

the **abdus salam** international centre for theoretical physics

ICTP 40th Anniversary

SMR.1555 - 20

Workshop on Nuclear Reaction Data and Nuclear Reactors: Physics, Design and Safety

16 February - 12 March 2004

Workshop Overview

Alan L. NICHOLS International Atomic Energy Agency Division of Physical & Chemical Sciences Department of Nuclear Sciences & Applications Wagramerstrasse 5 P.O. Box 100 A-1400 Vienna AUSTRIA

These are preliminary lecture notes, intended only for distribution to participants

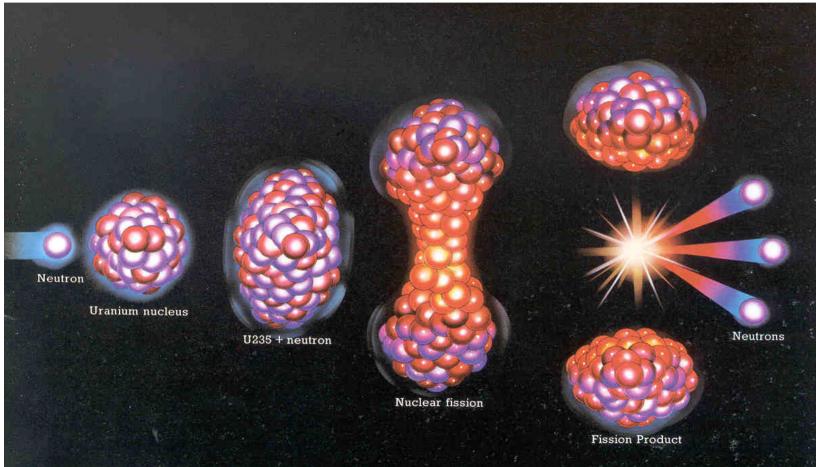
International Atomic Energy Agency

Workshop on Nuclear Reaction Data and Nuclear Reactors: Physics, Design and Safety

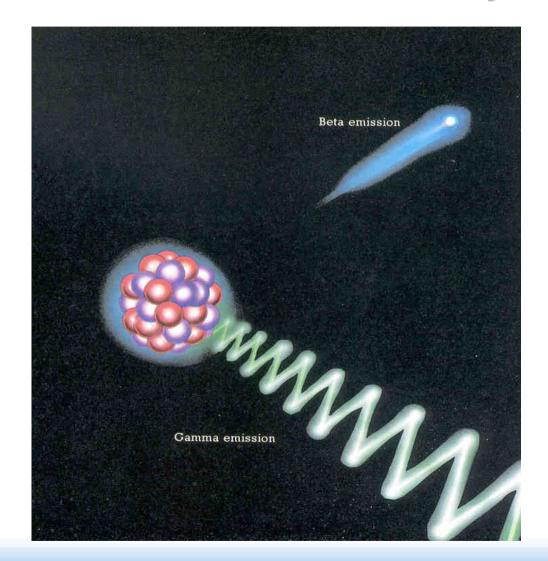
16 February – 12 March 2004 ICTP Trieste

Workshop Overview

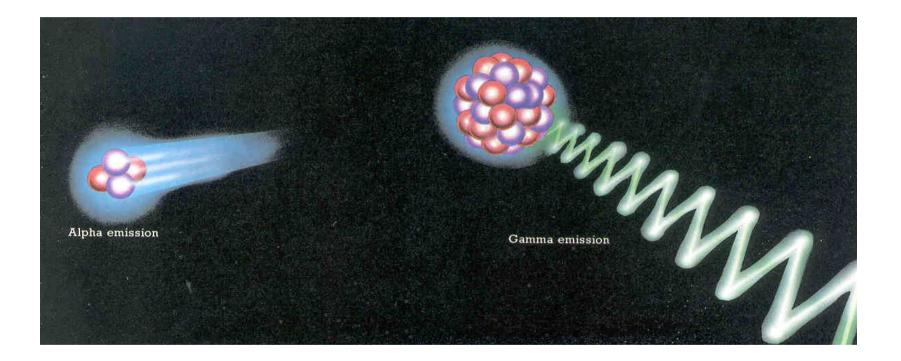
Lecturers Participants ICTP Trieste Italy



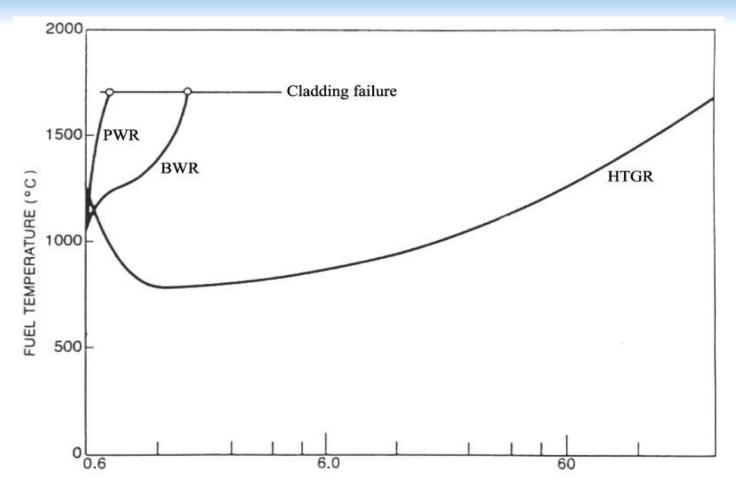
Alan Nichols Section Head Nuclear Data Section International Atomic Energy Agency (IAEA) Vienna Austria



Neutron-induced Fission



Beta and Gamma Decay



Alpha and Gamma Decay

Time after instantaneous loss of coolant (min)

Temperature in the core of a pressurised-water reactor (PWR), a boiling-water reactor (BWR) and a high-temperature gas-cooled reactor (HTGR) after loss-of-coolant.

NUCLEAR DATA FOR DECAY HEAT CALCULATIONS - THERMAL AND FAST NEUTRON FISSION

$$H_{a}(t) = \sum_{i=1}^{M} I_{i}^{T} N_{i}(t) E_{a}^{i}$$
$$H_{b}(t) = \sum_{i=1}^{M} I_{i}^{T} N_{i}(t) E_{b}^{i}$$
$$H_{g}(t) = \sum_{i=1}^{M} I_{i}^{T} N_{i}(t) E_{g}^{i}$$

International Atomic Energy Agency

NUCLEAR DATA FOR DECAY HEAT CALCULATIONS

- $s_{a,k}^{F}$ effective group-averaged fission cross section of actinide *a* in the kth neutron group,
- $s_{i,i}^{A}$ total neutron absorption cross section of fission product *i*,
- $s_{i,j}^{(n,g)}$ (n, γ) cross section of fission product *i*,
- $s_{i,j}^{(n,2n)}$ (n, 2n) cross section of fission product *i*,
- $Y_{a,k}^i$ independent yields for fission product *i*,
- I_i decay constant(s) of fission product *i*,
- k_a, k_{b^-}, k_{b^+} branching fractions for α, β^- and β^+ decay to nuclide Z, A,
- E_a^i, E_b^i, E_g^i mean alpha, beta and gamma energy releases per disintegration of nuclide *i*.

Aims of Workshop:

Training of scientists and engineers (YOU):

- Nuclear reaction theory
- Production of nuclear data
- Use of nuclear data

Emphasis – nuclear physics, design and safety

Aims of Workshop:

Generate greater awareness:

- Available nuclear data libraries
- On-line retrieval of data
- Existence and use of up to date computer codes
- New trends in advanced nuclear systems

Issues:

- Improve safety → need wide spectrum of knowledgeable scientific and technical personnel
- Improve plant efficiency → need wide spectrum of knowledgeable scientific and technical personnel

knowledge: nuclear reactions, particle transport, use of nuclear data libraries, engineering and safety principles

2.4 weeks: Nuclear models, data evaluation and processing

B V Carlson Centro Técnico Aeroespacial, Brazil Brookhaven National Laboratory, USA M Herman IAEA Nuclear Data Section, Austria R Capote Oak Ridge National Laboratory, USA N Larson M Sin University of Bucharest, Romania A Trkov IAEA Nuclear Data Section, Austria O Schwerer IAEA Nuclear Data Section. Austria L Hutton Serco Assurance, UK M Verpelli IAEA Nuclear Data Section. Austria ex-IAEA, Austria P K McLaughlin

1.6 weeks: Reactors – design, safety and applications

J Kupitz	IAEA Nuclear Power Technology Development Section, Austria	
B Misra	IAEA Nuclear Power Technology Development Section, Austria	
A Stanculescu	IAEA Nuclear Power Technology Development Section, Austria	
A Badulescu	IAEA Nuclear Power Technology Development Section, Austria	
N Tikhonov	Moscow Engineering and Physics Institute (MEPhI), Russian Federation	
I Kodeli	OECD/Nuclear Energy Agency, France	
V S Kagramanian	IAEA Planning and Economic Studies Section, Austria	
R Spiegelberg	IAEA Nuclear Power Engineering Section, Austria	
M Cumo	University of Rome, Italy	
A Gandini	University of Rome and ENEA, Italy	
N Burgio	ENEA, Italy	
R Jacqmin	CEN Cadarache, France	
G B Bruna	Framatome, France	
P Ravetto	Politecnico di Torino, Italy	

Co-Directors

Week	Co-Director	Affiliation
1	Alan Nichols	IAEA
2	Andrej Trkov	IAEA
3	Jürgen Kupitz	IAEA
4	Augusto Gandini	University of Rome and ENEA

Local organizer Brian Stewart - ICTP

Administrative support Doreen Sauleek - ICTP

International Atomic Energy Agency

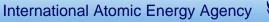
Bret Carlson:

Overview of reaction theory

Description of nuclear reactions

 \rightarrow cross sections

- Optical model calculations
- Strong channel coupling ECIS code
- Distorted-wave Born approximation (DWBA)



Mike Herman:

EMPIRE

Nuclear reaction code

- Statistical model
- Level densities

Roberto Capote:

EMPIRE

Nuclear reaction code

- Coupled channels
- Pre-equilibrium

Nancy Larson:

Resonance theory

Neutron cross sections

 Experimental data
 Differential data – transmission, capture, absorption, fission etc


 SAMMY

Reich-Moore resonance representation

- Scattering theory
- Integral data

END OF FIRST WEEK

Mike Herman:

RIPL (Reference Input Parameter Library)

Comprehensive databases for modeling calculations:

- Nuclear masses
- Optical model parameters
- Ground state deformation
- Discrete levels
- Decay schemes
- Fission barriers
- γ -ray strength functions
- Moments of inertia

Mihaela Sin:

EMPIRE

Nuclear reaction code

Fission channel

Mike Herman/Mihaela Sin/Roberto Capote:

Yet more EMPIRE

+

Trouble shooting (or what do you do when EMPIRE strikes back ?)

Andrej Trkov/Otto Schwerer:

Nuclear data

Data services

- IAEA Nuclear Data Section
- Data retrieval
- Customer services

Andrej Trkov (replacing Bob MacFarlane):

Nuclear data formats

- ENDF-B format (Evaluated Nuclear Data Files)
- NJOY nuclear data processing system
 Converts evaluated data in ENDF-B format to useful forms for application(s):

gas production, heating and radiation damage etc

YOUR PRESENTATIONS: 25 February 2004 14:00 to 17:30 hours

END OF SECOND WEEK

Andrej Trkov:

More to NJOY

International Atomic Energy Agency

Les Hutton:

WIMS

Reactor analysis

- Reactor lattice code for reactor physics calculations
- Predict reactor operational characteristics fuel depletion, reactivity feedback, fuel temperature, burn-up behaviour
- Continuous development bringing up to date


Reactor design, safety and applications:

- Desalination
- Fast reactor
- Accelerator-driven systems
- INPRO \rightarrow innovative nuclear power reactors and fuel cycles
- Nuclear power plant simulators
- Research reactors
- NEA Data Bank \rightarrow modeling tools for nuclear technology

END OF THIRD WEEK

Vladimir Kagramanian:

Different energy sources

- Comparative assessment(s)
- Potential role(s)
- Sustainable energy mix

Rejane Spiegelberg:

Operational performance of nuclear reactors

Nuclear Power Information System (PRIS)

YOUR PRESENTATIONS: ADVANCED REACTORS 8 March 2004 14:00 to 17:30 hours

FACTS

- 440 commercial nuclear reactors operate in 31 countries (> 360,000 MWe)
- 16% of global needs
- Over 11,000 accumulated reactor-years experience of civil nuclear power
- 56 countries operate 280 research reactors ® neutron beams for research, and production of medical and industrial isotopes

BUT

- Fewer nuclear power plants being built than during 1970s/80s
- Only 3 new commercial reactors commissioned between 1997 and 2001
- Electrical output has increased over these same 5 years ® equivalent to output from 40 large nuclear plants

HOW ??

BETTER performance from EXISTING reactor units: more efficient and safer operation

But problem of perception

Public stance - safety issues of concern when considering expansion of nuclear energy

Next generation of reactors:

- More economic
- Safer
- Anti-proliferation
- Anti-diversion
- Reduced radiological risk
- Public acceptability

M Cumo:

Principles of nuclear safety

- Power reactor design and safety
- Present safety regulations
- Industrial requirements and standards

Augusto Gandini:

Nuclear reactor analysis

- Power reactor operation
- Sensitivity theory
- Safe operational procedures based on continuous on-line monitoring

Innovative reactors

Nunzio Burgio:

Monte-Carlo analysis techniques: theory and exercises

- Understand/use Monte-Carlo method
- Utilization in reactor calculations

Robert Jacqmin:

Analysis and correlation of experimental data

- Learn to exploit information contained in measurement campaigns
- Experimental reactors
- Research facilities

<u>G Bruna</u>:

Reactivity and power

Control of PWRs

Recycling plutonium

Reactor design

Monte-Carlo calculations

P Ravetto:

Reactor dynamics

Reactor kinetics and dynamic analysis

