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Summary of lectures:

- General aspects of neutron time-
dependent problems

- Models for neutron kinetics
- Special features of point kinetics
- Factorization methods and quasi-

statics
- Extension of models to source-driven

systems
- The modeling of Àuid-fuel systems



Applications:
- Study of source and reactivity oscilla-

tions in a point system

- Use of a quasi-static code with feed-
back

- Neutron calculations for a Àuid-fuel
system



Time-scales appearing in the dynam-
ics of nuclear reactors:

* prompt neutron (very fast) scale, con-
nected to the lifetime of prompt neutrons
(10�e-10�S s)

* delayed emission scale, connected to
evolution of delayed neutron precursors
(10��-10� s)

* thermal-hydraulic scale (feedback),
connected to the evolution of temperatures
and hydraulic parameters (10��-102 s)

* control scale, connected to the move-
ment of masses in the system (control rods,
poisons)

* nuclide transmutation scale, con-
nected to neutron transmutation phenom-
ena (:102 s)

Very different time-scales , the
physico-mathematical problem is stiff



Introduction to neutronic model

The neutron evolution is strongly af-
fected by the delayed emissionsfrom ¿s-
sion

Many different precursors, grouped in 6
(8) families

Each family is characterized by:
* the fraction of ¿ssion neutrons ap-

pearing in the family q�
* the dacay constant b� [s��]
* the emission spectrum ��
The determination of delayed parame-

ters requires experiments and evaluations.



Time-dependent neutron Boltzmann
transport equation with delayed neutrons:

;
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A tribute to a great man

Ludwig Boltzmann
(1844-1906)



De¿nition of operators:
, balance operator
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, total multiplication operator
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Operators can be time-dependent be-
cause of:

* effects independent of neutron Àux
* non-linear effects (feedback)



Some considerations:
- the Boltzmann equation is a very

challenging problem
- it yields too much physical detail
- in real systems only integral quantities

can be observed

.

1. need to construct simpli¿ed models
(multigroup, diffusion...) based on physical
assumptions

2. need of numerical algorithms (dis-
cretizations, expansions)

', approximations

important: to establish adequateness of
approximations for the problem considered



The simplest model:
', Point kinetics

or, which is the same:
- only the fundamental eigenfunction

of the operator appears in the neutron
distribution at all instants

- the neutron distribution can be factor-
ized in an amplitude (time-dependent) and
a shape (time independent)

For source-driven system the eigenfunc-
tion interpretation fails: the distribution is
dominated by the source injection and may
involve a superposition of many eigenfunc-
tions



The point model and its solution
How to derive point equations consis-

tently?
Let us consider a simpler and easier

problem: space one-group diffusion

Basic equations
one-group diffusion in homogeneous

slab geometry with one delayed family and
time-constant properties:

;
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Exact solution by eigenfunction
expansion

Helmholtz eigenfunctions (complete
and orthogonal, most suitable base for the
diffusion problem)

_2)?E%�
_%2 ' ��2?)?E%�c

)?Ef� ' )?EM� ' f�
Expansion of the solution:

xE%c |� '
4
[

?'f
@?E|�)?E%�c

�E%c |� '
4
[

?'f
S?E|�)?E%�c

7E%c |� '
4
[

?'f
r?E|�)?E%��



where
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Solution is expressed in terms of eigen-
vectors:
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eigenvalues (generalized inhour equa-
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analytical full closed-form solution:
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A point reactor evolves according to the
fundamental eigenfunction )f only

', no space distortion during the tran-
sient

', the evolution is space-time separable
', any point is representative of the

whole system
', the source must be distributed ac-

cording to the fundamental eigenfunction



Observations
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/E�� are solutions of the inhour equation
(written in general form for 6 delayed
families):
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Features of the roots of the inhour
equation /E��:


 all roots are real

 six of them are close to and approach

each �b� as subcriticality increases�

 the seventh one, /E.�, is much larger

in absolute value and negative and it deter-
mines the prompt response of the neutron
population connected to the inverse of the
prompt lifetime


 with a constant source, asymptotically
the solution is driven by the exponential,
associated to the dominant root
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 the ratio of the precursor density to the

neutron density is
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which may assume values of the order of
10� - 10e!


 �b� has a special role

 the ”averaging” of delayed families is

a delicate task



Alternatively the point model can be
derived assuming a factorization of the
neutron Àux in the product of an amplitude
and a (constant) shape function

The derivation is carried out more gen-
erally later

Now: let us study the problem of
characterizing space and energy effects
in transients

The study can help us
* To understand the physics of neu-

tron evolution in multiplying systems
* To establish limits of simpli¿ed

models



New aspects for source-driven sys-
tems

', subcriticality
', dominance of the source

Scope of the study:
characterize spatial effects

* use analytical approach
', simpli¿ed con¿gurations
* diffusion theory with delayed neutrons

(one family)



Parameters to characterize transient:
asymptotic ratio
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Case 1. Initially critical reactor in
absence of delayed emissions
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Case 2. Initially critical reactor with
delayed emissions

contribution of the fundamental
eigenfunction:
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Case 3. Subcritical system
', source driven
source convolution term:|
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bution from all eigenfunctions.
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1. The response to a perturbation
in a critical reactor is spatially more
signi¿cant in a large system, i.e. -@r+
is larger and takes longer to reduce to
0, and thus the contribution of higher
order harmonics is more persistent�

2. The evolutions of both -@r+ and -G
for subcritical systems show that the im-
portance of higher-order harmonics in-
creases with increasing subcriticality, as
the systems are more source-dominated�

3. The comparison of initially critical
and subcritical systems shows that the
spatial feature of the transients is larger
in systems departing from criticality�
therefore, one can expect that the point
model may have obvious limitations of
applicability in these situations.
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2.Eigenvalue separation for critical and
subcritical systems. The circles indicate
results for the homogeneous system and
crosses for a system with an absorber that
introduces a change in & of -500 pcm.
Graph (a) on the left refers to the case
in which the homogeneous system is crit-
ical, while graph (b) refers to the case in
which the homogeneous system is subcriti-
cal (& ' f�bH).
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3.Spatiality of transients in critical and
subcritical systems, for a ¿xed reactivity in-
sertion of 500 pcm. The power evolution
for the initially critical case is diverging and
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shown in the graph. Solid line refers to a
small system (M ' 2fu) and broken line to a
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ing the initial state. For subcritical systems
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