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Nuclear data

- guantitative results of any scientific investigation of the nuclear properties of
maitter;

- describe properties of atomic nuclel and the fundamental physical relationships
governing their interactions,

- characterize physical processes underlying all nuclear technologies.

Main activities - basic nuclear data production
- nuclear data evaluation
- processing, validation and benchmarking
- applications

- nuclear data evaluation has as study object the basic data and as purpose to
recommend the best data to be used in applications; therefore it can not be treated
Independently, but in connection with the other activities.



Evaluation

- the recommendation of the “best estimate” values and their uncertainties, based on a
critical review of all the available information for a particular nuclide (experimental
measurements and uncertainties, theoretical predictions) and on the use of statistical

procedures (average, fit, inter- and extrapolations, etc.)

The result of a measurement is only and approximation or an estimation of the specific

guantity subject to measurement, and thus the result is complete only when accompanied
by a quantitative statement of its uncertainty.

evaluation
(experiment, theory) @

values + uncertainties

evaluated data

values + uncertainties

EXFOR, reports, articles... evaluated datafiles: ENDF, ENSDF...
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- probability theory is abranch of mathematical sciences that provides a model for
describing the process of observation;

- most observations of natural phenomena do not lead to uniquely predictable results,

-a hatural phenomenon would be completely described if sufficient information were
available to determine the underlying probability distribution;

-in practice the features of the probability distribution underlying the physical
phenomenon under consideration must be estimated,

- such estimations form the study object of statistics.

M ean

Variance

Covariance

Correlation

m= E[X] = cX P(x) dx
2 = E[(x- m?] = &(x- m? P(x)dx

cov(Xx, y) = E[(x- m)(y- my)]

cov(X, y)
SySy

k =
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Uncertainty — the parameter associated with the result of a measurement that
characterizes the dispersion of the values that could reasonably be attributed to
the measurand (represented by an estimated standard deviation, termed standard

uncertainty equal to the positive sguare root of the variance).

Error (of ameasurement) — result of a measurement minus the value of the measurand
(the deviation of the result of a particular measurement from the unknown true
value of the measurand).

- random error — result of ameasurement minus the mean that would result
from an infinite number of measurements of the same measurand carried out
under repeatability conditions.

- systematic error — mean that would result from an infinite number of
measurements of the same measurand carried out under repeatability
conditions minus the value of the measurand.
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|ncompl ete definition of the measurand,
|mperfect realization of the definition of the measurand,;

Non-representative sampling — the sample measured may not represent the
defined measurand;

| nadequate knowledge of the effects of environmental conditions on the
measurement, or imperfect measurement of environmental conditions;

Personal bias in reading analogue instruments;

Finite instrument resolution or discrimination threshold;

Inexact values of measurement standards and reference materials;

Inexact values of constants and other parameters obtained from external sources and
used in the data reduction algorithm;

Approximations and assumptions incorporated in the measurement method
Variations in repeated observations of the measurand under apparently identical
conditions



Classification of components of uncertainty in | SO Guide

Two categories according to the method used to estimate their numerical values:

A. Those which are evaluated by statistical methods
B. Those which are evaluated by other means

The nature of an uncertainty component is conditioned by the use made of the
corresponding quantity, that is, on how quantity appears in the mathematical model that
describe the measurement process.

Alternative nomenclature:

- component of uncertainty arising from a random (systematic) effect

- arandom (systematic) effect is one that gives rise to a possible a random
(systematic) error in the current measurement process.

Type A evaluation of standard uncertainty: may be based on any valid statistical
method for treating data.

Type B evaluation of standard uncertainty: is used on scientific judgment using all the
relevant information available.
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Analysis of the experimental data

Scientific experiments are usually describable by a statistical model, statistical elements
being introduced by uncontrollable, seemingly random instrumental effects, by unknown

errors and often by theory itself.

- direct measurement - of the value x of the physical quantity X ; effects’ prediction given
the causes; direct probability, deduction;

- Indir ect measurement - to derive the value x of the physical quantity X related to the directly
measurable quantity Y by Y=Y(X); causes prediction given the effects; inverse probability;
Inference;

- test of hypothesis - to confirm or to infirm
atheoretical model.

induction
(inference)

Evaluation up-dating
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Bayes theorem (1763)

Direct consequence of the basic sum and product rules of probability theory:
P(A|B)+P(A|B) =1
P(AB|C)=P(A|BC)P(B|C)=P(B|AC)P(A|C)

Relates direct probabilities (of effects given the causes) and inverse probabilities (of causes
given the effects):

P(B|AC)P(A|C)
P(B|C)
Laplace (1812) generalized it to the case of severa distinct , mutually exclusive aternatives

A

P(A|BC) =

P(B| AC)P(A |C) o(A|BC)da = PBIAC) p(A|C)dA
a P(BIAC)p(A IC) OP(B| AC) p(A|C)dA

I
Results considered as the very cornerstone of data evaluation

P(A|BC) =
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We are interested in the quantity A (physical quantity, condition, hypothesis)
Knowledge about A is summarized in the a priori probability (prior) P(A|C), the probability
for A to have a certain value in the circumstances C.

A new set of experimental information about B which depends on A becomes available. The
Information is included in the likelihood function P(B|AC), the probability to obtain a certain
value B, for given A and C.

Our up-dated information about A is given by the a posteriori probability calculated as the
product of likelihood function and a priori probability, representing the impact of the new
Information on what we already knew about A.

P(A|BC)u P(B|AC)P(A|C)
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Recommended values

The users are not interested in a posteriori distribution but in a recommended value and its

uncertainty. Automatically we calculate the expectation value and the standard deviation.
WHY ?

In decision theory is a penalty for bad estimates described by aloss function; it vanishes for
the true value and is positive everywhere el se.

Usually in the vicinity of the true value the loss function is taken as quadratic in error. The
estimation for A which minimizes the loss is the expectation value.

The penalty corresponding to the expectation value is just the variance.

Under quadratic loss the mean and the square root of the variance (standard uncertainty) are
the optimal estimates of the (unknown) true value and its uncertainty. These are therefore the
numerical values to be given by experimentalists in their documentation or to be put in the
datafile by evaluators.
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A priori distributions

The arbitrariness, subjectivity of the priors, has led many statisticians, for more than a century, to

repudiate the Bayesian approach to parameter estimation and to seek alternative methods to
circumvent priors.

H. Jeffreys (1939) invoked invariance arguments to find priors which avoided ambiguities.
E.T.Jaynes (1968) applied group theory and information theory to the problem of priors.

L east informative priors (group theory)

He demonstrated for ssmple but practically important cases, that even if one is completely ignorant
about the numerical value of the estimated parameters, the symmetry of the problem, the invariance
under a group of transformations, determines the prior unambiguously.

-location parameter (ex. the mean of a Gaussian) — invariant under a shift of location
p(nm)dmr = p(mr+c)d(r+c) p(m)dm p dnr - ¥ <mr<¥

-scale parameter (ex. the standard deviation of aGaussian)d—invariance under rescaling
o(s)ds = p(cs)d(cs)  p(s)ds u— 0<s <¥
S

Valid for any rate constants which multiplies time intervals in a problem.
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Example: the determination of the decay constant ? of a short-lived isotope from decays
registered at t,.. t,

?— A, decaysregistered at t,...t, - B;
The applicability of the exponential decay law, purity of the sample, reliability of instruments- C

The statistical model — the sampling distribution; the probability with which one may reasonably expect
the various alternatives if one sample once, given the parameters of the model (given ?, the probability
that one particular decay isregistered in a particular time interval):

p(t; |1 )dt; =exp(-1 t;)I dt; O<ti <¥

According to the product rule, the joint probability of observing the mutually independent data:

e N o
P(ty,...ty |1 )dt...dt, =exps- | g t 2 " dt;...dt,
i1 @
The likelihood function does not depend on all the individual sample values; given n, the
sample average carfes al the information contained in the data:
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A priori distributions
Assignment of probabilities by entropy maximization (infor mation theory)

Jaynes (1968-80) showed how probability can be assigned in awell defined way if at least vague
Information is available about average quantities. Ex., we don’t know p(x), but we have global
Information in the form of expectation values for several known functions:

(fi) = ¢f) pYdx  k=12,.,K

The key concept: infor mation entropy (C.E.Shannon 1948) as the unique measure of the
Indeterminacy or missing information implied by a given probability distribution:

S=- CP(x) In[p(x)] dx

What is p(x) which satisfies the K equations without implying other information or
assumptions? The answer is given by the principle of maximal entropy.
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St-sguaresapproximation




Bayesan statistics(d2)







“Although this Guide provides aframework for assessing uncertainty, it
cannot substitute for critical thinking, intellectual honesty and professional
skill. The evaluation of uncertainty is neither aroutine task nor a purely
mathematical one; it depends on detailed knowledge of the nature of the
measurand and of the measurement. The quality and utility of the
uncertainty quoted for the result of a measurement therefore depend on the
understanding critical analysis and integrity of those who contribute to the
assignment of the value.”

| SO Guide
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Propagation of uncertainty

Example: scalar output of an experiment depends on two independent experimental
parameters x,, X,, with total uncertaintiesk,,, E,,
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Example (Mannhart)

Mr.A has to determine 2 markings on alength scale of distances from afixed O point:
y1=35 mm, y2=60 mm using 3 gauge blocks:

gauge block length (mm) S(um) var(pum)?

L1 50 0.05 0.0025

L2 15 0.03 0.0009

L3 10 0.02 0.0004

_ Mr.A states hisfinal results as:
yl=L1-L2 - = = 5
o= 141 3 y1=35 mm var(yl)=var(L1)+var(L2)=0.0034 um

y y2=60 mm var(y2)=var(L 1)+var(L3)=0.0029 pum?

Mr.B and Mr.C have to establish the distance between the two marks.

Mr.B y3=L2+L3=25mm var(y3)=var(L2)+var(L3)=0.0013 LIM?
Mr.C y3=y2-y1=25mm var(y3)=var(y2) + var(y1)=0.0063 pm?
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