be taken to be zero as can I below about 10 MeV. Above
about 10 MeV, W is constant or slightly increasing.

The radii R, take on values R, = . 4;”> with the reduced radii in the range
r~1.2 — 1.3 fm. The diffusivities are normally in the range a; ~0.4 — 0.7 fm.

Fairly wide ranges of the parameters V, R, W, and a, result in equally good
fits if VR, and W,a, remain constant. These are potential ambiguities.



The microscopic optical potential -- 1

Microscopic optical potentials attempt to
describe the projectile-target interaction in
terms of nucleon-nucleon interactions, such as
these representing the first few terms in
nucleon-nucleus interaction.

A systematic method for summing the most
important terms 1s provided by the self-
consistent Brueckner approximation. The
Brueckner &-matrix 1s calculated by summing
repeated interactions, taking into account
effects of the nuclear medium.This calculation
1s usually performed in infinite nuclear matter,
for simplicity.

The &G-matrix is then folded over the target

nucleon density to obtain the optical potential
U. Self-consistency requires that the target
density be obtained with the same potential.

}-{} . Ijj@ . IQ .




The microscopic optical potential -- 11

term and an exchange term. The exchange term is Upt =
non-local and both are energy-dependent. The

exchange term 1s often approximated as a local term = J or
with an additional energy-dependence (JLM).

The microscopic optical potential possesses a direct @
_|_
2
u + U

At high energy, the microscopic 53

optical potential reduces to the _
impulse approximation potential, &0 I
obtained by folding the two-nucleon
t-matrix with the target density --
the 7o approximation.

G, (b)

The figure compares experimental ul | SR T

reaction cross sections for 2C, 28Si, ' ’
SFe 2Zr and 2%8Pb, in ascending 05 s

order, with microscopic optical oo o
model calculations by Amos and o - - = o

Karataglidis, nucl-th/0202050. E (MeV)



The microscopic potential at low energy

Formally, we derived the optical potential by considering the scattering in a
subspace P of the space of states and then energy-averaged to smooth the
dependence on the remaining subspace of states Q. We obtained

1
U,, =V +V Vgp-
v E-H,, +iA/2

t

In the microscopic optical potential, the division into  and Q subspaces is
no longer transparent. It 1s there, contained in the &-matrix, but in terms of
nucleon-nucleon scattering rather than nucleon-nucleus scattering. We
would thus expect that the microscopic potential does not take into account
the collective effects that are often important at low energies. We might
consider decomposing the optical potential at low energies (using a local
approximation) as

U, (r,E)=U_(r,E)+U,,(r,E),

coll

where U, , is the microscopic potential and U, 1s the remainder, which we
might attribute to collective effects. At low energies, U, (r,E)~V (1, E). At
high energy, we expect that U__, (7, E) 0.



Dispersion relations

ImE’
Because of causality, the optical potential should
have no singularities in the upper half-energy plane.
We may then write
U E'
§apLatlBB) g
E'-FE = o
which we may rewrite as E RekE’
E
P.P.[dE' 02”(’" ) — izl (. E)

600 =

Separating U, , into its real and imaginary
parts, U, , = AV + i W, we have

W(r,E")
E'-E

208Pb, 209B1

1T

AV (r,E) = P.P.ljdE'
T

400

Jy /A (MaV fm3)

At low energy, U, ~Vy+ AV +i W. e : A

300| apo

The effect of AV 1s seen as a strengthening
in the real part of the optical potential at 200/
low energy relative to the linear e (MoV)

dependence expected of V.. (Finlay and Petler, Opt. Model 1986)

10 +41]




The single-channel optical model -- spin

Because of the spin-orbit interaction, a rigorous treatment of neutron or proton
scattering requires that the spin be included in the calculation. To do this, one
performs the partial wave expansion of the scattering wave function (spin s) as

AT O 0 oy e A
¥ =2 iyl (DD BV (),

lin

s
in terms of the spin-angular functions, 7
(7)) = i’Z<lmsv‘jn>Y,m (f)‘sv>, [

where / and j are the orbital and total angular momenta and |sv) 1s a spin
eigenvector. In the expansion, o7, is the Coulomb phase shift, 7 denotes the
angular variables and k the direction of the incident momentum. The spin-
angular functions are vectors with components labeled by v, the projection
of the spin.

Because of angular momentum and parity conservation, the equations for
the w/ (r) uncouple. They can then be solved as before and the asymptotic
behavior of the resulting wave function analyzed to extract the scattering
amplitude.



The scattering amplitude -- spin
The scattering amplitude

£(0) = fc<0>1+—2e2"’f (S/ -1)D" AV k),

Z]n
with (6 ) the Coulomb scattering amplitude, is now a matrix, f,,(6),
with matrix elements labeled by the spin projections v and v’.

AG) B(9)
B(O) A0)

For particles of spin 2,

1) = (
where

A0) = £-(0) +L,Ze2"“f [(1+1)(S;+“2 ~1)+1(s"2 —1)]13(cos 9),

and B(0) = 7 Z s [S,””z —SZI_I/Z]PZ1 (cos ).
2i

The amplitude 4 corresponds to scattering in which the spin projection
remains constant. The amplitude B describes scattering in which the spin
projection flips.

N YA L,



Angular distributions -- spin

The differential elastic cross section for an unpolarized incident beam 1is
obtained by averaging the squared magnitudes of the scattering amplitudes
over the nitial values of the projectile spin and summing over the final
ones,

do

1
dQ_2s+lz

wv'

fn O

For spin-1/2 particles, this becomes

Z—g =|4@) +|B@O)  s=1/2.

For particles of spin %2 and greater, vector and possibly tensor spin
observables may be defined in terms of other combinations of the
amplitudes. For particles of spin 2, the vector polarization P(6) and the
spin rotation function Q(6) are defined as

2Im 4" (6)B(0) and  0(0) = 2Re A (0)B(0) |

PO = 0d0 dodO)



Polarization 1n
neutron scattering

The spin-summed angular
distribution due to scattering of a
polarized beam may be written as

deol B do
dQ dQ)

where ﬁpol 1s a vector defining the
intitial polarization and 7 is the
normal to the scattering plane.

(1+P@©)A-P,,),

The spin-orbit interaction is fairly
strong. Its effects on the

polarization become visible as soon

as partial waves above the s-wave
contribute to the scattering.
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Integrated cross sections -- spin

As before, the absorption cross section may be related to flux lost from the
asymptotic probability current density,

o :—%qSSj-a@ =P Z(2]+1)( ‘S/‘z)

The fraction of the flux lost from each partlal wave may also be
expressed as a transmission coefficient,

. .12
T/ =1-|S/[".
For charged particles, the Coulomb interaction leads to an infinite elastic
cross section. For neutrons, integration of the differential cross section

yields do
o, :dedQ = Z(2J+1)‘S’ —1\

For neutron, the total cross section may be defined as the sum of the
elastic and absorption ones,

c,=0,+0, = klzi(2j+l)(l—ReS/).
i



Comparison with
experiment

—

We recall that, being linear in the
scattering amplitude, the total optical
cross section may be compare to the
energy-averaged experimental one. We
see that reasonable agreement with the
data is possible here.

o
=
Y

Ry

F

We also verified that the partial wave
contributions to the energy-averaged
elastic cross section,
7T 2
st

exceed the shape elastic (optical) ones
due to contributions from fluctuations.
We observe that the fluctuation
contributions are negligible only at
higher energies.

T : 2 .
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Summary

The objective of the optical model is to describe the fast, direct
contribution to nuclear scattering. It makes use of an optical potential with
both real and negative imaginary parts. The absorption of flux from the
optical wave function, due to the imaginary part of the potential, accounts
for the flux lost to the slower, compound nucleus component of the
scattering.

The single-channel optical model describes the scattering in the elastic
channel alone. It is often called the spherical optical model because, in it,
the target may be considered to be spherically symmetric, since its
structure is never introduced.

Direct reactions that transfer energy as well as momentum are often quite
important. Such inelastic scatterings, in the case of the inert projectiles
that we are considering (n, p, @, d, etc.), leave the target in an excited
state and diminish the asymptotic kinetic energy of the projectile. To
describe inelastic scattering, one must introduce at least the basic
characteristics of the ground and excites states of the target. These
reactions will be the subject of the next lecture.
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