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Part 4.1a, comment on Reich Moore
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Reich-Moore Approximation to Multilevel 
Multi-Channel R-Matrix Theory

F. H. Fröhner, “Evaluation and Analysis of Nuclear 
Resonance Data,” JEFF Report 18 (2000), page 60:

“Experience has shown that with this approximation 
[Reich Moore] all resonance cross section data can be 
described in detail, in the windows as well as in the 
peaks, even the weirdest multilevel interference 
patterns …  It works equally well for light, medium-
mass and heavy nuclei, fissile and nonfissile.”
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When does Reich-Moore not work ?

• For direct effects
(R-matrix is a description of compound nucleus effects.)
− for example 37Cl(n,?)

• “R-Matrix Evaluation of Cl Neutron Cross Sections up to 1.2 MeV”
Sayer, Guber, Leal, Larson, and Rauscher, ORNL/TM-2003/50, March 2003

• Direct effects must be added explicitly

• New options are now available in SAMMY for fitting the magnitude of 
direct capture component
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Example:  19F

• Model calculations by Goran Arbanas, ORNL

• Analysis by Luiz Leal, ORNL
− Multiplier initially at 1.0, fitted to 0.547



4.1a - 5

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

19F, continued
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When does Reich-Moore not work ?  
(continued)

• When trying to describe interference effects in 
reactions like
− 12C(a,?)

− 15N(p,?) 

− 21Ne(p,?)

− 22Ne(n,?)

− re Michael Heil, Karlsruhe

− Artificial example is shown on next slide

when there is level-level interference in 
the capture channel

because capture is treated “on average” 
in Reich-Moore approximation
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Solid line = Reich Moore
Dot-dash = full R-matrix # 1
Dash = full R-matrix # 2
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10 0001.01.0Reich Moore

1.010 00010-81.0fake full 
R-matrix # 1

1.010 00010-81.0fake full 
R-matrix # 2

-1.111 00010-81.1

1.111 00010-81.1

11 0001.11.1

Greact

(eV)
Gn

(eV)
G?
(eV)

Energy
(MeV)

Note:  can use Reich-Moore to 
approximate the full R-matrix

Comparisons with true 
R-matrix codes have 

shown that this works 
well
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Part 4.1b.  Spin group assignments
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Problem
• How to define appropriate spin groups when “starting from scratch”?

• Program SAMQUA can help you generate spin groups and channel 
information in SAMMY-INPut-file format

• SAMQUA is distributed with SAMMY code

• written by Olivier Bouland, Richard Babut, and Nancy Larson

− “SAMQUA - A Program for Generating All Possible Combinations of Quantum 
Numbers Leading to the Same Compound Nucleus State in the Framework of the R-
matrix Code SAMMY,” Olivier Bouland, Richard Babut (Laboratoire d'Etudes de 
Physique, CEA/Cadarache, France), and Nancy M. Larson; JEFDOC 929 OECD/NEA 
Publications and ENDF-363 (October 2003).

• Nevertheless you should learn how to do this yourself in order to understand 
what’s going on!
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Notation

• Incident channels:
− incident particle: spin i and parity p
− target particle: spin I and parity ?
− possible channel spins are | I - i | = s  = I + I
− orbital angular momentum is l

• Exit channels:
− first particle: spin i' and parity p'
− target particle: spin I' and parity ? '
− possible channel spins are | I' - i' | = s' = I' + I‘
− orbital angular momentum is l’

• For each l and l’, 
− figure possible J-parity values for incident channels
− figure possible J-parity values for exit channels

• Channels with same  J-parity are in same spin group
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Example:  spin groups for 14N(a,n)17F
i I s l J

1 0+ 1+ 1+ 0+ 1+
2 1- 0-
3 1-
4 2-
5 2+ 1+
6 2+
7 3+
8 1/2+ 5/2+ 2+ 0+ 2+
9 1- 1-

10 2-
11 3-
12 2+ 0+
13 1+
14 2+
15 3+
16 4+
17 3+ 0+ 3+
18 1- 2-
19 3-
20 4-
21 2+ 1+
22 2+
23 3+
24 4+
25 5+

a: i p = 0 +
14N: I  ?  = 1 +

n: i p = 1/2 +
17F: I  ?  = 5/2 +

Step 1:  tabulate all 
possible channels 
(for a given max l ), 
perhaps on a 
spread sheet

Entrance
channels

Exit 
channels
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Example, continued i I s l J
1 0+ 1+ 1+ 0+ 1+
2 0+ 1+ 1+ 1- 0-
3 0+ 1+ 1+ 1- 1-
4 0+ 1+ 1+ 1- 2-
5 0+ 1+ 1+ 2+ 1+
6 0+ 1+ 1+ 2+ 2+
7 0+ 1+ 1+ 2+ 3+
8 1/2+ 5/2+ 2+ 0+ 2+
9 1/2+ 5/2+ 2+ 1- 1-

10 1/2+ 5/2+ 2+ 1- 2-
11 1/2+ 5/2+ 2+ 1- 3-
12 1/2+ 5/2+ 2+ 2+ 0+
13 1/2+ 5/2+ 2+ 2+ 1+
14 1/2+ 5/2+ 2+ 2+ 2+
15 1/2+ 5/2+ 2+ 2+ 3+
16 1/2+ 5/2+ 2+ 2+ 4+
17 1/2+ 5/2+ 3+ 0+ 3+
18 1/2+ 5/2+ 3+ 1- 2-
19 1/2+ 5/2+ 3+ 1- 3-
20 1/2+ 5/2+ 3+ 1- 4-
21 1/2+ 5/2+ 3+ 2+ 1+
22 1/2+ 5/2+ 3+ 2+ 2+
23 1/2+ 5/2+ 3+ 2+ 3+
24 1/2+ 5/2+ 3+ 2+ 4+
25 1/2+ 5/2+ 3+ 2+ 5+

Step 2: fill in the 
blanks on the 
spread sheet
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Example, continued i I s l J sg# ch#
2 0+ 1+ 1+ 1- 0- 1 1

12 1/2+5/2+2+ 2+ 0+
3 0+ 1+ 1+ 1- 1- 2 1
9 1/2+5/2+2+ 1- 1- 2 2
1 0+ 1+ 1+ 0+ 1+ 3 1
5 0+ 1+ 1+ 2+ 1+ 3 2

13 1/2+5/2+2+ 2+ 1+ 3 3
21 1/2+5/2+3+ 2+ 1+ 3 4

4 0+ 1+ 1+ 1- 2- 4 1
10 1/2+5/2+2+ 1- 2- 4 2
18 1/2+5/2+3+ 1- 2- 4 3

6 0+ 1+ 1+ 2+ 2+ 5 1
8 1/2+5/2+2+ 0+ 2+ 5 2

14 1/2+5/2+2+ 2+ 2+ 5 3
22 1/2+5/2+3+ 2+ 2+ 5 4
11 1/2+5/2+2+ 1- 3-
19 1/2+5/2+3+ 1- 3-

7 0+ 1+ 1+ 2+ 3+ 6 1
15 1/2+5/2+2+ 2+ 3+ 6 2
17 1/2+5/2+3+ 0+ 3+ 6 3
23 1/2+5/2+3+ 2+ 3+ 6 4
20 1/2+5/2+3+ 1- 4-
16 1/2+5/2+2+ 2+ 4+
24 1/2+5/2+3+ 2+ 4+
25 1/2+5/2+3+ 2+ 5+

Step 3:  Reorder by 
J p ; assign spin-
group numbers 
and channel 
numbers

Question:  Why are 
some states not 
assigned to a spin 
group?

a: i p = 0 +
14N: I  ?  = 1 +

n: i p = 1/2 +
17F: I  ?  = 5/2 +
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Example, continued
Step 4:  Construct the 
SAMMY INPut file

a      b    c  pJ
d  z e  Z f    L  s

1      1    0 -0.0
1  2 1  7 0    1 +1.0

2      1    1 -1.0
1  2 1  7 0    1 +1.0
2    1    0    1 +2.0

3      2    2 +1.0
1  2 1  7 0    0 +1.0
2  2 1  7 0    2 +1.0
3    1    0    2 +2.0
4    1    0    2 +3.0

4      1    2 -2.0
1  2 1  7 0    1 +1.0
2    1    0    1 +2.0
3    1    0    1 +3.0

5      1    3 +2.0
1  2 1  7 0    2 +1.0
2    1    0    0 +2.0
3    1    0    2 +2.0
4    1    0    2 +3.0

6      1    3 +3.0
1  2 1  7 0    2 +1.0
2    1    0    0 +3.0
3    1    0    2 +2.0
4    1    0    2 +3.0

Legend:

a = spin group number
b = how many entrance channels
c = how many exit channels
d = channel number
e = 1 if penetrabilities are non-unity
f = 1 if shift factor is non-zero

p J = parity, spin
z = charge for smaller particle
Z = charge for larger particle
L = orbital angular momentum
s = channel spin
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Exercises for the student

• Assume you need higher l values for the a + 
14N case described above.  Generate the spin 
group information in this situation.

• What are the appropriate spin groups and 
channels for n + 16O, assuming your 
measurements go above the (n,a) threshold?

• Extend to include inelastic channels.
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New format options for INPut file

• Problem:  formats for INPut file are becoming unwieldy 
due to options not originally available
− outgoing channel particles have different masses and quantum 

numbers from incident channel particles

− charge must be specified

− threshold and radii must be given

• Solution:  reorganize and simplify
− specify the two particles (charge, spin, mass, threshold) 

independent of spin group definition; provide a label to pair

− channel definition gives l and s plus pair-label
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Example: t100a.inp – the “old” version
17O(alpha,n)20Ne fit (R. BABUT 03-13-2001) vs BAIR data (Phys. Rev. C 7,4,1973)
O17       16.99913   2000000.0 5500000.0         2  100
csisrs
spin of incident particle is +0.0
use new spin group format
cm coulomb excitation energies
cm non coulomb excitation energies
broadening is not wanted

5.00000   1.000
REACTION CROSS SECTION

2.5
1      1    1 -0.5  1.000   2.5         17O

1  2 1  8 0    3  2.5     0.0              0  5.00 5.00 16.99913 4.0026
2    1    0    1  0.5     0.0        -588708. 3.8003.800 19.992436 1.0086649

2      1    1  0.5  1.000   2.5         17O
1  2 1  8 0    2  2.5     0.0              0  5.00 5.00 16.99913 4.0026
2    1    0    0  0.5     0.0        -588708. 3.8003.800 19.992436 1.0086649

3      2    1 -1.5  1.000   2.5         17O
1  2 1  8 0    1  2.5     0.0              0  5.00 5.00 16.99913 4.0026
2  2 1  8 0    3  2.5     0.0              0  5.00 5.00 16.99913 4.0026
3    1    0    1  0.5     0.0        -588708. 3.8003.800 19.992436 1.0086649

4      2    1  1.5  1.000   2.5         17O
1  2 1  8 0    2  2.5     0.0              0  5.00 5.00 16.99913 4.0026

...
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...
2  2 1  8 0    4  2.5     0.0              0  5.00 5.00 16.99913 4.0026
3    1    0    2  0.5     0.0        -588708. 3.8003.800 19.992436 1.0086649

5      3    1 -2.5  1.000   2.5         17O
1  2 1  8 0    1  2.5     0.0              0  5.00 5.00 16.99913 4.0026
2  2 1  8 0    3  2.5     0.0              0  5.00 5.00 16.99913 4.0026
3  2 1  8 0    5  2.5     0.0              0  5.00 5.00 16.99913 4.0026
4    1    0    3  0.5     0.0        -588708. 3.8003.800 19.992436 1.0086649

6      3    1  2.5  1.000   2.5         17O
1  2 1  8 0    0  2.5     0.0              0  5.00 5.00 16.99913 4.0026
2  2 1  8 0    2  2.5     0.0              0  5.00 5.00 16.99913 4.0026
3  2 1  8 0    4  2.5     0.0              0  5.00 5.00 16.99913 4.0026
4    1    0    2  0.5     0.0        -588708. 3.8003.800 19.992436 1.0086649

7      3    1 -3.5  1.000   2.5         17O
1  2 1  8 0    1  2.5     0.0              0  5.00 5.00 16.99913 4.0026
2  2 1  8 0    3  2.5     0.0              0  5.00 5.00 16.99913 4.0026
3  2 1  8 0    5  2.5     0.0              0  5.00 5.00 16.99913 4.0026
4    1    0    3  0.5     0.0        -588708. 3.8003.800 19.992436 1.0086649

... [incomplete]
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t100b.inp – the “new” version
17O(alpha,n)20Ne fit (R. BABUT 03-13-2001) vs BAIR data (Phys. Rev. C 7,4,1973)
O17       16.99913   2000000.0 5500000.0         2  100
csisrs
spin of incident particle is +0.0
cm coulomb excitation energies
cm non coulomb excitation energies
broadening is not wanted
particle-pair definitions are given
--------------------------------------------------------------------------------
a = default for incident, b = def for target
u = Lpent (1 or 0), v = Ishift (0 or 1)
name     a b  z  Zuv i    I         m         M Threshold      Reff Rtru
--------------------------------------------------------------------------------

alf+17O       2  810  0.0  2.5 4.0026000 16.999130           5.0000000 5.0000000
n+20Ne   n    0 1010  0.5  0.0 1.        19.992436 -588708.0 3.8000000 3.8000000

5.00000   1.000
REACTION CROSS SECTION

2.5
1      1    1 -0.5  1.000   2.5         17O

1  alf+17O     3  2.5
2  n+20Ne      1  0.5

2      1    1  0.5  1.000   2.5         17O
1  alf+17O     2  2.5
2  n+20Ne      0  0.5

3      2    1 -1.5  1.000   2.5         17O
...

Comments (between lines)

Information about the 
two particle pair sets

Spin groups then refer to 
particle-pair information



4.1a - 13

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

...
1  alf+17O     1  2.5

2  alf+17O     3  2.5
3  n+20Ne      1  0.5

4      2    1  1.5  1.000   2.5         17O
1  alf+17O     2  2.5
2  alf+17O     4  2.5
3  n+20Ne      2  0.5

5      3    1 -2.5  1.000   2.5         17O
1  alf+17O     1  2.5
2  alf+17O     3  2.5
3  alf+17O     5  2.5
4  n+20Ne      3  0.5

6      3    1  2.5  1.000   2.5         17O
1  alf+17O     0  2.5
2  alf+17O     2  2.5
3  alf+17O     4  2.5
4  n+20Ne      2  0.5

7      3    1 -3.5  1.000   2.5         17O
1  alf+17O     1  2.5
2  alf+17O     3  2.5
3  alf+17O     5  2.5
4  n+20Ne      3  0.5

[... incomplete]
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t100by.inp – the “newest” version
17O(alpha,n)20Ne fit (R. BABUT 03-13-2001) vs BAIR data (Phys. Rev. C 7,4,1973)
O17       16.99913   2000000.0 5500000.0         2  100
csisrs
cm coulomb excitation energies
cm non coulomb excitation energies
broadening is not wanted
key-word particle-pair definitions are given

Name = alf+17O
Pa = alpha     Pb=17O    Zb=8   Sb=2.5       Mb=16.999130
Mass a = 4.0026000000

Name = n+20Ne
pa=n  particle b = 20Ne  Zb=10  Mass b = 19.992436
Q=588708.0

5.00000   1.000
REACTION CROSS SECTION

1      1    1 -0.5  1.000
1  alf+17O     3  2.5
2  n+20Ne      1  0.5

2      1    1  0.5  1.000
1  alf+17O     2  2.5
2  n+20Ne      0  0.5

3      2    1 -1.5  1.000
1  alf+17O     1  2.5
2  alf+17O     3  2.5
3  n+20Ne      1  0.5 ...

Key word 
particle
pair 
definitions

...
4      2    1  1.5  1.000

1  alf+17O     2  2.5
2  alf+17O     4  2.5
3  n+20Ne      2  0.5

5      3    1 -2.5  1.000
1  alf+17O     1  2.5
2  alf+17O     3  2.5
3  alf+17O     5  2.5
4  n+20Ne      3  0.5

...
6      3    1  2.5  1.000
1  alf+17O     0  2.5
2  alf+17O     2  2.5
3  alf+17O     4  2.5
4  n+20Ne      2  0.5

7      3    1 -3.5  1.000
1  alf+17O     1  2.5
2  alf+17O     3  2.5
3  alf+17O     5  2.5
4  n+20Ne      3  0.5

[... incomplete]
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2.  Mathematical 
description of 
experimental 

effects
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What experimental effects?
Includes all the complexity from being part of the real world:

• Many neutrons, not just one

• Many nuclei (sample is finite size)

• Many kinds of nuclei (isotopes, chemical compounds, impurities)

• Nucleus is moving (finite temperature)

• Time is not exact

• Distance is not exact

• Neutron-producing target is finite size

• Detector is finite size

• etcetera
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Doppler broadening

Doppler broadening is average over thermal motion of particles in sample.

• The nuclei in the sample are not sitting still, but are in random thermal 
motion.  

− In macroscopic terms, the temperature is not absolute zero.

• Two options to describe the sample nuclei:
− 1. Crystal lattice model (the sample behaves like a solid).

− 2. Free gas model (the sample behaves a gas).

• Option 2 works in most physical situations, even for very heavy nuclei (e.g. 
lead, uranium).

− The energy of the neutron is so large with respect to the vibrational mode of the 
Bragg structure, that solid-state effects are unimportant.
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Doppler broadening, continued

136.62 136.68136.66136.64

8

4

12

Energy in keV

Capture cross 
section for 58Ni 
without Doppler 
broadening (dashed 
curve) and with 
Doppler broadening 
at 300 K (solid 
curve)
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Doppler broadening, continued

• Historically, codes used high-energy Gaussian 
approximation (HEGA) to the free gas model (FGM) 
because of its convenient analytical properties:
− HEGA + Breit-Wigner => psi, chi functions

• Today, one should use FGM, never HEGA.
− There is no penalty for doing so (FGM runs as fast as HEGA)

− FGM is more accurate, works at all energies

• Re: “Doppler Broadening Revisited” 
− N. M. Larson, M. C. Moxon, L. C. Leal, and H. Derrien, ORNL/TM-13525, 

Oak Ridge National Laboratory, Oak Ridge, TN (1998)
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Free gas model (FGM)

• Derivation of equations for FGM of Doppler broadening is 
available

− Ask for handout (4x2a.pdf)

• Resulting equations:

( ) ( )
σ  

mv
    

1

v u  p 
dw w  s w   exp 

v w

u

2

2
2

2

22









 = −

−
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∞

∫

u
2kT
M

=
( ) ( )( )

( )( )
s w    m   w / 2   w 0

m w / 2   w 0

2

2

= ≥

=− − <

σ

σ

for

for

Not the usual way this is 
written, but this is the best 
way to program FGM.
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Doppler broadening in SAMMY
[Section numbers refer to SAMMY users’ guide]

• via SAMMY’s “free gas model” (FGM), Section IV.B.1
− integrations performed numerically using appropriate velocity-grid

− “velocity” = square root of energy

− relatively accurate and relatively efficient for all energies, even where 
there is structure

• via Leal-Hwang (LH), Section IV.B.2
− exact free gas model

− is solution of partial differential equation having same form as one-
dimensional time-dependent heat equation

− efficient where cross section is smooth
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Doppler broadening in SAMMY, cont.

• via Gaussian (HEGA), Section IV.B.3
− high energy approximation

− integrations performed numerically using energy-grid 
appropriate for resonance structure

− use is discouraged !

• Crystal-lattice model (CLM), Section IV.B.4
− may be important for some low-energy cross sections

− now available in SAMMY

• based on Dmitri Naberejnev’s DOPUSH model

− Based on Bob MacFarlane’s implementation in NJOY

− integrations performed numerically using velocity-grid 
appropriate for resonance structure
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Doppler broadening in SAMMY, cont.

• Which to use?
− FGM è usually

• Requires virtually no more time that HEGA

− LH è only with very smooth cross section

− HEGA è never!

− CLM è when solid-state effects are important
• Computer runs take much longer than with FGM
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Resolution broadening

• is “smearing” due to 
− spread in burst width

− finite size of neutron 
source

− finite size of detector

− time-of-flight channel width

− etc

Linac
(electron
Beam)

target

(neutron
beam)

sample

detector

shielding

Bin 
width

Time

Sometimes called “channel”
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Resolution broadening, cont.
• Mathematically, this smearing can be 

described by a resolution-broadening 
function of the form  R(E,E '),

• where generally R(E,E ') depends only on 
the energy difference E – E '.

• There is no “standard” resolution 
broadening function.

• SAMMY contains five or six distinct 
methods.  Values for almost all parameters 
can be fitted to data.

( ) ( ) ( )σ σE d E' R E,E'  E'=∫

written as a 
function of 
energy, but 
could be 
length or 
time

Need to fit the 
particular machine and 
the particular 
experiment.

Analyst picks the 
general form, SAMMY 
helps choose 
parameter values.
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Resolution Broadening in SAMMY

• Quick-&-easy version (Gaussian plus exponential tail) (RSL)

• Oak Ridge resolution function (ORR)

• RPI resolution function (also useful for Geel data) (RPI)

• Energy-average from E to E - ? (DEX)

• User-Defined Resolution function (UDR)
− [implemented but not fully functional]

• Combinations RSL + DEX + one of {ORR, RPI, UDR}
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Resolution, in more detail

[Section numbers refer to SAMMY users’ guide R6]

• Gaussian and/or exponential (Section IV.C.1)
− convolution of Gaussian approximation for three 

components (path length, burst width, channel width)

− integrations performed numerically using energy-grid 
appropriate for resonance structure

the original version, maybe the 
best one to start with on a new 
analysis
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Resolution, continued

• Oak Ridge Resolution Function (ORR) (IV.C.2)
− analytic convolution (where possible) of four components, 

with realistic descriptions for all four

− designed for use with ORELA data

• RPI Resolution Function (Section IV.C.3)
− ditto, designed for use with data from Linac at Rensselaer 

Polytechnic Institute

− extension should be useful for data from Geel facility

“realistic” 
resolution 
functions



4.2 - 16

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Resolution, continued

• Energy-average from E-DE to E (DEX) (IV.C.4)
− available in M6-Beta & M6 release of SAMMY code 

− useful for charged-particle work

• Numerical description (UDR) (IV.C.5)
− preliminary version available in M6-Beta & M6 release of SAMMY code, 

but not yet thoroughly tested and debugged

• Combination of two or three types types
− Gaussian plus DEX plus one of {ORR, RPI, UDR}
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Resolution functions, continued

• Details for all of the resolution functions are 
available elsewhere
− in the users’ manual

− in file 4x2b.pdf 
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SAMMY’s integration method for 
Doppler and resolution broadening

See Section IV.A of SAMMY users’ manual

Wanted: to evaluate integrals of the form

where 

− {Ei} is a predetermined set of grid points on which we wish to 
know the broadened values < f (E ) >

− f (E’ ) are the unbroadened theoretical values (for cross section, 
transmission, etc.)

− B (E, E’ ) is the Doppler- or resolution-broadening function

− Emin = 0 and Emax = 8 , but in practice smaller range is used

( ) ( ) ( )< > = ∫f E   d E' B E ,E'   f E'i i

Emin

Emax
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Integration, continued

Solution:  choose points {Ej’} and associated weights {Wj }
such that

where the approximation is exact if B(Ei ,E’ ) f (E’) is a 
polynomial of some specified degree

( ) ( ) ( ) ( )d E' B E ,E'   f E'    B E ,E '  f E '  Wi

a

b

i j j j
j

∫ ∑≈

“auxiliary grid”
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Integration, continued

• Choice of auxiliary grid is somewhat arbitrary

• SAMMY’s choice (see Section IV.A in SAMMY users’ manual):

− start with experimental grid

− add extra points between each point in grid (optional)

− add points to the extremities (i.e. outside data range) so can broaden 
the end-points

− add enough points to adequately describe each resonance

− test the resulting grid to be sure spacings do not vary too wildly 
among neighboring points; make adjustments if needed
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Integration, continued

• Most integrations in SAMMY use the four-point 
progressive interpolation method of Mintz and 
Jordan  

− [M. D. Mintz and D. P. Jordan, A ‘Progressive’ Interpolation 
Scheme for Hand and Digital Computer Analysis of Tabulated 
Data, Lawrence Livermore Laboratory Report UCRL-7681 
(1964)]

− For details, see the SAMMY users’ guide
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Integration, continued

• Important !
− The user (not the author) is responsible for being sure that the auxiliary 

grid is sufficiently dense!

• WHY must the grid be dense?
− Unbroadened cross sections would not be well-defined on a sparse 

grid.  Hence the integrations would not be accurate.

• WHY doesn’t SAMMY check this?  Other codes do (e.g., NJOY).

− Large amounts of computation time are required for checks.

− SAMMY runs are repeated over and over (with slight modifications each 
time).  (NJOY runs are not repeated like this.)
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Integration, continued

• How can the user check this?
− There are user-controlled options for increasing the 

density of points in the auxiliary grid. Use them!
− See card 2 of the INPut file, Table VIA.1 in users’ manual.

− Compare Doppler- and resolution-broadened results 
from dense vs. sparse grids.  

• Early in your analysis, use the sparsest grid that gives 
reasonable results.  

• Near the end of your work, perhaps you would want to use 
a denser grid to ensure greater accuracy.
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Finite size of sample

• In transmission measurements
− Corrections are relatively simple here

• In capture or fission measurements
− Corrections can be extremely complicated here
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Finite size:  transmission experiment

• Transmission is probably the easiest experiment
− Send a beam through a sample

− Measure what comes out the other side (the transmission T )

− Result is directly related to the total cross section s and the sample 
thickness n

T e n= − σ

sample
detector
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Finite size: T (continued)

• Sample oriented at angle to beam?  Correct by 
modifying the apparent value of n

n apparent = n / cos (?)

?
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Finite size: T (continued)

• Non-uniform thickness n ?   Correct by treating 
n as  variable.

• (Pictures are grossly exaggerated!)
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Finite size:  capture or fission

• Three effects:
− Self-shielding

− Single-scattering

− Double-plus scattering

We’ll discuss capture only; 
remember that results apply 
to fission as well.

Together, these are 
“multiple-scattering 
corrections”
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Multiple Scattering Corrections

Neutron beam

?

Thin sample

This is a completely 
unrealistic situation.  
Real samples are 
much thicker.
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Single scattering corrections

Self-shielding
Exact, Easy

?

Neutron beam

Thicker sample

Single-scattering followed by 
capture

•  exact for simplified geometry
•  complicated mathematics
•  complicated coding
•  (simplifies if target is infinite slab)
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Energy in keV

The 1.15-keV 56Fe 
resonance in natural iron 
capture data of R. 
Spencer et al.  Dashed 
curve is SAMMY 
calculation without self-
shielding or single-
scattering correction; 
solid curve includes those 
corrections.

Let’s look at this on a different scale…
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The 1.15-keV 56Fe resonance in natural iron capture data 
of R. Spencer et al.  Dashed curve is SAMMY calculation 
without self-shielding or single-scattering correction; solid 
curve includes those corrections.

Shoulder 
is real 
effect
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Single scattering, cont.

• May be even more important when single-
scattering peak does not show
− Heavier nuclei (smaller energy shift)

− Wider resonances

− Neighboring resonances

• Could distort shape and/or position of 
resonances
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More-than-one scattering

?

Neutron beam

Thicker sample yet, 
multiple scattering

double-plus scattering 
followed by capture

•requires six-fold embedded integrations 
for each scatter

•treat only in gross approximation

Ideas for SAMMY’s treatment were 
borrowed from Mick Moxon, and 
developed independently
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Energy in eV

++ Measurement of Klaus Guber et al. at ORELA (data averaged by 5)

__ Preliminary SAMMY analysis of Herve Derrien
… Using same resonance parameters without finite-size corrections

Fission cross section for 233U
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Energy in eV

++ +  ORELA measurement
……  No finite-size corrections to calculated cross section
------ With self-shielding but no multiple-scattering

With multiple-scattering corrections but infinite-slab for single
With full multiple-scattering including edge-effects correction
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Energy in eV

Same as previous slide, but with no Aluminum in 
the sample

Fission chamber used 
233U3O8 clad onto 
aluminum plates… 
~100 times as much 
Al as U.  

All the scattering was 
due to Al !
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Caution!

• When using more than one nuclide and requiring multiple-
scattering corrections, be sure to define the 
isotopes/nuclides in the PARameter file.  It is not sufficient 
to give abundances only in the INPut file.

• Release M5 and subsequent of SAMMY is dummy-proofed 
against this, 
− previous releases will merrily calculate garbage.
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Equations for multiple-scattering 
corrections

• Are in the SAMMY users’ guide

• Are also in the pdf file 4x2c.pdf
− Equations and description for self-shielding

− Equations and description of single-scattering correction

• Infinite slab approximation

• Including edge-effects (non-infinite slab)

− Equations and description of double-plus scattering correction

− More examples
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One more picture re multiple scattering
56Fe 1.3 mm

Figures from PhD thesis of Gilles Noguere, comparing Monte-Carlo to SAMMY to REFIT

Transmission and Partial Cross Section Measurements
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Also see this paper…

“Validation of Multiple-Scattering Corrections in the 
Analysis Code SAMMY”

N. M. Larson and K. N. Volev

International Conference on the New Frontiers of Nuclear 
Technology : Reactor Physics, Safety and High-Performance 

Computing (Physor 2002)

October 2002 in Seoul, South Korea

Published on CD rom

End of multiple-scattering corrections
End of finite-size corrections
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Normalization and background
Section IV.E.3.a in R6 of SAMMY Users’ Manual

• “Corrected” theoretical value T (for cross 
section, transmission, etc.) is given by

T(E) = a Tu(E) + b(E)

where    Tu = uncorrected theoretical value

a = normalization

b(E) = background
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Norm & background, cont.

In SAMMY, there are three methods of 
specifying backgrounds:

1. Use any or all of the following (but only one of each):

b1(E) = Ba

b2(E) = Bb / vE

b3(E) = Bc vE

b4(E) = Bd e -Bf / vE
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Norm & background, cont.

2. Use as many of these as needed

b1 (E) = A

b2 (E) = A e -Bt

b3 (E) = A t B

b4 (E) = e A + Bt + C / ln ( t )

where time t is derived from the energy

and L is the flight-path length t mL E= 2 2/
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Norm & background, cont.

3. The user can provide a point-wise description of the 
background.

This option has been available from the beginning, but has not been used 
extensively.  It therefore comes with no guarantees.

• (One other option:  add direct capture cross section as 
energy-dependent point-wise cross section)
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More than one type of nuclide in sample

• Examples:
− Multiple isotopes

− Chemical compounds (e.g. oxides)

− Contaminants

• What do you do about these?  Specify each nuclide 
independently…
− Spin and parity, charge, etc. (in INPut file)

− Spin groups (in INPut file)

− Mass and abundance (in PARameter file)

− Resonances (in PARameter file)
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More than one nuclide, continued

• What does SAMMY do about these?
− Includes appropriate angular momentum algebra for each nuclide

− Includes proper kinematics for each nuclide

− Doppler broadening is [now] done properly for each nuclide (mass-
dependent)

− Multiple-scattering corrections etc. are calculated using all nuclides

• Details are given in the computer exercises (see Exercise ex012)
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Concluding comments regarding 
corrections for experimental conditions

• Virtually all parameters may be varied (fitted)
− Uncertainties are therefore reflected in final results

• On the drawing board:  
− Uncertainties due to non-varied parameters will be incorporated into 

the fitting procedure

− More input options will be made available

− UDR Resolution function will be improved

− …

End of experimental effects
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