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1. Introduction 

 
Since the beginning of nuclear reactor physics studies, perturbation theory has played an important 
role. As well known, it was first proposed in 1945 by Wigner [1] to study fundamental quantities 
such as the reactivity worths of different materials in the reactor core. It is also well known that this 
first formulation, today widely used by reactor analysts, makes a consistent use of the adjoint flux 
concept. The advantage of using perturbation theory lies in the fact that instead of making a new, 
often lengthy direct calculation of the eigenvalue (and then of the real flux) for every perturbed 
system configuration, a simple integration operation is required in terms of unperturbed quantities. 
 
It is interesting that as early as 1948 Soodak [2] associated to the  adjoint flux the concept of 
importance, viewing it as proportional to the contribution of a neutron, inserted in a given point of a 
critical system, to the asymptotic power. Along with the introduction of the concept of importance 
and, parallel to it,  along with the development of calculation methods and machines, from the early 
60' a flourishing of perturbation methods, at first in the linear domain and then in the nonlinear one, 
have been proposed for analysis of reactor core physics, shielding, thermohydraulics, as well as 
other fields. The perturbation formulations proposed by various authors may be subdivided into 
three main categories, according to the approach followed in their derivation: 
 
1. The heuristic approach, making exclusive use of importance conservation concepts [3-5].  It  will  

be referred  to,  in  the  following, as heuristic generalized perturbation theory  (HGPT) method. 
2. The  variational  approach [6-10]. 
3. The differential method [11-12] based on a formal differentiation of the response considered. 
 
Each of the above methods has its own merit, although all of them can be shown equivalent to each 
other [13]. 
 
Here we shall discuss the potential applications of the HGPT methodology to the analysis of 
subcritical systems. A first indication of its potential use with respect to neutron kinetic analysis of 
critical and noncritical systems (with an external source) and to the possibility of analyzing integral 
experiments in reactor facilities at subcritical conditions was suggested in 1969 [14]. In particular, 
the neutron and precursor importances associated with a given response was considered.  
 
Considering the increasing attention being given to the subcritical, accelerator driven systems 
(ADS), the application of the HGPT methodology for their cycle life analysis was proposed in 1997 
[15] basing on a former procedure [16,17] developed for critical reactors. Here, we shall shortly 
review these works. In particular, the role will be discussed of the importance function associated 
with the power control, and the definition of the concept of "generalized reactivity", merging into 
the standard concept of reactivity with the system approaching criticality.  
 



  
 

2. Theory 
 

In the HGPT method the importance function is uniquely defined in relation to a given system 
response, for example, a neutron dose, the quantity of plutonium in the core at end of cycle, the 
temperature of the outlet coolant. The HGPT method was first derived in relation to the linear 
neutron density field. Then it was extended to other linear ones. For all these fields the equation 
governing the importance function was obtained directly by imposing that on average the 
contribution to the chosen response from a particle [a neutron, or a nuclide, or an energy carrier] 
introduced at a given time in a given phase space point of the system is conserved through time 
("importance conservation principle"). Obviously such importance will result generally dependent 
on the time, position, and, when the case, energy and direction, of the inserted particle.  
 
Consider a linear particle field density represented by vector f (e.g., the multigroup neutron density 
field) and a response Q of the type

+    
 

  Q  = dt
F

o

t

t
∫ >< + fs ,   ≡   << s+

'
f >> ,       (2.1)  

where s+ is an assigned vector function and where < > indicate integration over the phase space. 
Weighting all the particles inserted into the system, let's assume a source s, with the corresponding 
importance (f*) will obviously give the response itself, i.e.,  
 
 <<f*,s>>  =  Q  = <<s+,f>> ,         (2.2) 
 
which represents an important reciprocity relationship. 
 
From the first derivations mentioned above the rules for determining the equation governing the 
importance function f* were learned (see in Appendix the derivation of this importance for the case 
relevant to the neutron field). They imply, in relation  to the equation governing f*: 
 
- change of sign of the odd derivatives, 
- transposing matrix elements, 
- reversing the order of operators, 
- substitution of the source s with s+. 
 
The first three rules will be generally called "operator reversal" rules.  
 
The HGPT method was then extended to any field governed by linear operators for which the rules 
for their reversal were known. In particular, it was extended to the derivative fields, obtained from 
expanding to first order, around a given starting solution, a number of important nonlinear 
equations, as those governing: 
 
- the  coupled  neutron/nuclide  field, relevant to core evolution and control problems,  
- the temperature field, relevant to thermohydraulics. 
                                                           
+ Expression 2(5.1) is also representative of more general responses, of the type  Q  =  << L(f) >> , L being a given 

function of f.  In fact, if we extend f  to the field 
y
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2.1. General Formulation 
  
Consider a generic physical model defined by a number of parameters pj  (j=1,2,...,J) and described 
by an N-component vector field f obeying a generally non-linear equation  
 
  m(f|p)  =  0  .           (2.3) 
 
Vector f(q,t) generally depends on the phase space coordinates q and time t. Vector p represents the 
set of independent parameters pj (j=1,2,...) fully describing the system and entering into Eq.(2.3). 
Their value generally determines physical constants, initial conditions, source terms, etc. Eq. (2.3) 
can be viewed as an equation comprising linear, as well as nonlinear, operators and is assumed to 
be derivable with respect to parameters pj and (in the Frechet sense+) component functions fn 
(n=1,2,...,N). 
 
Consider now a response of interest, or functional Q given by  Eq.(2.1). In the following, we shall 
look for an expression giving perturbatively the change δQ of the response Q in terms of 
perturbations δpj of the system parameters. In particular, expressions giving the sensitivity 
coefficients relevant to each parameter pj will be obtained. 

Expanding equation (2.3) around a reference solution gives, setting f/j= 
df
dpj

  , we obtain   

     

 0Omf =++δ∑
=

2jj

J

1j
j )(p //H         (2.4) 

 

where O2 is a second, or higher order term, and where m/j =
jp∂

∂m .  

Operator H is given by the expression   
 

                                                           
+ A Frechet derivative corresponds to a formal derivation which, when applied to an expression m, 
function of a variable f, gives as result a linear operator (defined as fm ∂∂ / ) [18]. It coincides with 
a normal derivative if it is applied to an algebraic expression. If we call α a linear operator acting on 
a function f, the Frechet derivative of  αf with respect to f is α. For example, if ≡α grad, we shall 
have 
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Since parameters pj, and then their changes δpj, have been assumed independent from each other, it 
must follow 
 
  Hf/j + m/j  =  0  ,          (2.6) 
 
which represents the (linear) equation governing the derivative functions f/j. The source term m/j is 
here intended to account also, via appropriate delta functions, for the initial and, if the case, 
boundary conditions.  
 
Consider now functional     
 
  Qj  =  <<h+,f/j>> .         (2.7) 
      
Introducing the importance (f*) associated with field f/j, if we use it as weight of the source term 
m/j, and integrate space- and time-wise, according to the source reciprocity relationship, Eq.(2.2), 
the resulting quantity will be equivalent to functional Qj, i.e.,     
            
  Qj  =  <<f*,m/j>> ,         (2.8) 
      
where the importance f* obeys the (index-independent) equation 
 
  H*f* + h+  =  0  ,         (2.9) 
 
H* being obtained by reversing operator H. As said above, this implies transposing matrix 
elements, changing sign of the odd derivatives, inverting the order of operators. 
 
We can easily see that the sensitivities sj (j=1,2,...,J) of system parameters can be written 
 

  sj  =  
dQ
dpj

   =  << 
jp∂

∂ +h ,f>> + <<f*, 
jp∂

∂m  >>  ,      (2.10)   

 
where the first term at the right-hand side represents the so called, easy to calculate, direct term. 
The overall change δQ due to perturbations δpj (j=1,2,...,J) of system parameters can be written, at 
first order, 
 

   δQ  = ∑
j=1

J
 δpj  [<< 

jp∂
∂ +h ,f>> + <<f*, 

jp∂
∂m  >>].     (2.11)   



  
 

 
It may occur, in certain circumstances, that one or more components (e.g., f2) of the vector field f 
do not depend on a given space-time coordinate (e.g., x). Consistently with viewing components of 
f as (pseudo)-density functions, and without alteration of the problem specifications and results, 
this, or these variables may be interpreted as averaged, or integral quantities and then replaced by 

the proper averaging, or integral operator [e.g., 
x

)x(

V
>⋅<

, or  <⋅>(x)] applied to the corresponding 

extended variable [so replacing, to exemplify, f2 with 
x

)x(2

V
)x(f~ ><

, or, simply, )x(2 )x(f~ >< ]. 

These extended variables will then be assumed to depend also on this coordinate, although only 
their average, or integrated values with respect to it are of interest and no further specification for 
them is required. This rule is referred to as "coordinate dependence complementation". Its use is 
required in order that a correct operation reversal is made to obtain the operator governing the 
importance function. In particular, the above rule may be applied to those cases in which the 
response Q, rather than by Eq.(2.1), is given by  an expression  
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dt)|ˆ(LQ pf ,         (2.12)  

)|ˆ(L pf  being given in terms of integral quantities [for instance, a ratio of the type 
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+

+
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2

1 ]. 

Consistently with the above complementation rule, we shall generally consider field  f  defined as 

y~
f̂

, with variable y~ such that )|ˆ(Ly~ pf>=< . The standard expression of the response given by 

Eq.(2.1), will then apply. The governing Eq.(2.3) will correspondingly become 
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3. Neutron/nuclide field 
 
To the neutron and fuel nuclide densities, represented by vectors n(r,t) and c(r,t), respectively, 
defined in the reactor cycle interval (to,tF), a specified intensive control variable, ρ(t), is associated 
so that the assigned, overall power history W(t) is maintained. Vector n represents the space- and 
time-dependent neutron density in a multigroup energy form, whereas vector c the space- and time-
dependent density of the various fuel nuclide species. The intensive, time-dependent, control 
variable ρ(t) may represent, for instance, the overall control rod bank penetration into the core (not 
their relative movement, which is generally described by parameters pj), or, in a subcritical system, 
the extraneous source strength. The general, nonlinear governing equations can then be written 
formally as  
 

  m(n)(n,c,ρ|p ) ≡  - 
t∂
∂n  +B n + sn = 0        (3.1)  

 



  
 

  m(c)(n,c|p ) ≡   - 
t∂
∂c + Ec + sc = 0       (3.2)  

                                        
  m(ρ)(n,c|p ) ≡   <c,S n> - W  = 0  ,       (3.3)  
  
where B  is the neutron diffusion, or transport, matrix operator (depending on c and ρ), E the nuclide 
evolution matrix (depending on n), sn (generally, also depending on ρ) and sc are given source 
terms+ , while 
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γ being the amount of energy per fission, and j
g,fσ  the microscopic g'th group fission cross-section of 

the j'th heavy isotope. V  is the diagonal neutron velocity matrix. Quantities γ, V, W and j
g,fσ  may be 

considered generally represented by (or function of) system parameters pj. Source terms sn and sc 
are also parameter dependent. 
 
In quasi-static problems, as those of interest here, the derivative t∂∂ /n  is negligible. 
 
If we introduce the field 
 

   
)t(
)t,(
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)t,(
ρ

= rc
rn

rf          (3.5) 

 
the system of Eqs..(3.1), (3.2) and (3.3) may be represented in the compact symbolic form, Eq.(2.3), 
and the HGPT methodology described above applied.  
 
Consider a functional      
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Q may represent, for instance, the amount of a given nuclide built up at time tF [in this case +
ns =0, 

+
ρs =0 and +

cs  includes a delta function δ(t-tF)], or the control variable ρ at a final time tF [in this case 
+
cs =0, +

ns =0 and +
ρs =δ(t-tF). The importance function 

 

                                                           
+ For a critical system sn is generally assumed zero during burnup, except a delta-like source  at to for representing initial 
conditions (usually considered at steady state), whereas sc is generally given by a sum of delta functions defined at to and 
at given times to account for fuel feed and shuffling operations. 
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can then be defined, and results governed by Eq.(2.9), with *H  and +h  given by the general 
expression:    
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cΩ and *

nΩ  being operators adjointc of the coupling terms Ωc [
n

c
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respectively. 
 
 

  
The equation relevant to function ρ* corresponds to a relationship between  n* and n, i.e., .             
    

 +
ρ=>

ρ∂
∂<+>









ρ∂
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To solve the equations relevant to n* and c* different resolution recurrent schemes may be 
considered, starting from the 'final' time tF and proceeding backward, along with the same time 
discretization adopted in the forward reference calculation. 

The sensitivity coefficient 
jdp

dQ  with respect to a given parameter pj may then be obtained from 

Eq.(2.10), with vector m   made of components m(n), m(c) and m(ρ) defined in Eqs.(3.1), (3.2) and (3.3), 
respectively.     
 
A general problem we are faced with is the following: how does the control reset (ρ) strategy affect 
the sensitivity analysis results? To answer this question, for simplicity limiting consideration to 
critical systems, let us consider Eq. (3.11) governing n*. We note that, given a particular solution 

*
partn , the general one may be written as 

             
 *** φnn α+= part          (3.11) 
 



  
 

where α is an arbitrary coefficient and *φ  the standard adjoint function obeying the homogeneous 
equation 
 
  0=**B φ           (3.12) 
 
Once a solution  *

partn  has been obtained, the solution desired can then be derived by proper filtering 
from the fundamental mode by imposing condition (3.10), in this case reduced to 

( ) +
ρ>=ρ∂∂< sT **B/ nn  and assuming +

ρs =0 (usually the term +
ρs  corresponds to a delta function). It 

results  
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The dependence of the importance function n* on the control mode adopted is evident.  
When calculating the sensitivity coefficient of a response Q with respect to a given parameter pj (or 
its change δQ with respect to parameter alterations δpj), the filtering of the importance function as 
shown in Eq.(3.13) corresponds to implicitly  accounting for the ρ-mode control reset of the 
criticality. 
 
The above result may have important implications, in the sense that in many circumstances, prior to 
a sensitivity study, it may be necessary to consider the proper reactivity control mode to be adopted. 
On the other hand, within many existing codes used with the HGPT methodology, the fictitious "λ-
mode" reset control is implicitly assumed, i.e., that related to the coefficient (eigenvalue) λ 
multiplying the fission source term (Fn) in the transport (or diffusion) equation. In this circumstance 

expression (3.13) for the importance n* 
will result, recalling that in this case FB =

λ∂
∂ , 
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Using this λ-mode filtering, rather than the correct ρ-mode one, may lead to erroneous results.  
  
Consider, for instance, the case of a sensitivity analysis with respect to core breeding, or conversion 
ratio, a quantity clearly dependent on the neutron energy spectrum. Assuming that the reactivity 
compensation, corresponding to a system parameter (for instance, the initial fuel enrichment) 
change, is effected, as it may very  well be the case for a thermal reactor, by an alteration of the 
average (boron) poison concentration in the coolant, the correct choice of the control mode reset 
would clearly have the effect of hardening (if boron is added), or softening (if boron is subtracted) 
the neutron spectrum. Instead, if a λ-mode reset would have been implicitly adopted (as is often 
done with existing codes), no significant neutron energy shift would have been taken into account, 
and, consequently, an erroneous sensitivity coefficient would result. 
  
It is also true that in principle one could calculate separately the amount of control poison (referring 
to the above example) to reset the criticality and consider the overall parameter plus control change 



  
 

along with the λ-mode methodology. But this would imply a reactivity reset calculation to be 
performed for each parameter considered.  On the other hand, the correct fundamental ρ-mode 
filtering may be a quite straightforward procedure. In fact, it can be effected "a posteriori" adopting 
expression (3.13) in which *

partn  would correspond to a preliminary λ-mode calculation with an 
existing code. 
 
 
 
 
3.1. Source Driven Systems  
 
One of the advantages often claimed for the subcritical source driven power systems is associated 
to the fact that the power level may be basically controlled by the source strength (via the regulation 
of the accelerator current). So, no regulating elements would be necessary, if a sufficient breeding is 
available (and/or an appropriate core burnable poison distribution is provided at the beginning of 
cycle) in the core for compensating the reactivity loss during burnup. To the neutron and fuel 
nuclide densities, a specified intensive source control variable, ρ(t), is then associated so that the 
assigned, overall power history W(t) is maintained. Eqs. (3.1), (3.2) and (3.3) may be properly 
written now as  
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     0 W - S)|,()( =>=<ρ nc,pcnm        (3.17) 
 
   
Since we generally consider systems at quasi-static, i.e., stationary conditions, the time derivative at 
second member of Eq.(3.15) may be neglected in the course of the integration process. 
Any response, functional of variables n, c, and ρ, could be considered for analysis. We think 
instructive to limit here consideration to the response defined by the expression  
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which corresponds to the relative source strength required at tF to assure the power level imposed. 
We may assume that, at unperturbed conditions, ρ (t)=1 in the interval (to,tF). If some system 
parameter (for instance, the initial enrichment, or some other material density) is altered, as in an 
optimization search analysis, it may be of interest to evaluate the corresponding change of ρ at the 
end of cycle, to make sure that given upper limit specifications of the source strength are non 
exceeded.  
 
Along with the HGPT methodology, the equations for the corresponding importance functions 
result  
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  <n*, sn> +  δ(t-tF)  =  0          (3.21) 
 
Eq. (3.21) corresponds to an orthonormal condition for n*.  
 
In order to determine the 'final' value n*(tF) required for starting the integration of Eq. (3.19), in 

consideration of the nature of the above governing equations, we shall first write n* and ρ* in the 
general form+     
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with t),(  rn*~ and (t)~  *ρ  being finite functions, vanishing at tF. 
 
Replacing into Eq. (3.19), integrating in the interval (tF - ε, tF+ ε), and then making ε → 0, we 
obtain the equation 
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Let us now define *

F
n  as obeying equation  
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We note that *

F
n  corresponds to the importance relevant to functional <c(tF),Sn(tF)>, i.e., to the 

system power W. From the source reciprocity relationship (Section 2), we may write 
 
  <c(tF), Sn(tF)>, =  < *

F
n , sn>  =  W .       (3.26) 

 
From constraint, Eq. (3.21), we easily obtain   
 

                                                           
+ The diverging of n*(r,t) at tF  may be explained on physical grounds recalling the meaning of importance (in this case, 
the contribution to the given response by a neutron with the same space/time coordinates) and considering that the 
response here is ρ(tF), i.e., the control assumed to maintain the power at a prefixed level. A neutron introduced at tF into 
the system would in fact produce a (delta-like) impulse of control ρ to balance its effect on the power level. Then, the 
importance associated to such neutron would be characterized  by a similar delta-like behavior. A quite similar 
reasoning applies in relation to the diverging of importance ρ*(t) at tF, considering that its physical meaning 
corresponds to the contribution to the response [defined as ρ(tF)] due to a unit energy insertion at tF or, which is the 
same, to an overall power pulse δ(t-tF). 
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and then 
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From this 'final' value, a recurrent calculation scheme may be defined starting from tF and 
proceeding backward. 
 
Along the HGPT methodology, the sensitivity coefficient relevant to the k'th parameter  pk is found 
as  
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with *

Fρ  given by Eq. (3.27).  
 
Rather than on the source term, a control on the neutron absorption in the multiplying region could 
be of interest. In this case, the (intensive) control variable ρ would represent the average penetration 
of the control elements, or the average density of the soluble boron in the coolant, and then would 
enter into the (transport, or diffusion) operator B. The orthonormal condition for the neutron 
importance n* would now be, rather than Eq. (3.21), 
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In this case, the sensitivity coefficient with respect to a given parameter pk would always be given 

by Eq. (3.29), with *
F

n  obeying Eq. (3.25), but with  
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In general, a control strategy, by which an automatic resetting of the imposed overall power is 
actuated, might imply a control intervention on both the neutron source strength and the absorbing 
elements within the multiplying region. In this case, ρ (which remains a unique, intensive control 
variable) would affect both operator B and the neutron source [in this latter case, via an appropriate 
ρ- and parameter dependent coefficient )|( pρα , assumed unity at unperturbed conditions]. The 
distribution between these two control mechanisms could be described by appropriate parameters 
(subject to perturbation analysis). The sensitivity coefficient, in this case, with respect to a given 
parameter pk would always be given by Eq. (3.29), with *

Fn   obeying Eq. (3.25), but with  
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3.2. Stationary Case 
 
To study a given subcritical system at stationary conditions (which may be interpreted at the 
beginning of its cycle life), we may consider the same system above in which the neutron source 
and the nuclide density are assumed time-independent during an arbitrary time interval (to,tB). We 
assume that at to the neutron density (no), as well as the control (ρo) have already reached 
stationary conditions. So, also these two quantities are time-independent in the same time interval. 
Their governing equations can then be written, in case the power level is controlled by the source 
strength, 
 
  Bno+ ρo sn,o = 0          (3.33)  
                                        
  <co,Sno> - Wo  = 0 .          (3.34)  
 
Also here we shall assume that at unperturbed conditions ρo =1. 
 
The same equations derived previously are applicable to this case, with the advertence of replacing 
tF with tB and setting the coupling operators *

c Ω  and *
n Ω  appearing in Eqs. (3.19) and (3.20) equal 

to zero. The sensitivity coefficient of the response ρ o [≡ρ(tB)] relevant to the k'th parameter pk can 

then be obtained.   Since in this case c*, as well as t),(  rn*~  and t),~  (* rρ  vanish, recalling Eq. 
(3.29), we obtain 
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where 
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and *

o n  obeys equation  
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o

* =+ cn   .         (3.37)  
 
If, rather than via the source strength, the power level reset control is assumed to be regulated via 
neutron absorption, so that the control ρo would enter into operator B, the sensitivity coefficient 
would be given always by Eq. (3.35), but with  
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We might as well consider a (fictitious) control mechanism affecting the fission source, rather than 
the neutron absorption, i.e., we might choose as control a coefficient multiplying the fission matrix 
(F) and, therefore, entering into the Boltzmann, or diffusion, operator B (=A+ρoF). The sensitivity 
coefficient would be given again by Eq. (3.35), but with  
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3.3. Reactivity of Subcritical Systems 
 
For resetting the power level, we have considered above  different control mechanisms to which the 
following types of equations governing the neutron density may be associated: 
 
   B(p)no + ρosn,o(p) = 0       (source control)   (3.40)  
 
   B(ρo|p)n o + sn,o(p) = 0     (neutron absorption,  or fission control) (3.41) 
                 
where the control and parameter dependence is indicated.  
 
The sensitivity expression (3.35) may be generalized so that 
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 with *
o n  obeying Eq. (3.37). 

 
A corresponding perturbation expression may now be obtained. Assuming that the power Wo 
appearing in Eq. (3.44) is not subject to perturbation, we may write: 
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As said previously, δρo corresponds to the control change necessary to reestablish the power level 
existing before the perturbation δm(n,o). We may as well say that the perturbation δm(n,o) [and 



  
 

δ(STco)] would produce a power level change equivalent to that produced by a control change δKρ 
given by the equation 
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In the case of the (fictitious) control on the neutron fission, setting λ in place of ρ to distinguish this 
peculiar case, we may explicitly write 
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The first term at the right side closely resembles the reactivity expression normally used for critical 
systems+. So, we shall denote quantity δKλ given by expression (3.47) as 'generalized reactivity'. 
The second term may be defined the "source reactivity", whereas the last one a "direct effect". To 
account for a generic ρ-mode control mechanism, we shall extend this definition to δKρ, similarly 
defined by Eq. (3.46), i.e., explicitly: 
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and call it ‘generalized ρ-mode reactivity’. 
 
 
 
3.4. The multiplication factor of the subcritical core 
   
Let us first write the homogeneous “critical” equation corresponding to the inhomogeneous one, Eq. 
(3.3), relevant to a subcritical system, in the form: 
  

0000=+ hom
eff

hom F
k
1A nn ,  (3.49) 

 
where coefficient 1/keff ,  keff being the multiplication factor, is introduced to "restore" the neutron 
balance.    
  
The standard adjoint function φφφφ* is then given by equation : 
 

 0F
k
1A
eff

=+ **** φφφφφφφφ .     (3.50) 

  

                                                           
+ The first term at right hand side of Eq. (3.47) can be demonstrated to formally approach the standard reactivity 
expression as the (reference) system considered gets close to criticality conditions (Gandini, 1997). 



  
 

For systems not too far from criticality conditions 

  

 homn  may be assumed as an approximation of no. 
Multiplying equation (3.49) by φφφφ* and space integrating, recalling equation (3.33), we may then 
write: 
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To improve (3.51), by taking into account the change in shape of the flux, a different definition of 
the subcriticality has been proposed, introducing a “k-source” coefficient (ks). The procedure 
consists in considering an integral balance condition obtained by integrating equation (3.5), with 

homn  replaced by n and keff  by coefficient ks, given by the ratio 
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u being a unit vector. Recalling that ),( snn +−= FA  we obtain: 
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This new definition does not account for the difference of  “importance” between the neutrons 
generated by fission and the “importance” of the source neutrons. 
  
A more satisfactory definition of the subcriticality may be proposed, introducing the importance 
function *

on  defined previously, i.e.,: 
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which takes into account both the inhomogeneous flux distribution and the importance of neutrons 
with respect to the relevant “observable” of the system (i.e. its power level). 
 
It may be shown that when approaching criticality, equation (3.54) becomes equal to 
equation (3.51), as required on physical grounds. 
 
 
Appendix  
 
Let us consider the generic transport equation, with obvious notation, 
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The boundary conditions are obtained from physical considerations. Assuming that the system is 
isolated, i.e., comprehending all its neutron sources, and that external boundary surfaces are convex, 
it will be: 
 

Flux φ(r, ΩΩΩΩ,E|t)=0 for directions of ΩΩΩΩ entering in the medium. 
 
Let us consider now in a the interval (to,tF) a generic functional 
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with vector function h+ given. The notation << >> here means integration over space and time.  
 
For times t < tF, we may write the balance equation governing the importance function. Let us see 
closer the mechanisms by which a neutron of coordinates ),E,( ΩΩΩΩr  gives and gains importance  
 
At the beginning it will have an amount of importance which we shall denote as n∗ ),E,( ΩΩΩΩr .  After 
a time ∆t the following events will occur: 
 
a) The neutron has reached point  r' = r + ΩΩΩΩ∆s, where 
 

∆s = v∆t  
 

keeping the same velocity. The probability for the neutron of arriving at r' is given by the 
quantity.  
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which corresponds to the mean free path of the neutron without undergoing any type of collision. 
 

b) The neutron undergoes a scattering collision with change of energy and angle, respectively, from 
E into the interval dE' around E' and from ΩΩΩΩ into the interval dΩΩΩΩ' around ΩΩΩΩ' . This occurs with 
probability: 
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which corresponds to the product of the probability that during the interval ∆s the neutron 
undergoes a collision with and that the collision is a scattering one. 
 



  
 

e) The neutron undergoes a fission collision. In analogy with the scattering, the probability that a 
fission neutron emerges in the interval energy dE' around E' and within dΩΩΩΩ' around 

  

 ΩΩΩΩ'  is givn by 
the ratio: 
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e) During the interval ∆s, the neutron contributes to the response Q equal to 
 
 t)t~,E,~(h ∆+ ΩΩΩΩ,,,,r  . 

 
f) The neutron undergoes a parassitic capture. In such case it simply disappears from the system. 
 
To the neutrons so emerged after a time ∆t we may associate the values of the importance function 
associated with the coordinates which characterize such neutrons. The events to be accounted for 
are the first four ones. For the importance conservation principle, the sum of the importances 
relevant to each possible event must be equal to that of the starting neutron. It will then be, recalling 
that ∆s/∆t=v, 
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where r~  represents a point in the (r, r+ΩΩΩΩ∆s). 
 
Adding and subtracting at the first member of equations (14.33) )tt,E,(n* ∆+,ΩΩΩΩr  and dividing by 
∆s, at the first member there will be the incremental ratios  
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Making  0t →∆ , we shall then obtain the equation governing the importance function:  
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As may be easily verified, this equation may be obtained from that relevant to neutron density by 
changing the sign of the first derivatives, exchanging the arguments ( ΩΩΩΩΩΩΩΩ →→ ',E'E ) with 



  
 

( ','EE ΩΩΩΩΩΩΩΩ→→ ), respectively, and, similarly, for what concerns the fission source, substituting 
to )'E()E( fΣνχ  the product  )E()'E( fΣνχ .  In other terms, we may say that the importance function 
is symmetrical to the real density, this implying a reversion of the operators.  This symmetry is 
reflected also in relation to the boundary conditions. As well known, the boundary conditions 
associated with the real density, in case of an isolated system, are:  
 
n ),E,( ΩΩΩΩr =0 for r on the external boundary and ΩΩΩΩ directed inside the system (assumed 

having a convex external surface). 
 
On the countrary, the boundary conditions relevant to the importance function are: 
 
n 

∗ ),E,( ΩΩΩΩr =0 for r on the external boundary and ΩΩΩΩ directed outside (assumed having a 
convex external surface). 

 
This condition is obtained considering that the contribution to the response from a neutron escaping 
from the system is clearly null.  
 
In general, we may define the general principle of symmetry between the real flux and importance 
function, according to which all the properties valid for the flux are also valid for the asjoint 
function, provided that the sense of energy, angular, space and time variations are reversed.  
 
Diffusion approximation 
 
Let us consider now the multigroup equation in diffusion theory: 
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Basing on the previous arguments, the importance function relevant to the corresponding response 
expressed in vector form  as >>=<< + nh ,Q , will be: 
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In this case, since the laplacian 2∇ corresponds do a double derivation in space, its sign doesn't 
change with respect to the real case, while in the terms of the sum their indeces i,j are exchanged.  
 
A significant simplification of the notation is obtained by writing the equations in vector 
representation by introducing matrix operators. In particular, for equations (A.5) and (A.6),  relevant 
to the real flux and the importance function, respectively, we may define the following operators: 
 
 B=A + F                                         

 (A.7) 
 
 B*=A* + F*                                        (A.8) 
 
where 
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and the following vectors 
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Equations (A.5) e (A.6) may then be written in the compact form  
 

 =
dt
dn BVn          (A.14) 

 =−
dt

d *n VB*n*+h+ .         (A.15) 

 



  
 

To note that the elements off the diagonal of matrices (A.9) and (A.11) correspond to scattering 
transfer macroscopic cross-sections, while the elements of (A.10) e (A.12) correspond to fission 
macroscopic ones, multiplied by the number of secondaries per fission. To note also that for 
obtaining matrix A* from A, matrix F* from F, and then matrix B* from B, rows and columns are 
exchanged, which corresponds to exchanging group indices i,j. 
 
In this case the boundary condition for the importance function remains the same as that for the real 
flux, i.e., it vanishes at the extrapolated length. 
 
Writing the above equations in terms of the neutron flux φφφφ 

  

 (=Vn), we have 
 

 =−

dt
dV 1 φφφφ Bφφφφ          (A.16) 

 =− −
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dV

*
1 n B*n*+V-1h+.        (A.17) 

 
To note that equations (A.15) and (A.17), relevant to the importance function, are equivalent.  
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