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- definitions and terminology

- classic and Bayesian statistics

- covariance matrix formalism

- generalized least squares method

Main topics:Main topicsMain topics:



Nuclear dataNuclear data

Main activities - basic nuclear data production
- nuclear data evaluation
- processing, validation and benchmarking
- applications 

- quantitative results of any scientific investigation of the nuclear properties of
matter; 

- describe properties of atomic nuclei and the fundamental physical relationships
governing their interactions;

- characterize physical processes underlying all nuclear technologies.

- nuclear data evaluation has as study object the basic data and as purpose to 
recommend the best data to be used in applications; therefore it can not be treated
independently, but in connection with   the other activities. 



evaluation
values + uncertainties

values + uncertainties(experiment, theory)
basic data evaluated data

EvaluationEvaluation

EXFOR, reports, articles… evaluated data files: ENDF, ENSDF…

- the recommendation of the “best estimate” values and their uncertainties, based on a 
critical review of all the available information for a particular  nuclide (experimental 
measurements and uncertainties, theoretical  predictions) and on the use of statistical 
procedures (average, fit, inter- and extrapolations, etc.) 

The result of a measurement is only and approximation or an estimation of the specific 
quantity subject to measurement, and thus the result is complete only when accompanied 
by a quantitative statement of its uncertainty.



Evaluated data filesEvaluated data files

- dark age – eye guide curve among experimental data;
- Renaissance – statistical methods to analyze the experimental data and the 

theoretical constraints; 
- modern times - information about uncertainties have been included in evaluated

data libraries.    

- the evaluated data files represent  the quantitative link between two huge fields
of research: fundamental nuclear physics and nuclear applications.
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- probability theory is a branch of mathematical sciences that provides a model for
describing the process of observation;

- most observations of natural phenomena do not lead to uniquely predictable results;
-a natural phenomenon would be completely described if sufficient information were

available to determine the underlying probability distribution;
-in practice the features of the probability distribution underlying the physical

phenomenon under consideration must be estimated;
- such estimations form the study object of statistics.   

Probability and statistics, expectations and moments….Probability and statistics, expectations and momentsProbability and statistics, expectations and moments……..



Error (of a measurement) – result of a measurement minus the value of the measurand
(the deviation of the result of a particular measurement from the unknown true
value of the measurand).

Uncertainty – the parameter associated with the result of a measurement that 
characterizes the dispersion of the values that could reasonably be attributed to
the measurand (represented by an estimated standard deviation, termed standard 

uncertainty equal to the positive square root of the variance). 

- random error – result of a measurement minus the mean that would result
from an infinite number of measurements of the same measurand carried out
under repeatability conditions.

- systematic error – mean that would result from an infinite number of
measurements of the same measurand carried out under repeatability
conditions minus the value of the measurand.

Definitions and terminology    ISO Guide (1)Definitions and terminology    ISO Guide (1)Definitions and terminology    ISO Guide (1)



Definitions and terminology ISO Guide (2)Definitions and terminology ISO Guide (2)Definitions and terminology ISO Guide (2)

Accuracy (of measurement) – closeness of the agreement between the result of
measurement and the value of the measurand. 

Repeatability (of results of measurements) – closeness of the agreement between
the results of successive measurements of the same measurand carried out 
under the same conditions of measurement. 

Reproducibility (of results of measurements) – closeness of the agreement 
between the results of  measurements of the same measurand carried out 
under changed conditions of measurement. 



Sources of measurement uncertainty in ISO GuideSources of measurement uncertainty in ISO GuideSources of measurement uncertainty in ISO Guide
1. Incomplete definition of the measurand;
2. Imperfect realization of the definition of the measurand;
3. Non-representative sampling – the sample measured may  not represent the

defined measurand;
4. Inadequate knowledge of the effects of environmental conditions on the 

measurement, or imperfect measurement of environmental conditions;
5. Personal bias in reading analogue instruments;
6. Finite instrument resolution or discrimination threshold;
7. Inexact values of measurement standards and reference materials;
8. Inexact values of constants and other parameters obtained from external sources and 

used in the data reduction algorithm;
9. Approximations and assumptions incorporated in the measurement method
10. Variations in repeated observations of the measurand under apparently identical 

conditions 
1-9 related to systematic effects and 10 to statistical effects

- the separation is not so sharp; if the various effects change during the time of 
measurement, without any possibility of monitoring them, they contribute to the random 
error.



Classification of components of uncertainty in ISO GuideClassification of components of uncertainty in ISO Guide

Two categories according to the method used to estimate their numerical values:

A. Those which are evaluated by statistical methods
B. Those which are evaluated by other means

The nature of an uncertainty component is conditioned by the use made of the 
corresponding quantity, that is, on how quantity appears in the mathematical model that 
describe the measurement process.

Alternative nomenclature:
- component of uncertainty arising from a random (systematic) effect
- a random (systematic) effect is one that gives rise to a possible a random 

(systematic) error in the current measurement process. 

Type A evaluation of standard uncertainty: may be based on any valid statistical 
method for treating data.

Type B evaluation of standard uncertainty: is used on scientific judgment using all the 
relevant information available.



Scientific experiments are usually describable by a statistical model, statistical elements 
being introduced by uncontrollable, seemingly random instrumental effects, by unknown 
errors and often by theory itself.

Aspects of evaluation (1)Aspects of evaluation (1)Aspects of evaluation (1)

Analysis of the experimental dataAnalysis of the experimental data

- indirect measurement - to derive the value x of the physical quantity X related to the directly 
measurable quantity Y by Y=Y(X); causes’ prediction given the effects; inverse probability; 
inference;  

Cause

likelihoods

deduction

 
  induction
(inference)

(hypothesis)
n1 2 3 ...

Effect

- direct measurement - of the value x of the physical quantity X ; effects’ prediction given 
the causes; direct probability, deduction;

- test of hypothesis - to confirm or to infirm
a theoretical model.

Evaluation upEvaluation up--datingdating



(i) Nuclear data evaluation consists in finding the closest values to the true 
values starting from experimental and theoretical basic data;

(ii) These data are limited and affected by uncertainties;

(iii) Evaluators have to take decisions based on incomplete information.

Aspects of evaluation (2)Aspects of evaluation (2)Aspects of evaluation (2)



Interpretation of probabilityInterpretation of probabilityInterpretation of probability

1. Probability as a relative frequency

2.Probability as a a degree of rational expectation on a numerical scale 
ranging from 0 (impossibility) to 1 (certainty); degree of plausibility 



BayesBayes’’ theorem (1763)theorem (1763)
Direct consequence of the basic sum and product rules of probability theory:
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Relates direct probabilities (of effects given the causes) and inverse probabilities (of causes 
given the effects):
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Results considered as the very cornerstone of data evaluationResults considered as the very cornerstone of data evaluation

Bayesian statistics (1)Bayesian statistics (1)Bayesian statistics (1)



We are interested in the quantity A (physical quantity, condition, hypothesis)
Knowledge about A is summarized in the a priori probability (prior) P(A|C), the probability 
for A to have a certain value in the circumstances C.

A new set of experimental information about B which depends on A becomes available. The 
information is included in the likelihood function P(B|AC), the probability to obtain a certain 
value B, for  given A and C.

Our up-dated information about A is given by the a posteriori probability calculated as the 
product of likelihood function and a priori probability, representing the impact of the new 
information on what we already knew about A.  

)|()|()|( CAPACBPBCAP ∝

Bayesian statistics (2)Bayesian statistics (2)Bayesian statistics (2)



Under quadratic loss the mean and the square root of the variance (standard uncertainty) are 
the optimal estimates of the (unknown) true value and its uncertainty. These are therefore the 
numerical values to be given by experimentalists in their documentation or to be put in the 
data file by evaluators.

Bayesian statistics (3)Bayesian statistics (3)Bayesian statistics (3)

The users are not interested in a posteriori distribution but in a recommended value and its 
uncertainty. Automatically we calculate the expectation value and the standard deviation. 
WHY? 

In decision theory is a penalty for bad estimates described by a loss function; it vanishes for 
the true value and is positive everywhere else. 
Usually in the vicinity of the true value the loss function is taken as quadratic in error. The 
estimation for A which minimizes the loss is the expectation value.
The penalty corresponding to the expectation value is just the variance.

Recommended valuesRecommended values



Bayesian statistics (4)Bayesian statistics (4)Bayesian statistics (4)
A prioriA priori distributionsdistributions

The arbitrariness, subjectivity of the priors, has led many statisticians, for more than a century, to 
repudiate the Bayesian approach to parameter estimation and to seek alternative methods to 
circumvent priors.

H. Jeffreys (1939) invoked invariance arguments to find priors which avoided ambiguities.
E.T.Jaynes (1968) applied group theory and information theory to the problem of priors.

He demonstrated for simple but practically important cases, that even if one is completely ignorant 
about the numerical value of the estimated parameters, the symmetry of the problem, the invariance 
under a group of transformations, determines the prior unambiguously.

Least informative priors (group theory)

-location parameter (ex. the mean of a Gaussian) – invariant under a shift of location 

-scale parameter (ex. the standard deviation of a Gaussian) – invariance under rescaling
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Valid for any rate constants which multiplies time intervals in a problem.



Bayesian statistics (5)Bayesian statistics (5)Bayesian statistics (5)

Example: Example: the determination of the decay constant ? of a short-lived isotope from decays 
registered at t1…tn

? – A; decays registered at t1…tn - B;
The applicability of the exponential decay law, purity of the sample, reliability of instruments - C
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The statistical model – the sampling distribution; the probability with which one may reasonably expect 
the various alternatives if one sample once, given the parameters of the model (given ?, the probability 
that one particular decay is registered in a particular time interval): 

According to the product rule, the joint probability of observing the mutually independent data:

The likelihood function does not depend on all the individual sample values; given n, the 
sample average     carries all the information contained in the data:t



The least informative a priori distribution
for the scale parameter ?:
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Bayesian statistics (6)Bayesian statistics (6)Bayesian statistics (6)
Example (2)

The likelihood function:

The normalized a posteriori distribution:

This chi-square distribution with ? = 2n 
degrees of freedom represents the complete
information about ? which can be obtained
from the data and the assumed prior.

As the sample size increases the a posteriori 
distribution gets narrower; the more data 
available, the better defined is ?.



Bayesian statistics (7)Bayesian statistics (7)Bayesian statistics (7)
Example (3)

Recommended valuesRecommended values
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Bayesian statistics (8)Bayesian statistics (8)Bayesian statistics (8)

A prioriA priori distributionsdistributions

Assignment of probabilities by entropy maximization (information theory)

Jaynes (1968-80) showed how probability can be assigned in a well defined way if at least vague 
information is available about average quantities. Ex., we don’t know p(x), but we have global 
information in the form of expectation values for several known functions:

The key concept: information entropy (C.E.Shannon 1948) as the unique measure of the 
indeterminacy or missing information implied by a given probability distribution:
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What is p(x) which satisfies the K equations without implying other information or 
assumptions? The answer is given by the principle of maximal entropy.



Bayesian statistics (9)Bayesian statistics (9)Bayesian statistics (9)

A prioriA priori distributionsdistributions

Assignment of probabilities by entropy maximization (information theory)

To obtain the probability compatible with the given information, it must be varied in such a 
way that its entropy is maximized, subject to K constraints.
This variational problem can be solved using Lagrange multipliers technique.

Conclusion: 
If only the first moments of a distribution are given, the optimal probability distribution for 
further inference is Gaussian, no matter what the unknown true distribution may be. 



Bayesian statistics (10)Bayesian statistics (10)Bayesian statistics (10)

Maximum likelihood approximationMaximum likelihood approximationMaximum likelihood approximation

The prior distribution looses importance when new data are abundant, therefore is reasonable to 
use a constant a priori probability. The a posteriori probability density becomes equal to the 
likelihood function.

Maximum likelihood function method consists of recommending that parameter value which 
maximizes the likelihood function. 



Bayesian statistics (11)Bayesian statistics (11)Bayesian statistics (11)
Least-squares approximationLeastLeast--squares approximationsquares approximation

Observables
y

Experimental data
, n, p( | , n)n C n y C

a priori information
, m, p( | , m)m C x m CCorelations

a posteriori information
{ }, r, p( | , r)r= m,n C x r C

Recommended values
< >, xx C

Theoretical model
( )y x

Parameters
x



Bayesian statistics (12)Bayesian statistics (12)Bayesian statistics (12)
p (A )0 k

p (A )1 k

p (A )2 k

p(B |A )1 k

p(B |A )3 k

p(B |A )2 k

p ( B )1 1A |k

p ( B )2 2A |k

p ( B )3 3A |k

Learning from experience
Evaluation up-dating



Bayes’ theorem → a posteriori distribution
Decision theory → how to recommend values and uncertainties

Group theory → use of invariances for probability assignment

Information theory → probability assignment by entropy maximisation

Bayesian statistics (13)Bayesian statistics (13)

Bayesian approach lead to a concise and mathematically simple treatment  parameter 
estimation and data adjustment in the general framework of inductive inference of learning 
from real (error-affected, incomplete) observations.



“Although this Guide provides a framework for assessing uncertainty, it 
cannot substitute for critical thinking, intellectual honesty and professional 
skill. The evaluation of uncertainty is neither a routine task nor a purely 
mathematical one; it depends on detailed knowledge of the nature of the 
measurand and of the measurement. The quality and utility of the 
uncertainty quoted for the result of a measurement therefore depend on the 
understanding critical analysis and integrity of those who contribute to the 
assignment of the value.”

ISO GuideISO Guide



valuevalue

LeastLeast--squares methodsquares method

uncertaintyuncertainty

Covariance matrix formalismCovariance matrix formalism



Covariance matrix formalism (1)Covariance matrix formalism (1)Covariance matrix formalism (1)
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Table of uncertainties

- an experiment is described by a set of n
measurable quantities x (x1, x2,…,xn) called 
experimental parameters;

x Components of uncertainty
Total

uncertainty
x1 e11      … e1l  … e1L EX1

xi ein … eil … eiL EXi

xn e1n      … e1l  … enL EXn



- outcome of the experiment  - scalar y = y({xi}), i =1, n

- sensitivity matrix S (n x n)-dimensional, diagonal ),1(, ni
x
y

S
i

i =
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- correlation matrix K (n x n)-dimensional,  

- matrix of parameters’ uncertainty Ex (n x 1)-dimensional
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T
xyE ESKES ⋅⋅⋅⋅=

- covariance matrix of parameters Cx (n x n)-dimensional 

)()(2 ISCIS ⋅⋅⋅⋅= x
T

yE

Propagation of uncertaintyPropagation of uncertainty
-- covariance matrix of the derived quantitiescovariance matrix of the derived quantities

Covariance matrix formalism (2)Covariance matrix formalism (2)Covariance matrix formalism (2)
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Example: scalar output of an experiment depends on two independent experimental 
parameters x1, x2, with total uncertainties Ex1, Ex2

Propagation of uncertaintyPropagation of uncertainty
Covariance matrix formalism (3)Covariance matrix formalism (3)Covariance matrix formalism (3)
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Propagation of uncertaintyPropagation of uncertainty

Covariance matrix formalism (4)Covariance matrix formalism (4)Covariance matrix formalism (4)

The derived quantity is the vector  y=y(x),   {yk}  k=1,m
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Transformation matrix T

Propagation of uncertaintyPropagation of uncertainty

Covariance matrix formalism (5)Covariance matrix formalism (5)Covariance matrix formalism (5)



1. Find the experimental parameters
2. Find the uncertainty components
3. Establish the correlations between the uncertainty components of the parameters
4. Calculate the covariance matrix for the parameters
5. Calculate the correlations between the total uncertainties of the parameters
6. Find the relationship between the parameters and the derived quantities
7. Calculate the sensitivity matrix for each derived quantity (or the transformation matrix)
8. Calculate the covariance matrix for the derived quantities
9. Calculate the uncertainties and the correlations for the derived quantities

Covariance matrix formalism (6)Covariance matrix formalism (6)Covariance matrix formalism (6)



Covariance matrix formalism (7)Covariance matrix formalism (7)Covariance matrix formalism (7)

Mr.A has to determine 2 markings on a length scale of distances from a fixed 0 point: 
y1=35 mm, y2=60 mm using 3 gauge blocks :

Example    Example    ((MannhartMannhart))

gauge gauge block length (mm)length (mm) ss ((µµmm)) var(var(µµm)m)22

L1 50 0.05 0.0025
L2 15 0.03 0.0009
L3 10 0.02 0.0004

y1=L1-L2
y2=L1+L3

Mr.A states his final results as:
y1=35 mm var(y1)=var(L1)+var(L2)=0.0034 µm2

y2=60 mm var(y2)=var(L1)+var(L3)=0.0029 µm2

Mr.B and Mr.C have to establish the distance between the two marks.

Mr. B  y3= L2+L3=25mm     var(y3)=var(L2)+var(L3)=0.0013 µm2

Mr. C  y3= y2 - y1=25mm     var(y3)=var(y2) + var(y1)=0.0063 µm2



Covariance matrix formalism (8)Covariance matrix formalism (8)Covariance matrix formalism (8)
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Least-squares method (1)LeastLeast--squares method (1)squares method (1)

Classical least-squares method is applied for linear functions, when a priori
information is not available or not taken into account. 

y set of experimental values for Y set of physical quantities 

f(x) is the function relating the measurable quantities Y to the quantities of interest X of 
values x
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Generalized least-squares method includes a priori information - essentially Bayesian 
parameter estimation under quadratic loss in saddle point approximation, for the important case 
that only a priori values and covariance matrices are given.

Least-square method (2)LeastLeast--square method (2)square method (2)



Least-squares method (3)LeastLeast--squares method (3)squares method (3)
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Example: average of correlated dataExample: average of correlated data
Quantity Y is measured in two experiments using the same technique.
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