

the **abdus salam** international centre for theoretical physics

ICTP 40th Anniversary

SMR.1555 - 1

Workshop on Nuclear Reaction Data and Nuclear Reactors: Physics, Design and Safety

16 February - 12 March 2004

Introduction to WIMS

Les HUTTON SERCO Assurance Winfrith Technology Centre Dorchester Dorset DT2 8UX U.K.

These are preliminary lecture notes, intended only for distribution to participants

serco

Serco Assurance

An Introduction to WIMSD

J L Hutton

1 March 2004

Aim of Course

- Train new users to set up WIMS input files for standard situations
- Gain familiarity with the architecture of the code and to run calculations
- Give an understanding of the basic physics methods and approximations
- Obtain user feedback on WIMS
- Hands on course
 - workshop on each part of the calculation

WORKSHOPS

- Gain familiarity with architecture of the code
- Set up input for standard situations
- Run calculations
- Illustrate major features of the code

Les Hutton

- 35 years experience in Reactor Physics
- Long involvement with the development of WIMS
- Worked on most reactor types
- Developed CACTUS, PRIZE and HEAD
- Developed Monte Carlo Methods
 - MAX
 - MONK8
- Currently working on 3D CACTUS and Perturbation methods in Monte Carlo

David Powney

- 15 Years in the WIMS development and applications area
- Transport methods especially characteristics
- PWR and VVER lattice physics
- PWR and VVER core analysis
- AGR design route
- Currently working on 3D CACTUS, RBMK core analysis and modelling vacant channels in Magnox.

QUESTIONS

- (1) What is WIMS?
- (2) Why use it?
- (3) Why were there so many versions?
- (4) Which version should I use?
- (5) What does the input look like?
- (6) What does the output mean?

(1) What is WIMS?

Winfrith Improved Multigroup Scheme

Deterministic Methods:

- discrete energy groups
- discrete spatial meshes
- simplified geometry
- calculates fluxes, k, reaction rates, etc.

Monte Carlo Methods:

- complex geometry
- benchmarking

(2) Why use WIMS?

Analysis of experiments:

Power reactor studies:

Criticality studies:

flux,

buckling, reaction rates, integral data checking

design, assessment, operation, generation of parameters or feedbacks including burnup, temperatures etc.

excellent survey tool, in support of Monte Carlo

(3) Why all the versions?

HISTORY:

- WIMSD 1963 1965
 Integration of new and old methods for pin cells and clusters.
 1965 - 1980
 Various 'minor' additions
 WIMSE 1968 - Modularity; Flexibility; Generality
- LWRWIMS1970 -Development of special methods for
LWRsWIMS7 1995Combined features of WIMSD,
LWRWIMS and WIMSE for

workstation environment

(4) Which version of W USE:	'IMS?
WIMSD	for homogeneous, slab, pincell or cylindrical cluster geometries.
LWRWIMS	for PWR or BWR assembly geometries (including regular pin arrays, e.g. small experimental cores, transport flasks etc.).
WIMS	for all types of problem
(See E WIMS	Beginner's Guide (AEEW-R 2211) in S ANSWERS Documentation.)

LATTICE CELL FOR SGHWR

Air

HISTORICAL DEVELOPMENT OF WIMS

Early 1960s	
Available codes:	
METHUSELAH (PATRI	ARCH SCHEME).
DSN	(multi-group transport solution in 1D cylindrical or slab geometry).
MOCUP	(Monte Carlo calculation of resonance events).
Led to development of T	THULE.

DEVELOPMENT OF WIMSD

Requirement for automated self-consistent treatment of graphite and water (H2O and D2O) moderator systems led to WIMS (versions A, B, C, D).				
1965	First use for experimental assemblies - 20m/case: (regular clusters and pins).			
1966	Plate geometry and burnup added.			
1968	Version D.			
1980	Version D4 major development ceased.			
1996	WIMSD5 - 'NEA' version with foreign developments incorporated			

NUCLEAR DATA

- Variation of cross sections with energy
- Spectral averaging
- Group representation
- WIMS library
- Resonance treatment
- Few-group condensation

REACTOR NEUTRON SPECTRUM

THRESHOLD REACTIONS IN FAST REGION

WIMS DATA LIBRARY

- FAST REGION:
- 10MeV 9.118 KeV
- 14 Groups, 1/2 Lethargy Intervals
- Fission neutrons born
- Threshold fission in U238, Pu240
- Low cross section, hence long neutron paths
- Diverse reactions: inelastic scatter, (n,2n)
- Anisotropic scatter
- Temperature independent

WIMS ENERGY REGIONS

WIMS DATA LIBRARY

RESONANCE REGION:

- 9.118 KeV to 4eV;
- 13 Groups, ~1/2 lethargy intervals.
- Constant moderator cross sections; ~ isotropic (C of M).
- Resonances in intermediate and heavy nuclei; temperature dependent.
- Short range effects due to very high cross sections, hence difficult modelling problems.

ABSORPTION CAPTURE AND FISSION CROSS-SECTIONS

WIMS DATA LIBRARY

- THERMAL REGION:
- 4.0 eV to 0 eV
- 42 groups, various intervals
- Thermal motion of light nuclides becomes significant scattering law
- Resonances broader relative to ∆E in collision, hence 'slowly' varying cross sections
- Large cross sections of 1/V nuclides

WIMSD LIBRARY 69 GROUPS

TRANSPORT CORRECTION

PRINCIPAL LINKS IN THE HEAVY ATOM BURNUP CHAINS

FISSION PRODUCT CHAINS IN WIMS LIBRARY

WIMS LIBRARY GROUP STRUCTURES

69 G	Group	28 Group Energy (eV)	69 Group 28	Group	Energy (eV)
Libra	ary L	ibrary	Library Libr	ary	
1	1	10-6.0655x10 6	, in the second s	2	
2		6.0655-3.679x10 6	21		367.262-148.728
3		3.679-2.231x10 6	22	6	148.728-75.5014
4	2	2.231- 1.353x10 6	23		75.5014-48.052
5		1.353-0.821x10 6	24		48.052-27.700
6	3	821,000-500,000	25		27.700-15.968
7		500,000-302,500	26	7	15.968-9.877
8		302,500-183,000	27	8	9.877-4.00
9		183,000-111,000	28	9	4.00-3.30
10	4	111,000-67,340	29	10	3.30-2.60
11		67,340-40,850	30	11	2.60-2.10
12		40,850-24,750	31	12	2.10-1.50
13		24,750-15,030	32		1.50-1.30
14		15,030- 9,118	33	13	1.30-1.15
15	5	9,118-5530.0	34	14	1.15-1.123
16		5530.0-3519.1	25		1 1 2 1 007
17		3519.1-2239.45	33		1.123-1.097
18		2239.45-1425.1			
19		1425.1-906.898			

20 906.898-367.262

WIMS LIBRARY GROUP STRUCTURES

69 Gro	up 28 Group	Energy(eV)	69 Group 28 Group	Energy(eV)
Library	Library		Library Library	
36	15	1.097-1.071		
37		1.071-1.045	56 24	0.140-0.100
38		1.045-1.020	57	0.100-0.080
39	16	1.020-0.996	58	0.080-0.067
40		0.996-0.972	59 25	0.067-0.058
41	17	0.972-0.950	60	0.058-0.050
42	18	0.950-0.910	61 26	0.050-0.042
43		0.910-0.850	62	0.042-0.035
44	19	0.850-0.780	63	0.035-0.030
45		0.780-0.625	64 27	0.030-0.025
46	20	0.625-0.500	65	0.025-0.020
47		0.500-0.400	66	0.020-0.015
48	21	0.400-0.350	67 28	0.015-0.010
49		0.350-0.320	68	0.010-0.005
50	22	0.320-0.300	69	0.005-0.000
51		0.300-0.280		
52		0.280-0.250		
53	23	0.250-0.220		
54		0.220-0.180		
55		0.180-0.140		

WIMS LIBRARY STRUCTURE

WIMSD	WIMSE & LWRWIMS	WIMS
Number of Nuclides, Groups	Number of Nuclides, Groups	Datagrams
List of Nuclides	List of Group Boundaries	
List of Group Boundaries	List of Nuclides	
Fission Spectrum	Cross-Sections for each Nuclide in General Format	
Burnup Data for each Nuclide		
Cross-Sections for each Nuclide		
Resonance Tabulations for each Group		
P1 Scattering for H, D, O, C		

WIMSD Architecture

- Block Diagram
- Chains
- Readdata
- Geometry

SGHWR LATTICE GEOMETRY

Air

WIMSD BLOCK DIAGRAM

WIMSD BLOCK DIAGRAM

WIMSD 'CHAINS'

Prelude	Prelude Input and Storage allocation
Chain 1	Input of MAIN DATA
Chain 2	Microscopic Cross Sections
Chain 3	Resonance Shielding
Chain 4	SPECTROX
Chain 5	Smearing and Condensation
Chain 6	DSN
Chain 8	PIJ
Chain 9	PRIZE
Chain 10	-
Chain 11	Unsmearing
Chain 12	Burnup

WIMSD 'CHAINS'

Chain 13	K-infinity Edit
Chain 14	K-effective
Chain 15	Nuclide reaction edits
Chain 16	Link to WIMS - later versions

READDATA

Input is in the form of:

- CODEWORD (upper or lower case) followed by numerical data items. Only the first 4 letters of a codeword are relevant.

Data items may be real or integer or containing E for exponent, but must contain no blanks(eg. 1.0e-2).

Data items for one codeword may occupy several lines (without \$ signs) but must not extend beyond column 72.

Repeated items may be input as:

13@101	*	(instead of 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1)
3 (1 2 3)	*	(instead of 1 2 3 1 2 3 1 2 3)

An asterisk(*) indicates that all the following information on the current line is a comment

DISCRETISATION OF GEOMETRY

Infinite Homogeneous Problem

- No geometry subdivision required.

Heterogeneous Problem

- Minimum subdivision: one calculation
 "mesh" per material region
- In practice, material regions are normally subdivided into several meshes of about one transport mean free path in size (~ 1 cm in H O)

GEOMETRY OPTIONS

HOMOGENEOUS

SLAB

REGULAR PINCELL ARRAY

CLUSTER (PRESSURE TUBE)

MULTICELL

+ choice of boundary conditions

Typical cluster - subdivision into ~ 30 meshes

Computing time and storage vary as : Number of groups x Number of meshes

Resonance Treatment

- Treated in next lecture
- WIMS uses Equivalence method
- Tabulates Resonance Integrals for HOMOGENEOUS systems on WIMS library
- Uses EQUIVALENCE to equate heterogeneous system to correct homogeneous resonance Integral
- Hence shielding for resonance nuclides

NEUTRON TRANSPORT THEORY

METHODS:

Differential Transport - DSN

Integral Transport - PERSEUS, PIJ, PRIZE. (Collision Probabilities)

MAIN TRANSPORT CALCULATIONS

Sn Method	DSN	1D
Collision Probabilities	PERSEUS	Annular and Slabs
	PRIZE	r-z
	PIJ	r- <u>θ</u> (plus
	Square Bounda	ary)
	SPECTROX	Pin in a Cluster

WIMS BASIC STRATEGY

1 SIMPLE GEOMETRY IN

69 groups x 3 meshes LIBRARY

GROUPS

SPECTROX & CONDENSE

2 COMPLEX GEOMETRY IN

6 groups x 30 meshes

FEW GROUPS

 $(69 \times 3) + (6 \times 30) < (69 \times 30)$

CLUSTER LATTICE CALCULATION

CLUSTER LATTICE CALCULATION

FEW - GROUP CONDENSATION

Library Condensation:

e.g. 69 to 28 Groups or 172 to 69 Groups

WIMS Calculation:

Gm + gM < GM

Factors In Choice Of Groups:

Required accuracy Representation of leakage Plutonium Resonance treatment Constraints on edit group boundaries

DEPLETION

- Standard Options
- Optional Extras

PRINCIPAL LINKS IN THE HEAVY ATOM BURNUP CHAINS

DEPLETION EQUATIONS

 $+ \, \lambda_k^{} N_k^{}$

DEPLETION SOLUTION

$$\frac{d\mathbf{N}}{d\mathbf{t}} = \mathbf{A} \cdot \mathbf{N}$$

EULER METHOD (First Order Taylor Expansion)

Automatic time step selection Unstable for Xe transients

DEPLETION FLUX

SPATIAL SMEAR OF CROSS SECTIONS

FLUX/EIGENVALUE FUNDAMENTAL MODE SOLUTION

GROUP BY GROUP RENORMALISATION OF TRANSPORT MODULE FLUX SOLUTION

RENORMALISATION TO INPUT RATING

DEPLETION

OPTIONAL EXTRAS

- (a) 'ALPHA' VALUES
- (b) 'FINE' OPTIONS

ALPHA OPTION

REACTIVITY OF A FUEL BUNDLE WITH 1 POISON PIN

'FINE' OPTION

- USERS SPECIFIED DRIVER ZONE
- COLLISION PROBABILITY CALCULATIONS OF POISON PIN FLUXES
- RENORMALISATION OF TRANSPORT MODULE REACTION RATES
- METHOD ALLOWS ALL REACTIONS INCLUDING FISSION