

the **abdus salam** international centre for theoretical physics

ICTP 40th Anniversary

SMR.1555 - 3

Workshop on Nuclear Reaction Data and Nuclear Reactors: Physics, Design and Safety

16 February - 12 March 2004

WIMS Exercises

Les HUTTON SERCO Assurance Winfrith Technology Centre Dorchester Dorset DT2 8UX U.K.

These are preliminary lecture notes, intended only for distribution to participants

serco

Serco Assurance

Workshops for WIMSD

J L Hutton

2 March 2004

HOMOGENEOUS CALCULATIONS

No spatial problems Use full library groups Solve neutron balance equations In any energy group, for a critical system Source of neutrons = Removal rate.

Source	=	Fission neutrons + Inscatter
Removal=	Absorpt	ion + Outscatter + Leakage

For a 2-group calculation without upscatter or leakage

Group 1:
$$\frac{1}{k_{\infty}} (\upsilon \Sigma_{f_1} \phi_1 + \upsilon \Sigma_{f_2} \phi_2) = \Sigma_{a_1} \phi_1 + \Sigma_{12} \phi_1$$
$$\Sigma_{12} \phi_1 = \Sigma_{a_2} \phi_2$$
Group 2:

INFINITE HOMOGENEOUS

Infinite medium of one material: k-infinity Typical variable parameters are: fissile concentration (H:Pu) enrichment degree of poisoning Leakage can be introduced (buckling): k-effective. Very quick and cheap.

Examples: Pu(NO3)4 storage; UO2(NO3)2 evaporator. Warning: Parameters that give the maximum k-infinity may not be those that give the maximum k-effective

H:U

k-effective for an Oak Ridge Sphere Use DSN method Solution composition:

Hydrogen	0.066394
Oxygen	0.033592
Nitrogen	1.11e-4
U234	4.090e-7
U235	3.6185e-5
U236	2.2e-7
U238	1.985e-6

Calculate buckling for sphere of radius 61.01cm with extrapolation of 7cm

READDATA

Input is in the form of:

- CODEWORD (upper or lower case) followed by numerical data items.

Only the first 4 letters of a codeword are relevant.

Data items may be real or integer or containing E for exponent, but must contain no blanks(eg. 1.0e-2).

Data items for one codeword may occupy several lines (without \$ signs) but must not extend beyond column 72.

Repeated items may be input as:

13@1 0 1 *	(instead of 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 (1 2 3) *	(instead of 1 2 3 1 2 3 1 2 3)

An asterisk(*) indicates that all the following information on the current line is a comment

$$\mathbf{k}\text{-effective} = \frac{\mathbf{k}\text{-infinity}}{1 + \mathbf{M}^2\mathbf{Bg}^2}$$
(1)

$$M^{2} = \frac{k\text{-infinity} - 1}{B_{c}^{2}}$$
(2)

When k-effective = 1
$$\mathbf{B}_{c}^{2} = \mathbf{B}_{g}^{2}$$
 (3)

Taking the output from CHAIN 14 to obtain k-infinity from the case without Buckling and Bc² from the case with Buckling and using equations 1,2 and 3, find:

- (a) The dimensions of a sphere whose contents are just critical at various Pu concentrations.
- (b) The dimensions of a sphere whose contents have k-effective = 0.95, at various Pu concentrations.

Assume = 7 cm

WORKSHOP 1 CRITICAL CYLINDER RADII

k-effective for a regular PWR benchmark lattice

- 1. U235 enrichment 3.0 w/o
- 2. Square pin pitch 1.32 cm
- 3. Assume: fuel density 10.4 g/cc
 - fuel radius 0.5065 cm aluminium wrapper radius 0.5199 cm clad radius 0.54685 cm clad material 7.8 g/cc (Fe 58% Ni 12% Cr 18%)
- 4. Bucklings: radial 0.00415, axial 0.00215

PIN CELL CALCULATION

Required input da	ata	
Prelude:	pincell dsn nmesh/nregion/nmaterial	
Main:	material annulus mesh	
Edit::	buckling	

$$B_{c}^{2} = \frac{2.405^{2}}{(R+\lambda)^{2}} + \frac{\pi^{2}}{(H+2\lambda)^{2}}$$

$$\mathbf{N} = \frac{\mathbf{R}^2}{\mathbf{R}_p^2}$$

where N is the number of pins Rp is the pin cell radius

<u>λ</u>= 6.5 cm.

- 1) For each of the pin cell radii considered, use Bc2 from the output to obtain the radial dimension of a cylindrical array of pins which is just critical.
- 2) How many pins will fit into the cylindrical array?

LEAKAGE OPTIONS in CHAIN 14

Homogeneous solutions based on:

Diagonal Transport Corrected Flux Solution B1 Flux Solution

Diffusion Coefficients based on:

Benoist 3-region model Transport cross sections Ariadne method

LEAKAGE and REACTION RATES

Repeat workshop 2 pincell: Using PERSEUS adding all combinations of LEAKAGE CALCULATIONS adding 2-group reaction edits for U235 and U238

LEAKAGE EDITS

BEEONE to request diagonal transport and B1 solutionsDIFFUSION to request all diffusion coefficient options

REACTION RATES

LEAKAGEto select spectrumPARTITIONto select structureREACTIONto select nuclidesRepeat workshop 2 pincell:

Input Data

To Condense 'main transport' group structure to give energy bounds at 821 and 9 KeV, and at 4.0 0.625 and 0.14 eV.

PRELUDE data:	NGROUP	
MAIN data:	FEWGROUPS	(define the 6 groups)
EDIT data:	THERMAL	

Output

Compare 69 group k-effective values from WORKSHOP 3 and WORKSHOP 4

RBMK FUEL ELEMENT

k-infinity for an infinite array of RBMK assemblies

- 1. Model an RBMK assembly using ring-smearing and DSN
- 2. Fuel density 10.0g/cc and 2 w/o enrichment, temperature 1000k
- 3. Clad Zr, density 6.5 g/cc, temperature 600k
- 4. Coolant H20, density 0.5 g/cc, temperature 550k
- 5. Moderator carbon, density 1.8 g/cc, temperature 500k
- 6. Centre 'tie rod' and pressure tube also Zr
- 7. Condensed main transport group structure (~ 6 groups)

Required Input

PRELUDE Data:

CLUSTER geometry NREGION to define annuli with rods

MAIN Data:

RODSUB data to define fuel rods ARRAY data to position rods in cluster

DSN CLUSTER with BURNUP

Required Input

Prelude Data: NMATERIAL to define number of burnable materialsMain Data: POWER to define rating and stepsEdit Data: ALPHA Option

Exit one short step to get equilibrium Xe, and a few longer steps to get k at 4000MWd/te

Required Input:

Prelude Data:	NRODS
Main Data:	Note the MESH data
	Note the ANNULUS radii
	PLOT to get a 'picture'
Edit Data:	As for Workshop 5

Compare k values from Workshop 5 and 7

SUMMARY OF WORKSHOPS

- 1. Homogeneous calculations
- 2. DSN Pincell in 69 groups
- 3. PERSEUS Pincell with leakage in 69 groups
- 4. As 3 with condensation to 6 groups
- 5. RBMK assembly DSN ring-smearing
- 6 As 5 with depletion
- 7. As 5 with PIJ explicit geometry