

the **abdus salam** international centre for theoretical physics

ICTP 40th Anniversary

SMR.1555 - 44

Workshop on Nuclear Reaction Data and Nuclear Reactors: Physics, Design and Safety

16 February - 12 March 2004

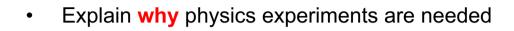
Analysis and Correlation of Experimental Data

Robert JACQMIN Commissariat a l'Energie Atomique Centre d'Etudes de Cadarache DEN/DER/SPRC/LEPH Batiment 230 F-13108 Cedex St. Paul lez Durance FRANCE

These are preliminary lecture notes, intended only for distribution to participants

Analysis and Correlation of Experimental Data

R. Jacqmin CEA/DEN/DER/SPRC – Cadarache robert.jacqmin@cea.fr


Outline

1. Introduction

- 2. Accuracy of neutronics calculations
- 3. Motivation for improved code predictions
- 4. Neutronics simulations in practice
- 5. The validation process
- 6. Experimental validation
- 7. Examples of recent cross section re-evaluations
- 8. Flow diagram of the nuclear data production and validation process
- 9. Physics measurements in reactors
- **10. Examples of experimental facilities**
- **11. Analysis of integral measurements**
- **12. Conclusion**

> Objective

- Describe **how** they are performed
- Illustrate what we get out of them

Presentation

- Is intentionally kept at a non-specialist level
- Is based on words rather than equations \rightarrow see references for details
- Largely refers to CEA + French activities, but has broader significance

Accuracy of neutronics simulations

- Despite the diversity and complexity of nuclear systems, current neutronics code systems are capable of yielding accurate predictions of conventional reactor characteristics in short running times
- Considerable progress has been made in neutronics over the past 15 years or so → Example: Core calculations

	Diffusion theory code	Transport theory code	Monte Carlo code
1970	2-D		
1980	3-D	1-D	Marginal
1990	3-D	2-D	Marginal
2000	3-D	3-D, homog. subassemblies	Frequent
2010	3-D	3-D, cell-by-cell	Systematic

> Typical PWR calculation accuracies (uncertainties at 1σ)

	Computed quantity	1990	2000	2010
Control	Boron concentrationAxial offset	± 4%	± 3%	± 5 ppm ± 2% Pn
Flux and power distributions	Bundle power peakBundle mean powerRod power	± 8% ± 5% ± 7%	± 5% ± 4% ± 5%	± 2% ± 2% ± 3%
Reactivity effects	 Boron concentration Integral rod worth Doppler coefficient Beta effective 	± 40 ppm ± 10% ± 13% ± 5%	± 20 ppm ± 8% ± 10% ± 5%	± 10 ppm ± 5% ± 5% ± 5%
Fuel burn-up and inventory	 Bundle mean burn-up Fuel rod burn-up Local burn-up Main nuclide conc. Other nuclide conc. 	± 5% ± 6% ± 7% ± 5% ± 15%	± 4% ± 5% ± 6% ± 3% ± 10%	± 2% ± 3% ± 5% ± 2% ± 10%

- Further improvements are requested for
 - \checkmark margin gains
 - ✓ better predictive power
 - ✓ broader range of application

Impact of improved code predictions

- ✓ Needs / target accuracies actually depend on the "client"
 - □ R&D organization
 - □ Reactor designer
 - □ Reactor operator
 - □ Safety Authority
 - **D** ...
- Example of potential gains for a plant operator (source EdF) For a park made of 50 nuclear reactors of 1000 MWe each, in base load operation:
 - □ Cycle length underest. by $1\% \Rightarrow \sim \frac{1}{2}$ core fuel reload / year
 - **Gain of 1% on P**_{lin} max \Rightarrow capacity increase by ~ 1/2 plant / year
 - Decay heat : 1 day of shutdown ~ ½ core fuel reload / year

Sources of errors impacting the code predictions (incl. Monte Carlo codes)

- The quality of the input **nuclear data** (which depend on temperature)
- The number of available **modelling options** (geometry, boundary conditions, solid state effects, ...)
- The **approximations** made in solving the equations (nonlinearities,...)
- The **simplifications** made in practice in representing / modelling the system, for example in defining the system boundaries or the radiation sources, in modelling fuel depletion, in modelling the migration of gaseous fission products,...
- Technological / manufacturing uncertainties in the system constituents, e.g., in the fabricated fuel pellets
- The errors arising from the calculation of **other characteristics** impacting the neutron flux density during operation, e.g., fuel pellet physical state, fuel and moderator temperature distributions,...
- Etc.

Requirements (output)

œ

- \rightarrow Recommendations on how to use the neutronics code in order to meet the users' needs :
 - A well defined **parametric domain** within which the code can be validly applied
 - **Recommended calculation options** for each requested characteristics
 - Errors and uncertainties ΔC to be assigned to the code predictions ΔC (calculating C alone is **not** sufficient)

Main ingredients (input)

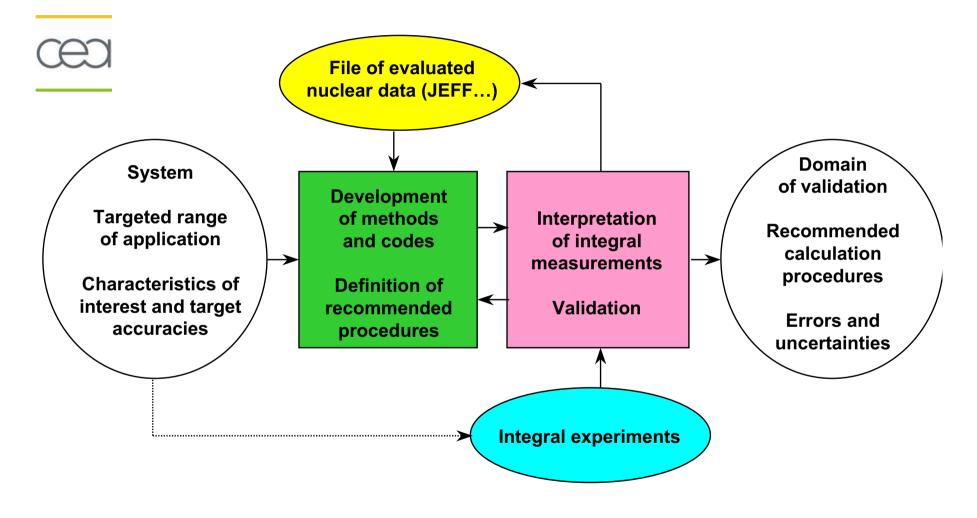
- Data libraries ← nuclear data (JEFF, ENDF/B, ... files)
- Validation data ← experiments in reactors

Consists in

 Assessing the errors and uncertainties of the code system for a given field of application

Applies to

✓ Reference calculation procedures and associated nuclear data


Relies on

- ✓ Nuclear data sets (with their associated uncertainties)
- ✓ Calculation modules
- Experimental validation data (with their associated uncertainties)

Leads to

- ✓ Recommended calculation procedures
- ✓ Errors and uncertainties to be associated to the code outputs

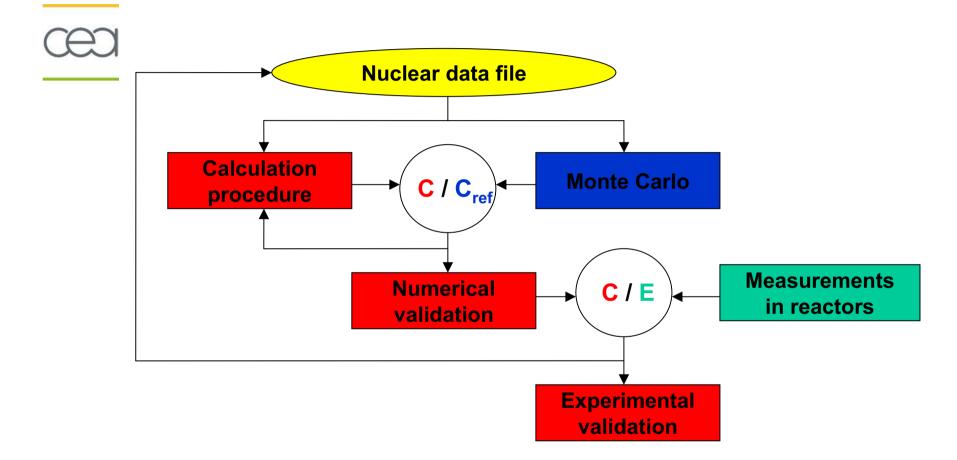
Schematic flow diagram

> Example of a lattice code validation range for UOX fuel applications

Characteristics	R _{mod}	T _{fuel}	T _{mod}	U-235 in %	BU range in GWd/t
Initial reactivity	0.5-5.5	20	20	3.0-4.8	-
Power distribution	1.4	20	20	3.7	-
Fuel inventory	PWR	700	300	3.1-4.5	10-62
Burn-up swing	PWR	20	20	3.1-4.5	10-62
Fuel temp. coeff.	1.4	20-1000	20	0.2-5.0	-
Mod. Temp. coeff.	1.3-1.7	isothermal	10-300	3.1-3.7	-
Boron coeff.	1.7	20	20	3.7	-
Void coeff.	1.2	20	20	3.7	-
Absorbers worth	1.2-1.7	20	20	3.7	-
Control rod antireactivity	1.4	20	20	3.7	-
Gd poison depletion	1.5	300	30	3.3	0-12
Gd poison worth	1.2-1.6	20	20	3.5-3.7	
Water reflector	1.2	20	20	3.7	-

Distinguish

 numerical validation = calculation-vs.-calculation comparisons using the same nuclear data


Reference results may be provided by a Monte Carlo code

experimental validation = calculation-vs.-measurement comparisons

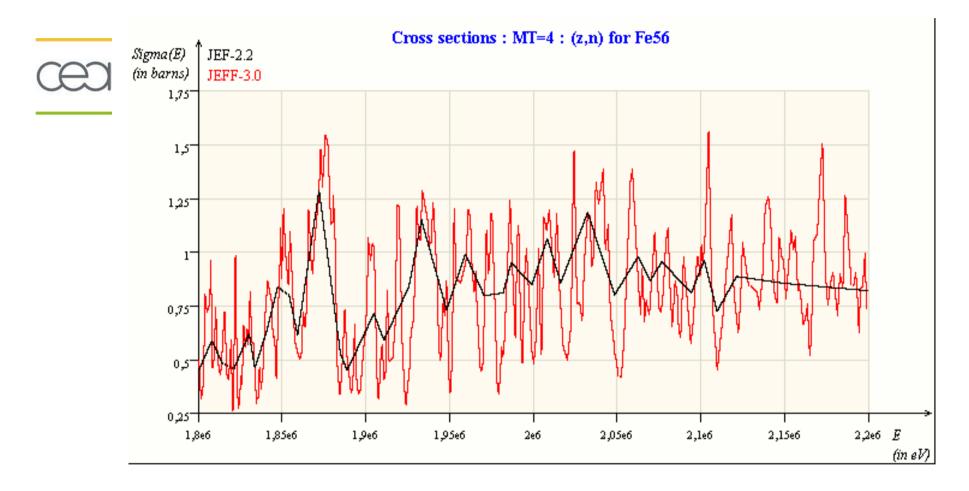
Methodology

- Allows in principle to separate (and hence avoid compensations between)
 - Errors arising from the nuclear data
 - □ Errors arising from the **methods** / procedures and to suggest improvements on each of these
- ✓ Has been **systematically used** at CEA for the past 10 years
- ✓ Is possible because of progress in computing power → Monte Carlo calculations are becoming routine → method biases under control
- \checkmark In practice, separation is achieved to a great extent but not fully

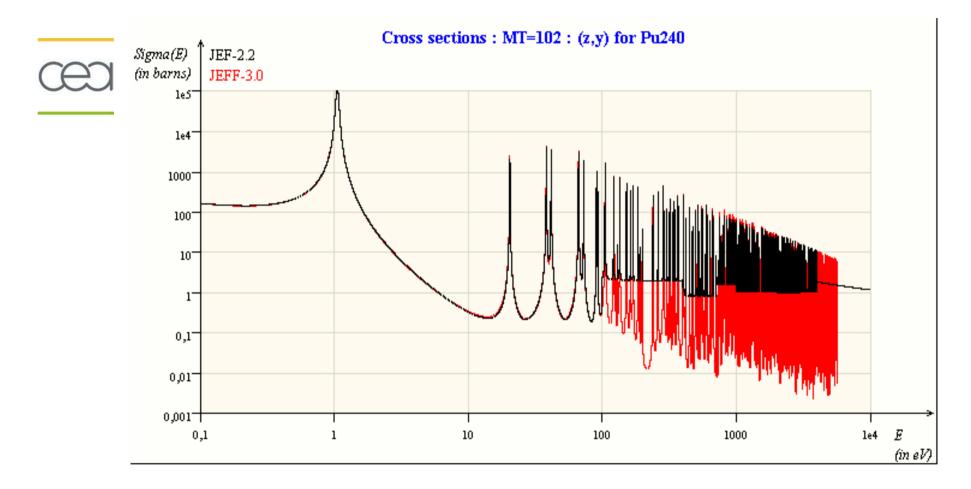
> Schematic flow diagram

- \blacktriangleright **Experimental validation** \Rightarrow integral measurements are needed as input
- These physics experiments must be
 - \checkmark Specific \rightarrow representative of the targeted application range
 - ✓ Analytic \rightarrow phenomena can be analysed individually
 - ✓ As simple as possible: in terms of geometrical arrangement, constituents, ... ⇒ no need of corrections for parasitic phenomena, code modelling,... ⇒ reduced error and uncertainty on C
 - ✓ Sufficiently accurate: measurement accuracy better than C / E discrepancies ⇒ need of well-controlled experimental conditions ⇒ reduced error and uncertainty on E
 - ✓ Sufficiently diverse → if integral measurements database is large enough, more predictive capability + possibility to do statistical adjustment studies to infer trends in nuclear data

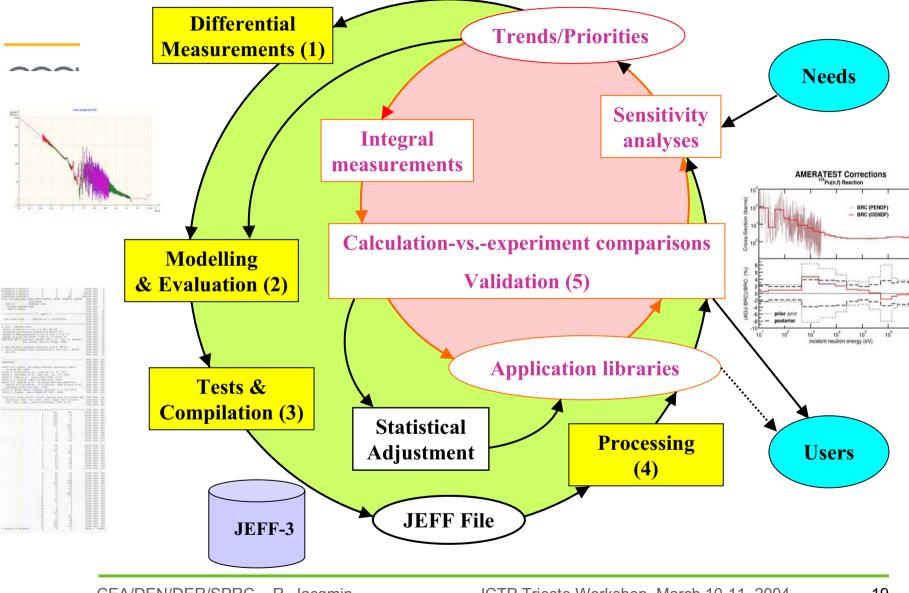
Experimental validation


- Not only implies C / E comparisons
- ✓ But also
 - A detailed analysis of the C / E discrepancies by means of sensitivity calculations (perturbation theory, see lecture by A. Gandini) → trends in nuclear data
 - □ **Transposing the results** obtained in an experimental reactor to actual reactor conditions
 - Recommending calculation options and associated uncertainties
 - Evaluating the input parameter domain within which those recommendations hold

> The experimental validation makes it possible to establish


- ✓ If the quality of the nuclear data is sufficient to meet the application needs
- \checkmark To identify those data that require improvements and by how much
- This is important as the errors and a priori uncertainties affecting nuclear data are still quite large today

Examples of recent cross section re-evaluations


JEFF-3.0 vs. JEF-2.2 Inelastic Scattering Cross Section of Fe-56

Examples of recent cross section re-evaluations

JEFF-3.0 vs. JEF-2.2 Radiative Capture Cross Section of Pu-240

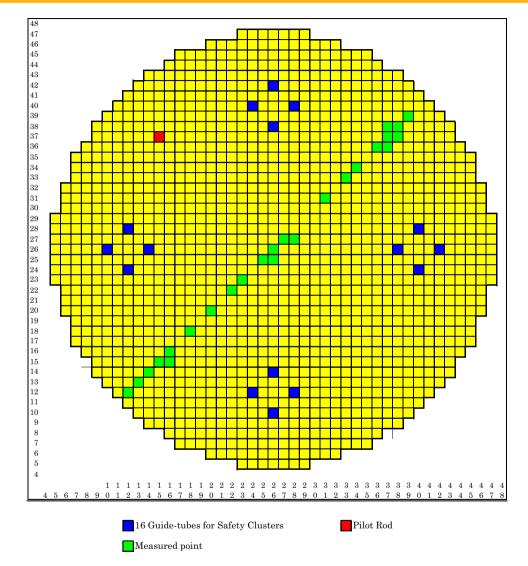
Flow diagram of the nuclear data production and validation process

CEA/DEN/DER/SPRC – R. Jacqmin

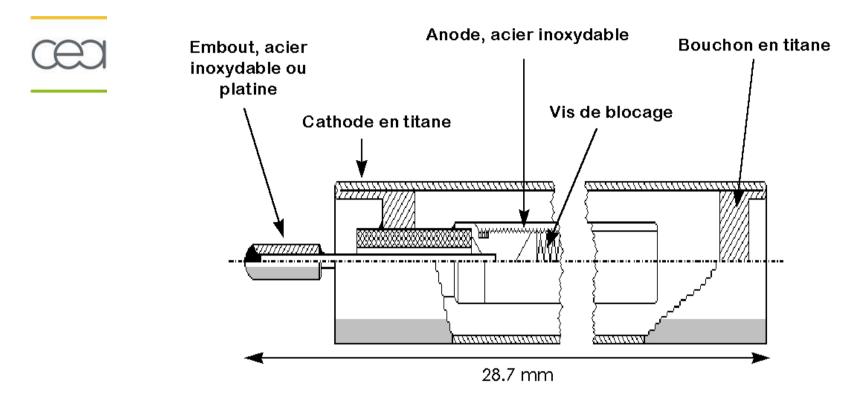
Integral and differential measurements are complementary from the standpoint of validating nuclear data evaluations

- Differential measurements provide information of high energy/angle resolution but generally inaccurate in level
- Integral measurements provide information of poor resolution but of usually very good accuracy in level
- Distinguish physics measurements
 - ✓ in near-zero-power critical facilities such as
 - □ EOLE, MINERVE, MASURCA
 - □ PROTEUS
 - □ VENUS
 - □ KUCA
 - G FCA
 - BFS
 - ...
 - \checkmark in **power reactors** \rightarrow irradiations experiments

Zero-power reactors

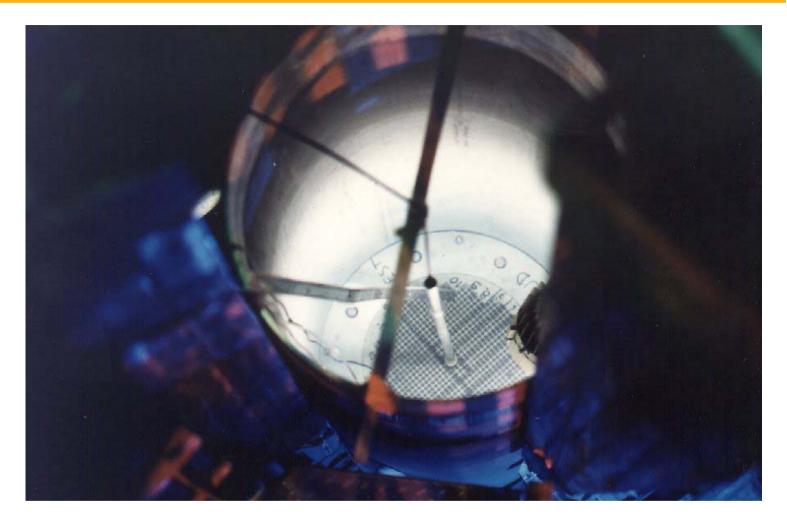

- are characterised by well-known constituents and a high degree of flexibility in terms of core loading, geometrical arrangements, operation
- ✓ allow measurements that are difficult or impossible to do in power reactors
- \checkmark are easy to model

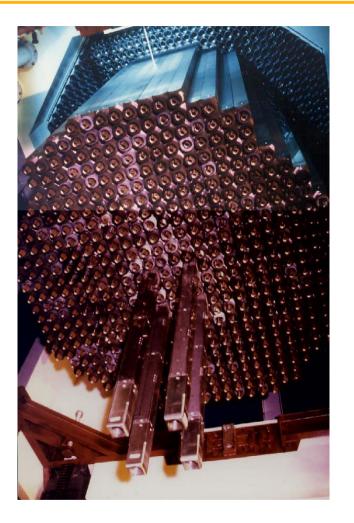
Power reactors


- ✓ Provide full-scale and actual operating conditions
- ✓ Provide information on capture cross sections and fuel inventory
- ✓ Require more effort in modelling
- > Both types of measurements are **needed and complementary**

Top view of the EOLE reactor core

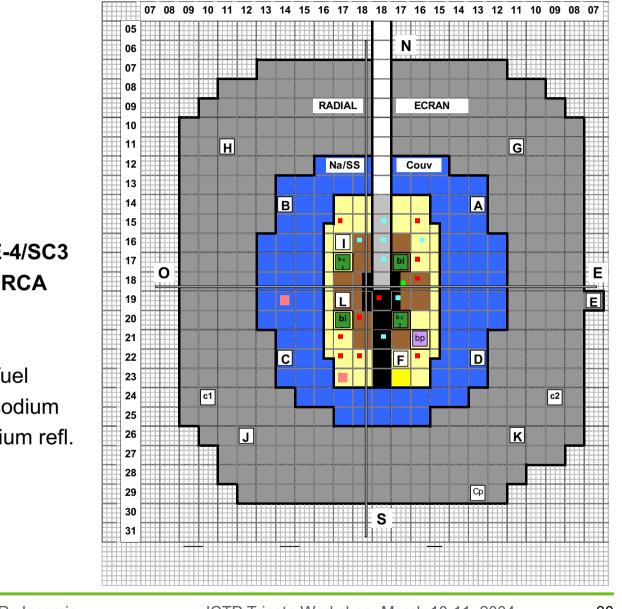
Fission chamber used in EOLE


Measurements Performed in EOLE as part of the MISTRAL Programme


	MISTRAL-1	MISTRAL-2	MISTRAL-3	MISTRAL-4
Critical mass	0	0	0	0
Buckling	0	0	0	
Spectral indices	0	0	0	
P(r)				0
P(z)				0
Temperature coeff.	0	0	0	
Soluble boron worth	0	0	0	0
Single absorbers worth	0	0	0	
Rod cluster worth				0
2D void worth			0	
$eta_{e\!f\!f}$	0	0		
Central heterogeneity	0	0	0	
Norm. UOX/MOX				0

View of the MINERVE reactor

Top view of the MINERVE reactor core



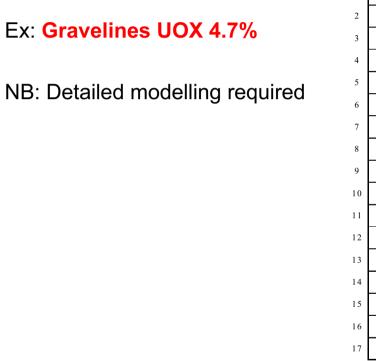
Cut-away View of a MASURCA Subassembly Showing Fuel Rodlets

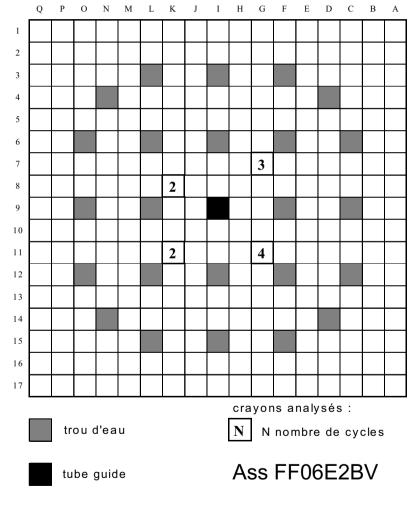
X-Y Model of the MUSE-4/SC3 Configuration in MASURCA

- □ Black zone = lead
- □ Brown zone = lead + fuel
- □ Yellow zone = fuel + sodium
- \Box Blue zone = steel-sodium refl.
- Grey zone = shield

CEA/DEN/DER/SPRC – R. Jacqmin

ICTP Trieste Workshop, March 10-11, 2004


Characteristics	UOX	MOX
Keff	+ 270 \pm 150 pcm	+ 100 ± 250 pcm
Power peak	- 0.4 ± 0.7 % + 0.2 ± 1.5 % (Ass Gd)	+ 1.3 ± 1.5 %
dK/dT _{comb} (Doppler coeff)	+ 1.9 ± 4 %	+ 11 ± 4 %
dK/dT_{mod} T = 20°C-80°C	- 0.0 \pm 0.3 pcm/°C	- 1.5 \pm 0.3 pcm/°C
dK/dT _{mod} T ≅ 300°C	- 0.9 ± 1.0 pcm/°C	+ 3.0 ± 2.2 pcm/°C
dK/dC _B (soluble boron coeff)	+ 3 ± 8 %	+ 0 ± 3 %
∆K/∆V _{mod} (void coeff)	+ 0 \pm 3 %	+ 2.0 ± 2.0 % (60% vide) + 1.3 ± 1.0 %(100% vide)
β eff	+ 2.4 ± 1.6 %	+ 0.1 ± 1.6 %
ρ ^{Control} rod cluster	+ 1 ± 1 %	-
Pyrex 24poisons ρ _{initial}	+ 2.7 ± 1.5 %	-
UO ₂ -Gd ₂ O ₃ ρ _{initial}	+ 0.2 \pm 0.6 %	-


PWR C/E Errors and Uncertainties Obtained with APOLLO2.5 + JEF-2.2 Data

Analysis of irradiated fuel rods

ICTP Trieste Workshop, March 10-11, 2004

Analysis of Integral Measurements

\sim	-	Isotope	20GWj/t	40GWj/t	50GWj/t	60GWj/t
Œ	-	e=3.1%	3.5	2.3		
		U234 e=4.5%	0.4	0.8	-1.7	1.5
		Incertitudes	±1.1	±1.4	±1.6	±2.0
	-	e=3.1%	0.5	1.7		
		U235 e=4.5%	1.0	1.8	2.1	3.0
. 11005	_	Incertitudes	±1.1	±2.0	±2.7	±3.5
U235	-	e=3.1%	-3.5	-3.3		
underestimated	←	- U236 e=4.5%	-4.6	-4.5	-4.6	-4.2
		Incertitudes	±1.3	±0.9	±0.7	±0.6
by 10%	-	e=3.1%	-10.2	-2.0		
		Np237 e=4.5%	-3.8	-4.1	-5.0	-6.0
	_	Incertitudes	±3.0	±2.8	±2.8	±2.7
	-	e=3.1%	-7.8	-6.0		
²³⁹ Pu predicted ← to within ±1%		Pu238 e=4.5%	-10.8	-9.0	-8.2	-8.4
	_	Incertitudes	±4.0	±3.9	±3.8	±3.7
		e=3.1%	-0.1	1.8		
	←	– Pu239 e=4.5%	-1.7	-0.4	0.3	0.6
	_	Incertitudes	±0.9	±1.1	±1.2	±1.3
	_	e=3.1%	-0.9	-0.6		
		Pu240 e=4.5%	-3.5	-2.4	-1.0	-0.8
	-	Incertitudes	±1.9	±1.5	±1.3	±1.1
2420		e=3.1%	-3.2	-1.5		
		Pu241 e=4.5%	-6.3	-5.0	-3.8	-3.1
²⁴² Pu	-	Incertitudes	±2.3	±1.8	±1.6	±1.6
underestimated		e=3.1%	-6.7	-7.0		
	←	– Pu242 e=4.5%	-10.5	-9.7	-8.8	-8.6
by 8%	-	Incertitudes	±4.0	±3.4	±3.1	±2.8

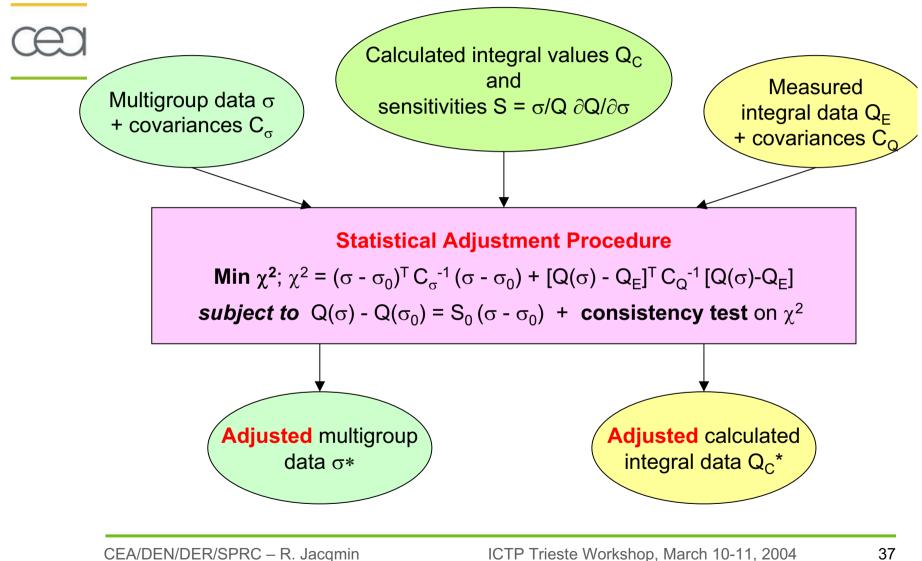
JEF-2.2 Trends Derived from the Analysis of Irradiated Fuel Rods

Analysis of integral Measurements

		R1-UO ₂		R2-UO ₂ very	
(A)		thermal core		thermal core	
	Fission	(C-E)/E	1σ exp .	(C-E)/E	1 σ exp.
	Product	in %	Unc. (%)	in %	Unc. (%)
	Sm	- 4.5	2.9	- 3.3	3.6
σ_{Sm149} underestimated \blacktriangleleft	¹⁴⁹ Sm	- 6.0	2.9	- 4.9	3.6
σ _{Sm149} underestimated by 5%	¹⁴⁷ Sm	+ 1.3	4.3	+ 2.7	4.7
	¹⁵² Sm	- 1.6	2.9	- 1.8	3.7
• · · · · · · · · · · · · · · · · · · ·	Nd	+ 0.4	3.0	- 3.3	3.7
σ _{Nd143} underestimated by 5%	¹⁴³ Nd	- 7.1	3.1	- 8.5	3.8
by 5%	¹⁴⁵ Nd	+ 0.4	3.8	+ 1.1	4.4
	¹⁵⁵ Gd	- 2.5	2.9	- 6.1	4.0
Crucial overestimated	¹⁰³ Rh	+ 11.0	4.0	+ 8.0	4.2
σ _{Rh103} overestimated by +10%	¹⁰³ Rh	-	-	+ 14	9.0
Dy +10%	¹⁰⁹ Ag	- 3.6	4.3	- 4.5	4.3
	¹⁰⁹ Ag	- 4.6	9.0	+ 2.8	6.9
	Ag	- 4.7	4.2	+ 0.3	4.7
	Мо	+ 1.5	3.2	+ 2.1	3.8
	¹³³ Cs	- 0.6	3.8	- 2.4	4.3
	¹³³ Cs	+ 4.1	8.5	+ 9.1	7.3

JEF-2.2 Trends Derived from FP Sample Oscillations in MINERVE

JEFF-3.0 vs. JEF-2.2 Radiative Capture Cross Section of Sm-149


	E _{res} (eV)	Spin	G _{tot} (meV)	G _n (meV)	G _g (meV)	Comment
	-0.285 +0.0973 +0.872	3 4 4	62.17 61.05 60.54	0.16914 0.549 0.7422	62.00 60.5 59.8	unchanged G _n increased unchanged
(a) 140000 - 120000 - 100000 - 80000 -	JEFF3.0		T=293.6 K			rst resonance G _n , surement performed nden
20000 - 20000 - 20000 - 1 20000 - 0					Thermal Value (b)	Resonance Integral (b)
ຍ ⁴⁰⁰⁰⁰ JI	EF2.2			JEF-2.2	40446	3487
				JEFF-3.0	41617 (+2.9%)	3490 (+0.1%)
		<u> </u>				
	0.01	0.1	1 1			

Fast Core C/E Errors and Uncertainties obtained with ERANOS using a JEF-2-based Unadjusted Cross Section Library

JEF2.2 ECCO Library	Average	Standard
	(C-E)/E	Deviation
critical mass M _c	+ 323 pcm	1460 pcm
buckling B_m^2	- 210 pcm	1200 pcm
K-infinity K ⁺	- 50 pcm	2200 pcm
f(Pu-239) / f(U-235)	1.1 %	2.6 %
Spectral f(U-238) / f(U-235)	- 1.0 %	3.7 %
c(U-238) / f(U-235)	1.4 %	2.2 %
Indices f(Pu-240) / f(U-235)	- 4.0 %	8.6 %
f(Pu-241) / f(U-235)	- 1.4 %	5.0 %
f(Pu-241) / f(U-235)	- 5.2 %	8.0 %
c(B-10) / f(U-235)	- 2 %	2.3 %

Statistical Adjustment Procedure

Fast Core C/E Errors and Uncertainties obtained with ERANOS Using a JEF-2-based Adjusted Cross Section Library

ERALI	B1 ECCO Library	Average	Standard
		(C-E)/E	Deviation
crit	tical mass M _C	+ 83 pcm	100 pcm
bu	ckling B ² m	- 260 pcm	150 pcm
K-	infinity K ⁺	123 pcm	240 pcm
	f(Pu-239) / f(U-235)	0.3 %	0.5 %
Spectral	f(U-238) / f(U-235)	- 1.0 %	0.8 %
	c(U-238) / f(U-235)	1.0 %	0.5 %
Indices	f(Pu-240) / f(U-235)	- 1.3 %	1.5 %
	f(Pu-241) / f(U-235)	0.5 %	1.2 %
	f(Pu-241) / f(U-235)	- 1.6 %	1.3 %
	c(B-10) / f(U-235)	- 1.3 %	0.8 %

The statistical adjustment is based on over 350 integral data obtained in various facilities worldwide, consistently analysed with the same data + code system (ERANOS)

Analysis of integral Measurements

Measured β_{eff} values and associated uncertainties

Facility	Configuration	Experimental technique	β _{eff} (<i>pcm</i>)	Unc. in <i>P</i> _m (%)	Unc. in <i>P</i> _c (%)	Std. dev. (%)
		Cf Source	723.5 (739, 708)	3.2	1.2	3.4
	R2	Frequencies	726.4	3.2	2.5	2.3
MASURCA		α-Rossi	745.0	2.5	2.5	1.8
	ZONA2	Cf Source	353.7 (358.6, 348.7)	3.5	1.2	3.5
	ZUNA2	Frequencies	350.0	3.2	2.9	2.2
	7A		395.0	2.4	1.5	2.8
SNEAK	7B	Cf Source	429.0	2.4	1.5	2.8
SINEAR	9C1	Cf Source	748.0	3.9	1.5	4.2
	9C2		416.0	4.3	1.5	4.6
	Cref	Covariances -	383.6	3.5	2.6	2.2
	PuCSS		223.4	3.5	3.0	2.3
ZPR	RSR		337.3	3.5	2.7	2.2
ZFK	U9		712.2	3.5	2.2	2.1
	UFeRef		670.8	3.5	2.4	2.1
	UFeLeak		675.8	3.5	2.4	2.1
FCA	XIX-1	Fraguanaias	742 (742, 742)	4.0	2.6	2.4
ГСА	XIX-3	Frequencies	249.1 (252, 246.2)	4.0	3.1	2.5
EOLE	MISTRAL-1	Enguanaisa	789.7	2.3	2.0	1.6
EOLE	MISTRAL-2	Frequencies	372.5	2.3	2.0	1.6
	SHE-8	Kinetics	696.0			4.6

CEA/DEN/DER/SPRC - R. Jacqmin

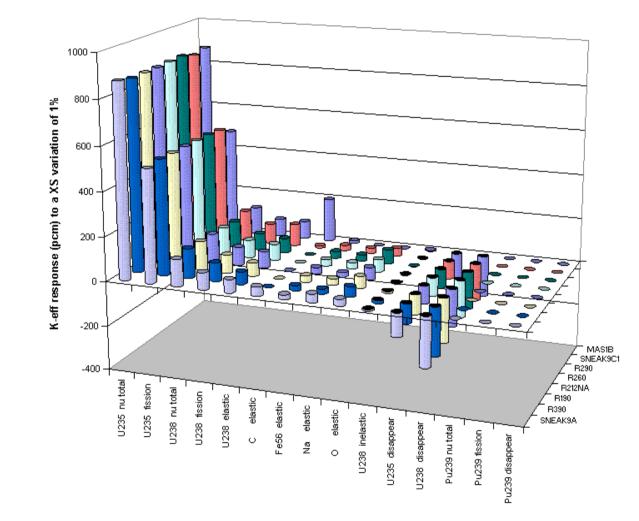
ICTP Trieste Workshop, March 10-11, 2004

Broad Group Trends Identified in JEF-2.2 Delayed Neutron Yields

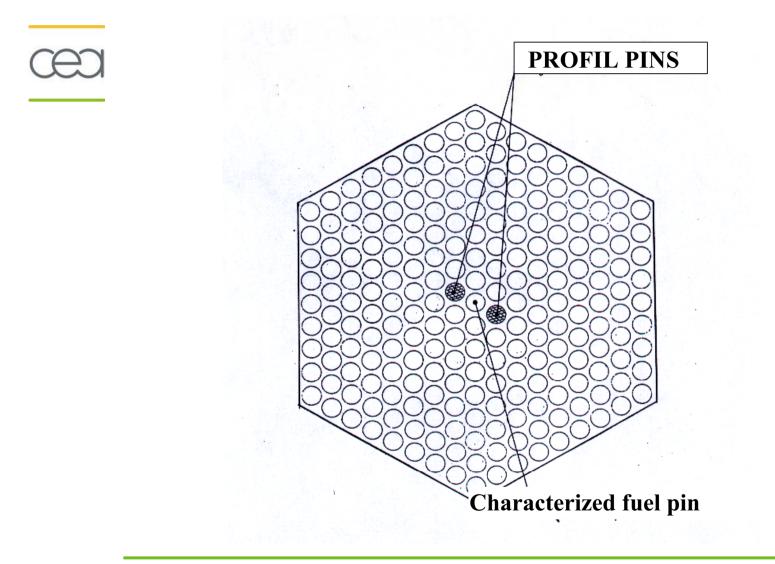
Group	1	2	3
Isotope	0-10 keV	10-500 keV	0.5-4 MeV
U-235	-2.0% ± 1.3%	0.4.% ± 1.6%	0.3% ± 3.5%
U-238	0.0% ± 5.9%	0.0% ± 5.9%	0.2.% ± 2.4%
Pu-239	0.4% ± 1.7%	1.9% ± 2.6%	1.2% ± 4.1%

Broad Group Trends Identified in JEF-2.2 Delayed Neutron Yields

Group	1	2	3
Isotope	0-10 keV	10-500 keV	0.5-4 MeV
U-235	-2.0% ± 1.3%	0.4.% ± 1.6%	0.3% ± 3.5%
U-238	0.0% ± 5.9%	0.0% ± 5.9%	0.2.% ± 2.4%
Pu-239	0.4% ± 1.7%	1.9% ± 2.6%	1.2% ± 4.1%


41

Analysis of integral Measurements


Changes in k_{eff} induced by the change from JEF-2.2 to JEFF-3.0 in ²³⁵U and ²³⁸U data (from JEFDOC-956)

Fast Uranium Cores	k _{eff} (JEFF-3.0) – k _{eff} (JEF-2.2) [pcm]				
	∆k (library)	∆k (²³⁵ U) [2]	∆k (²³⁸ U) [2]	∆k(²³⁵ U)+∆k(²³⁸ U)	
R390	-623	-455	-121	-576	
SNEAK9A	-743	-740	-77	-817	
R190	-659	-425	-109	-534	
MAS1B	-907	-803	-64	-867	
R212Na	-658	-314	-87	-401	
R260	-633	-340	-71	-411	
R290	-660	-355	-63	-418	
SNEAK9C1	-508	-297	-72	-369	

PROFIL Experiments in PHENIX

PROFIL Experiments in PHENIX

PROFIL-1

- ✓ One experimental pin, in the central fuel S/A of Phénix
- ✓ Burnup from 01/1974 to 01/1975 for 179 efpd
- ✓ 46 samples
- ✓ U235, U238, Pu238, Pu239, Pu240, Pu241, Pu242, Am241
- ✓ Mo95, Mo97, Ru101, Pd105, Cs133, Nd145, Sm149, B, Li

PROFIL-2

- \checkmark Two experimental pins in a fuel S/A next to the central one
- ✓ Burnup from 07/1979 to 09/1980 for 316 efpd
- ✓ 2 x 42 samples
- Th232, U233, U234, U235, U238, Np237, Pu238, Pu239, Pu240, Pu241, Pu242, Am241, Am243, Cm244
- ✓ Zr92, Pd106, Nd143, Nd144, Sm147, Sm151, Eu153

Results of the PROFIL-1 and –2 Analysis with JEF-2.2 Data

Nuclide	Reaction	PROFIL-1	PROFIL-2
U233	capture		0.93 ± 3.0
U234	capture		0.99 ± 3.0
U235	capture	0.93 ± 1.7	0.92 ± 1.7
	n,2n	0.95 ± 5.0	0.96 ± 5.0
U238	capture	0.98 ± 2.3	0.99 ± 2.3
	fission	1.00 ± 1.4	—
Np237	capture	—	0.97 ± 3.6
	n,2n	—	1.20 ± 4.7
Pu238	capture	0.97 ± 4.0	0.99 ± 4.0
Pu239	capture	0.96 ± 3.0	0.96 ± 3.0
	n,2n	0.63 ± 15.0	0.58 ± 15.0
Pu240	capture	1.10 ± 2.2	1.13 ± 2.2
	n,2n	1.13 ± 20.0	0.88 ± 20.0
Pu241	Capture	$\textbf{1.24} \pm \textbf{4.1}$	1.18 ± 5.9
	fission	0.98 ± 3.3	—
	n,2n	1.04 ± 4.1	—
Pu242	capture	1.18 ± 3.5	1.12 ± 4.3
	fission	0.94 ± 8.6	—
Am241	capture	1.03 ± 1.7	1.03 ± 1.7
Am243	capture	0.96 ± 5.0	

C/E ± uncertainty(%)

CEA/DEN/DER/SPRC - R. Jacqmin

ICTP Trieste Workshop, March 10-11, 2004

Contribution of the PROFIL-1 and –2 Data to the JEF-2.2 Statistical Adjustment

E/C-1 (%) ± uncertainty (%)

Nuclide	Reaction	Before adjustment	After adjustment (without PROFIL)	After adjustment (with PROFIL)
U235	capture	+ 7.5 ± 1.9	+ 6.0 ± 1.9	+ 2.1 ± 1.9
U238	capture	+ 1.0 ± 2.2	+0.8 \pm 2.2	+ 1.0 ± 2.2
Pu239	capture	+ 4.2 ± 2.6	+ 3.1 ± 2.6	+ 0.9 ± 2.6
Pu240	capture	- 9.9 ± 2.2	- 6.1 ± 2.2	- 1.1 ± 2.2
Pu241	capture	- 18.0 ± 3.9	- 17.7 ± 3.9	- 2.4 ± 3.9
Pu242	capture	- 13.0 ± 3.2	- 13.8 ± 3.2	- 2.1 ± 3.2

- Modern deterministic neutron data and code systems are capable of predicting nuclear reactor core characteristics with very good accuracy for conventional LWR's and FR's, especially in view of other potential sources of errors
- This has been demonstrated via
 - A large number of numerical validation calculations, particularly comparisons with Monte Carlo codes
 - The analysis of a large number of physics experiments performed in critical facilities and power reactors
- Improved performance is nonetheless required to achieve
 - ✓ Additional margin gains
 - ✓ Better predictive power
 - ✓ A broader range of application
- This will require, among other things,
 - ✓ Further improvements in evaluated nuclear data
 - ✓ Additional integral data, more diverse and more accurate