the
abdus salam
international centre for theoretical physics

Icrr 40th Anniversaxy

SMR.1555-3

Workshop on
Nuclear Reaction Data and Nuclear Reactors:
Physics, Design and Safety

16 February - 12 March 2004

WIMS Exercises

Les HUTTON
SERCO Assurance
Winfrith Technology Centre
Dorchester
Dorset
DT2 8UX
U.K.

These are preliminary lecture notes, intended only for distribution to participants

HOMOGENEOUS CALCULATIONS

No spatial problems
Use full library groups
Solve neutron balance equations
In any energy group, for a critical system
Source of neutrons $=$ Removal rate.

Source	$=\quad$ Fission neutrons + Inscatter
Removal $=$	Absorption + Outscatter + Leakage

For a 2-group calculation without upscatter or leakage
Group 1: $\quad \frac{\mathbf{1}}{\mathbf{k}_{\infty}}\left(v \Sigma_{\mathbf{f}_{1}} \phi_{1}+v \Sigma_{\mathbf{f}_{2}} \phi_{\mathbf{2}}\right)=\Sigma_{\mathbf{a}_{1}} \phi_{\mathbf{1}}+\Sigma_{\mathbf{1 2}} \phi_{1}$
Group 2: $\quad \Sigma_{12} \phi_{1}=\Sigma_{\mathbf{a}_{2}} \phi_{2}$

INFINITE HOMOGENEOUS

Infinite medium of one material: k-infinity
Typical variable parameters are: fissile concentration (H:Pu) enrichment
degree of poisoning
Leakage can be introduced (buckling): k-effective.
Very quick and cheap.

Examples: $\mathrm{Pu}(\mathrm{NO} 3) 4$ storage; UO2(NO3)2 evaporator.
Warning: Parameters that give the maximum k-infinity may
not be those that give the maximum k-effective

WORKSHOP 1

> k-effective for an Oak Ridge Sphere

Use DSN method
Solution composition:

Hydrogen	0.066394
Oxygen	0.033592
Nitrogen	$1.11 \mathrm{e}-4$
U234	$4.090 \mathrm{e}-7$
U235	$3.6185 \mathrm{e}-5$
U236	$2.2 \mathrm{e}-7$
U238	$1.985 \mathrm{e}-6$

Calculate buckling for sphere of radius 61.01 cm with extrapolation of 7 cm

READDATA

Input is in the form of:

- CODEWORD (upper or lower case) followed by numerical data items.

Only the first 4 letters of a codeword are relevant.
Data items may be real or integer or containing E for exponent, but must contain no blanks(eg. 1.0e-2).

Data items for one codeword may occupy several lines (without \$ signs) but must not extend beyond column 72.

Repeated items may be input as:
13@101* (instead of 11111111111110 1)
$3(123)$ * (instead of 123123123)

An asterisk(*) indicates that all the following information on the current line is a comment

WORKSHOP 1

$$
\begin{align*}
& \text { k-effective }=\frac{\text { k-infinity }}{1+\mathbf{M}^{2} \mathbf{B g}^{2}} \tag{1}\\
& M^{2}=\frac{\text { k-infinity }-1}{\mathbf{B}_{\mathbf{C}}^{2}} \tag{2}
\end{align*}
$$

When k-effective $=1$

$$
\begin{equation*}
\mathbf{B}_{\mathbf{c}}{ }^{2}=\mathbf{B}_{\underline{g}}{ }^{2} \tag{3}
\end{equation*}
$$

WORKSHOP 1

Taking the output from CHAIN 14 to obtain k-infinity from the case without Buckling and Bc^{2} from the case with Buckling and using equations 1,2 and 3 , find:
(a) The dimensions of a sphere whose contents are just critical at various Pu concentrations.
(b) The dimensions of a sphere whose contents have k-effective $=0.95$, at various Pu concentrations.

$$
\text { Assume }=7 \mathrm{~cm}
$$

WORKSHOP 1
 CRITICAL CYLINDER RADII

WORKSHOP 2

k-effective for a regular PWR benchmark lattice

1. U235 enrichment $3.0 \mathrm{w} / \mathrm{o}$
2. Square pin pitch 1.32 cm
3. Assume: fuel density $10.4 \mathrm{~g} / \mathrm{cc}$
fuel radius 0.5065 cm
aluminium wrapper radius 0.5199 cm
clad radius $\quad 0.54685 \mathrm{~cm}$
clad material $7.8 \mathrm{~g} / \mathrm{cc} \quad$ (Fe 58\% Ni 12\% Cr 18\%)
4. Bucklings: radial 0.00415 , axial 0.00215

PIN CELL CALCULATION

WORKSHOP 2

Required input data

Prelude:	pincell dsn nmesh/nregion/nmaterial
Main:	material annulus mesh
Edit::	buckling

WORKSHOP 2

$$
\begin{aligned}
& \mathbf{B}_{\mathrm{c}}^{2}=\frac{2.405^{2}}{(\mathbf{R}+\lambda)^{2}}+\frac{\pi^{2}}{(\mathbf{H}+2 \lambda)^{2}} \\
& \mathrm{~N}=\frac{\mathbf{R}^{2}}{\mathbf{R}_{\mathrm{p}}^{2}}
\end{aligned}
$$

where N is the number of pins
Rp is the pin cell radius

$$
\lambda=6.5 \mathrm{~cm} .
$$

1) For each of the pin cell radii considered, use Bc2 from the output to obtain the radial dimension of a cylindrical array of pins which is just critical.
2) How many pins will fit into the cylindrical array?

WORKSHOP 2

LEAKAGE OPTIONS in CHAIN 14

Homogeneous solutions based on:

Diagonal Transport Corrected Flux Solution B1 Flux Solution

Diffusion Coefficients based on:

Benoist 3-region model
Transport cross sections
Ariadne method

WORKSHOP 3

LEAKAGE and REACTION RATES

Repeat workshop 2 pincell: Using PERSEUS
adding all combinations of LEAKAGE CALCULATIONS adding 2-group reaction edits for U235 and U238

WORKSHOP 3

LEAKAGE EDITS

```
BEEONE to request diagonal transport and B1
    solutions
DIFFUSION to request all diffusion coefficient options
REACTION RATES
```

LEAKAGE to select spectrum
PARTITION to select structure
REACTION to select nuclides
Repeat workshop 2 pincell:

WORKSHOP 4

Repeat Workshop 3 with CONDENSEDGROUP STRUCTURE

WORKSHOP 4

Input Data

To Condense 'main transport' group structure to give energy bounds at 821 and 9 KeV , and at 4.00 .625 and 0.14 eV .

PRELUDE data: NGROUP
MAIN data:
EDIT data:
FEWGROUPS (define the 6 groups)
THERMAL

Output

Compare 69 group k-effective values from
WORKSHOP 3 and WORKSHOP 4

RBMK FUEL ELEMENT

WORKSHOP 5

k-infinity for an infinite array of RBMK assemblies

1. Model an RBMK assembly using ring-smearing and DSN
2. Fuel density $10.0 \mathrm{~g} / \mathrm{cc}$ and $2 \mathrm{w} / \mathrm{o}$ enrichment, temperature 1000k
3. Clad Zr , density $6.5 \mathrm{~g} / \mathrm{cc}$, temperature 600 k
4. Coolant H2O, density $0.5 \mathrm{~g} / \mathrm{cc}$, temperature 550 k
5. Moderator carbon, density $1.8 \mathrm{~g} / \mathrm{cc}$, temperature 500 k
6. Centre 'tie rod' and pressure tube also Zr
7. Condensed main transport group structure (~ 6 groups)

WORKSHOP 5

Required Input
PRELUDE Data: CLUSTER geometry
NREGION to define annuli with rods

MAIN Data:
RODSUB data to define fuel rods
ARRAY data to position rods in cluster

WORKSHOP 6

DSN CLUSTER with BURNUP

Required Input

Prelude Data: NMATERIAL to define number of burnable materials
Main Data: POWER to define rating and steps
Edit Data: ALPHA Option

Exit one short step to get equilibrium Xe , and a few longer steps to get k at $4000 \mathrm{MWd} /$ te

WORKSHOP 7

Required Input:

Prelude Data: NRODS
Main Data: \quad Note the MESH data
Note the ANNULUS radii
PLOT to get a 'picture'
Edit Data: As for Workshop 5

Compare k values from Workshop 5 and 7
\{Optional extras: (a) try SQUARE boundary
(b) place 'empty tubes at corners\}

SUMMARY OF WORKSHOPS

1. Homogeneous calculations
2. DSN Pincell in 69 groups
3. PERSEUS Pincell with leakage in 69 groups
4. As 3 with condensation to 6 groups
5. RBMK assembly - DSN ring-smearing

6 As 5 with depletion
7. As 5 with PIJ explicit geometry

