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Outline of Talk

Resonance Treatment
Outline of problem -

pin cell geometry
U238 cross section 

Simple non-mathematical ideas
More rigorous treatment

Neutron Transport Theory
Homogeneous - B1
Collision probabilities - PIJ
Sn - DSN
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DISCRETISATION OF GEOMETRY

Infinite Homogeneous Problem

- No geometry subdivision required.

Heterogeneous Problem

- Minimum subdivision: one calculation 
"mesh" per material region

- In practice, material regions are normally subdivided into 
several meshes of about one transport mean free path in 
size
(~ 1 cm in H O)



GEOMETRY OPTIONS

HOMOGENEOUS

SLAB

REGULAR PINCELL ARRAY

CLUSTER (PRESSURE TUBE)

MULTICELL

+ choice of boundary conditions

Typical cluster - subdivision into ~ 30 meshes

Computing time and storage vary as :
Number of groups x Number of meshes



Fuel

Can

Water

A WIMS Pin Cell

PIN CELL GEOMETRY

A "Pin Cell" consists essentially of a cylindrical fissile region surrounded 
by clad and coolant.

Infinite arrays are generated, but leakage can be introduced.

Isolated cylinders can be obtained by adopting a "free” boundary.

Examples: Regular lattice benchmarking

Safe number of CAGR pins in water



PIN CAN COOLANT
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FLUX DISTRIBUTION WITHIN A FLUX CELL



U238   σT



POSITIONS OF WIMS LIBRARY GROUP 
BOUNDARIES AND PRINCIPAL RESONANCES
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RESONANCE TREATMENT
(Non-mathematical)

HOMOGENEOUS MIXTURE OF ABSORBER Σa(E) AND 
SCATTERER Σs (constant)

ABSORPTION RATE ~ 

EFFECTIVE 

If  Σs is very large, flux depression is small and 

= infinite dilution limit



Infinite Dilution
Limit

Σa

Σp = Σs
(potential scattering)

As  pin radius  → ∞,  this  effect → 0

   → 0 ,  source completely swamps  the absorptions

Use         
 
Σ

p
Σ

s --+∼ 1
d-  

  where d is  pin diameter.

RESONANCE TREATMENT
(Non-mathematical)

ISOLATED PINS
Neutrons pour in from the moderator as well as slowing down within the 

pin and tend to flatten the flux depression.



1
γ

pin spacing

γ is known as the
DANCOFF FACTOR

Multiply 1/d effect by → 0 as  pins  are compacted to solid.

→ 1 as  pins  are widely separated

Use Σp Σs
γ
d
---+∼

RESONANCE TREATMENT
(Non-mathematical)

ARRAY OF PINS
The source of neutrons from the moderator at the resonance energy is
reduced by absorptions in neighbouring pins.
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Resonance Integral I

RESONANCE TREATMENT

HOMOGENEOUS



VfΣfφf VfΣpP ff Vm Σm P m f+∼

Vm Σm P m f VfΣfPfm VfΣf 1 P ff–( )= =

Σfφf Σp Pff Σf 1 P ff–( )+∼∴

RESONANCE TREATMENT

HETEROGENEOUS (isolated pin)
2 region model (f=fuel, m=moderator)

(1)   
but

(2)

(3)



Rational Approximation

(a=Bell  Factor) (4)
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RESONANCE TREATMENT
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RESONANCE TREATMENT

BELL FACTOR

where a~1.16
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RESONANCE TREATMENT

DANCOFF FACTOR

for isolated rod

�p (homogeneous value) for ∞packed array

Require factor on    to allow for geometry varying from 1 
forisolated rod to 0 for ∞ packing

Dancoff  Factor ~ probability of collision in moderator before next fuel
collision for neutrons leaving the fuel
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RESONANCE TREATMENT

CORRECTIONS

MULTIPLE ABSORBERS

LAMBDA VALUES (Finite Resonance Width)
λσp used instead of σp

where  λ is the effectiveness of a scatterer relative to 
Hydrogen

(λ depends on α, energy loss/collision and resonance 
width)
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Gp Average φ

φ

φ1

φ2

Decreasing E

f(p) CORRECTION TO GROUP REMOVAL

Downscatter from the group = f (p) Σ r φ
For heavy nuclides that remove neutrons only from the bottom of the
group,

Removals =Σ r φ2

and f(p)= φ2/ φ ave

For Hydrogen f(p)~1.0



Gp Average φ
φ1 φ2

Decreasing E

φ

φave <  φ2 and f(p) > 1

f(p) CORRECTION TO GROUP REMOVAL

In a well moderated system:



NEUTRON TRANSPORT THEORY

METHODS:

Homogeneous               - Leakage Effects (B1)

Differential Transport - DSN

Integral Transport - PERSEUS, PIJ, PRIZE.
(Collision Probabilities) 



Analytic Solutions

Homogeneous - 1D - equation is

( )µ ∂φ
∂

φ φ µ
z

E E dE dt s+ = ∫∫ ′ → ′Σ Σ

( ) ( )+ ′∫ ′λχ υ φ µE E dE dfΣ

Separation of variables

( ) ωφφµ
∂
∂φ

== ,EF
z



Analytic Solution

Solution has the form

Spectrum independent of position
Spatial variation independent of energy

( )φ ϕ µ ωω= e Ez , ,



Bn Solutions

General solution of Homogeneous transport equation -
Used in WIMS in CRITIC module
Solutions of form

( )φ ϕ µ= e E BiBz , ,



Bn Solution

Using Spherical Harmonics for flux gives following 
solution of transport equation
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Bn Solution

Where
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Bn Solution

The variable A is given by

( ) ( )A P P
iB
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1 µ µ
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Σ



Simplified Solution

Only P1 terms - Only equations in scalar and first 
moment of flux

Φ g g g gJ i= = −ϕ ϕ0 1,

This gives the following equations



Simplified Solution

2 Equations are
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Simplified Solution

Note new form of diffusion coefficient

Dg

g g gg

=
−

1
3 1α Σ Σ



LEAKAGE OPTIONS in CHAIN 14

Homogeneous solutions based on:

Diagonal Transport Corrected Flux Solution
B1 Flux Solution

Diffusion Coefficients based on:

Benoist 3-region model
Transport cross sections
Ariadne method



NUMERICAL INTEGRATION OF COLLISION 
PROBABILITIES

PIJ



Σ r E,( ) φ r E,( ) P r′ r E,→( ) ψ r′ E,( ) dr′

r′
∫=

Reaction rate at position r Integrate over
all positions r′

First flight probability
that neutrons produced at
energy E and position r′
will have next collision at
position r

Neutron source
at position
and energy E

r′

COLLISION PROBABILITIES

Integral Transport Equation



ψ r ′ E,( ) Σs r ′ E ′ E→,( ) χ E( )
k

-------------νΣf r ′ E',( )+ φ r′ E',( ) dE ′

E ′
∫=

Neutron source at 
Energy E due to 
fission at position
r′ and energy E′

Neutron source at

r′ due to scattering

Integrate over
all energies E′

Neutron source
at position r′
and Energy E

COLLISION PROBABILITIES 
(Continued)
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COLLISION PROBABILITIES 
(Continued)

In group form

where the �'s are average fluxes in regions i and j.

Reciprocity and Conservation

Σi Vi Pij =Σj Vj Pji

and            

Can also show that

=

where S is the surface for a single region
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NUMERICAL INTEGRATION OF COLLISION 
PROBABILITIES

Integrate  from
x = - ∞ to + ∞
φ = 0 to 2π

θ = 0 to π/2



Σ iViPij ΣjVjP ji=

Σφ Pψ

space
∫∼

NUMERICAL INTEGRATION OF COLLISION 
PROBABILITIES

Note Symmetry 

Collision Probability form of Transport Equation:



- - - - - - - - - - - - - - - - - - - -

Absorber

φ ∼ source

Flat 
source

ASSUMPTIONS IN COLLISION PROBABILITY 
METHODS

Basic Assumptions:
- isotropic scattering
- isotropic flux
- flat source in each region

Consequence of flat source assumption:

Flat source moves neutrons closer to absorber, which increases
absorptions and reduces k.



PIJ Geometry



ANNULI IN PIJ GEOMETRY

In PIJ, ‘meshes’ in annuli cannot be defined.  

Extra annuli must be defined as indicated above.

nregion defines the number of PIJ regions.

(If there are no azimuthal subdivisions of rods or annuli, nregion is the 
number of annuli plus the number of different ‘rodsubs’.)



Boundary Conditions

Explicit Boundaries
a boundary can be dealt with explicitly by PIJ 
Track is reflected back into problem as from a mirror
repeat process at number of reflections until no loss 
results from terminating track



Sn Methods

DSN



Boltzmann Equation

mmmm S=Σ+∇⋅Ω ϕϕ



Boltzmann Equation for Cylinders

SErN
rr

=
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Scalar flux 

m
m

mw ϕφ ∑=

Sum over discrete directions



Discrete Ordinates

Set of points on the unit sphere
Place triangular set of points on octant of unit sphere
SN method of order N
- N/2 levels
- ith level has N/2-i+1 points



S2

Lowest possible approximation
One direction per octant
8 equations (3D)
4 equations (2D)



S4

3 directions per octant
24 equations (3D)
12 equations (2D)



S8

10 directions per 
octant

80 equations (3D)
40 equations (2D)



Weights

Weights proportional to angle subtended 
on unit sphere

wm
m=

∆ Ω
4π

wm
m
∑ = 1



Odd Moment Condition

For isotropic flux net current is zero

J w
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m m
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m m
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ϕ 0

0



Scattering Source

( ) ( ) ( )S dg s g g gΩ Σ Ω Ω= ′ ′′→ ′∫ , µ ϕ0

could expand angular flux ....
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∑∑ lm
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−
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Linearly Anisotropic Scattering

S dE JdEm s m s= ′ + ⋅ ′∫ ∫Σ Ω Σ0 13φ

Use transport corrected cross 
sections

- scattering assumed isotropic

- correction for non isotropic effects



WIMSD DSN OPTION

GEOMETRY OPTIONS: HOMOGENEOUS
SLAB
ANNULAR
SPHERICAL
+ black or white boundary

SOLVES spatial mesh neutron balance equations by differential 
transport

method of k-infinity and neutron flux by mesh and group.

NOT DIRECTLY APPLICABLE to complex geometries (eg. fuel
clusters) without preliminary smearing of pincells into annuli.



SN v Diffusion Theory

SN in principle more accurate than diffusion theory
Difficult to calculate accurate transport cross sections in 
smeared geometries
Restricted to simple geometries




