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r—I Abstract

£\j We review extensions of the AdS/CFT correspondence to gauge/ gravity du-
P> alities with J\f = 1 supersymmetry. In particular, we describe the gauge/gravity

O dualities that emerge from placing D3-branes at the apex of the conifold. We
^ consider first the conformal case, with discussions of chiral primary operators
l̂ *-\ and wrapped D-branes. Next, we break the conformal symmetry by adding a
O stack of partially wrapped D5-branes to the system, changing the gauge group
£_^ and introducing a logarithmic renormalization group flow. In the gravity dual,
•~~~, the effect of these wrapped D5-branes is to turn on the flux of 3-form field
' ^ j strengths. The associated RR 2-form potential breaks the U(l) R-symmetry
<~s to Z2M and we study this phenomenon in detail. This extra flux also leads to
<O deformation of the cone near the apex, which describes the chiral symmetry

'Tt breaking and confinement in the dual gauge theory.

• 1 - H

X

*Based on I. R. K.'s lectures at the Les Houches Summer School Session 76, "Gravity, Gauge
Theories, and Strings", August 2001.



1 Introduction

Comparison of a stack of D3-branes with the geometry it produces leads to formulation
of duality between M = 4 supersymmetric Yang-Mills theory and type II strings
on AdS*, x S5 [1, 2, 3]. It is of obvious interest to consider more general dualities
between gauge theories and string theories where some of the supersymmetry and/or
conformal invariance are broken. These notes are primarily devoted to extensions of
the AdS/CFT correspondence to theories with M — 1 supersymmetry.

We first show how to break some of the supersymmetry without destroying con-
formal invariance. This may be accomplished through placing a stack of D3-branes
at the apex of a Ricci flat 6-dimensional cone [4, 5, 6, 7]. Then we show how to break
the conformal invariance in this set-up and to introduce logarithmic RG flow into the
field theory. A convenient way to make the coupling constants run logarithmically is
to introduce fractional D3-branes at the apex of the cone [8, 9, 10]; these fractional
branes may be thought of as D5-branes wrapped over 2-cycles in the base of the
cone. In the gravity dual the effect of these wrapped D5-branes is to turn on the
flux of 3-form field strengths. This extra flux may lead to deformation of the cone
near the apex, which describes the chiral symmetry breaking and confinement in the
dual gauge theory [11]. We will start the notes with a very brief review of some of
the basic facts about the AdS/CFT correspondence. For more background the reader
may consult, for example, the review papers [12, 13].

To make the discussion more concrete, we consider primarily one particular ex-
ample of a cone, the conifold. There are two reasons for this focus. The conifold has
enough structure that many new aspects of AdS/CFT correspondence emerge that
are not immediately visible for the simplest case, where the conifold is replaced with
R6. At the same time, the conifold is simple enough that we can follow the program
outlined in the paragraph above in great detail. This program eventually leads to the
warped deformed conifold [11], a solution of type IIB supergravity that is dual to a
certain J\f = 1 supersymmetric SU(N + M) x SU(N) gauge theory in the limit of
strong 't Hooft coupling. This solution encodes various interesting gauge theory phe-
nomena in a dual geometrical language, such as the chiral anomaly, the logarithmic
running of couplings, the duality cascade in the UV, and chiral symmetry breaking
and confinement in the IR.

First, however, we review the original AdS/CFT correspondence. The duality
between M = 4 supersymmetric SU(N) gauge theory and the AdS^ x S5 background
of type IIB string theory [1, 2, 3] is usually motivated by considering a stack of a large
number Â  of D3-branes. The SYM theory is the low-energy limit of the gauge theory



on the stack of D3-branes. On the other hand, the curved background produced by
the stack is

ds2 = h-1/2 (-dt2 + dx\ + dx\ + dx2
3) + h1'2 {dr2 + r2dtt2

5) , (1)

where dVt\ is the metric of a unit 5-sphere and

h(r\ = 1 4. ^ . (2)
rH

This 10-dimensional metric may be thought of as a "warped product" of the R3'1 along
the branes and the transverse space R6. Note that the dilaton, $ = 0, is constant,
and the selfdual 5-form field strength is given by

F5=ft+ *ft , ft = 16^(c/)2iVvol(S5) . (3)

The normalization above is dictated by the quantization of Dp-brane tension which
implies

2K2T"N , (4)

where

Tp = ^ ( 4 ^ 2 a ' ) ( 3 - p ) / 2 (5)

and K = 8ir7'2gsa
12 is the 10-dimensional gravitational constant. In particular, for

p = 3 we have

[ F5 = (4n2a')2N , (6)
Js5

which is consistent with (3) since the volume of a unit 5-sphere is

Vol(S5) = 7T3 .

Note that the 5-form field strength may also be written as

g,F5 = d4x A dh'1 - r5~vo\(S5) . (7)
dr

Then it is not hard to see that the Einstein equation

n2

D Us 771 771 PQRS
tlMN = -^rMPQRSrN

is satisfied. Since — r5-^ = 4L4, we find by comparing with (3) that

L4 = 4irgsNa'2 . (8)



A related way to determine the scale factor L is to equate the ADM tension of
the supergravity solution with N times the tension of a single D3-brane [14]:

2 L4Vol(S5) = ^-N . (9)
K2 * ' K

This way we find
KN . „ „ ( 1 Q )

in agreement with the preceding paragraph.

The radial coordinate r is related to the scale in the dual gauge theory. The
low-energy limit corresponds to r -> 0. In this limit the metric becomes

where z = —. This describes the direct product of 5-dimensional Anti-de Sitter
space, AdSs, and the 5-dimensional sphere, S5, with equal radii of curvature L.

An interesting generalization of the basic AdS/CFT correspondence [1, 2, 3] is
found by studying branes at conical singularities [4, 5, 6, 7]. Consider a stack of
D3-branes placed at the apex of a Ricci-flat 6-d cone Y6 whose base is a 5-d Einstein
manifold X5. Comparing the metric with the D-brane description leads one to con-
jecture that type IIB string theory on AdS$ x X5 is dual to the low-energy limit of
the world volume theory on the D3-branes at the singularity. The equality of tensions
now requires [15]

7T3

an important normalization formula which we will use in the following section.

The simplest examples of X5 are the orbifolds S5/F where F is a discrete subgroup
of 50(6) [4]. In these cases X5 has the local geometry of a 5-sphere. The dual gauge
theory is the IR limit of the world volume theory on a stack of ./V D3-branes placed at
the orbifold singularity of E6 /F. Such theories typically involve product gauge groups
SU(N)k coupled to matter in bifundamental representations [16].

Constructions of the dual gauge theories for Einstein manifolds X5 which are
not locally equivalent to S5 are also possible. The simplest example is the Romans
compactiflcation on X5 = T1-1 = (SU(2) x SU{2))/U(1) [17, 6]. The dual gauge
theory is the conformal limit of the world volume theory on a stack of iV D3-branes
placed at the singularity of a Calabi-Yau manifold known as the conifold [6], which
is a cone over T1'1. Let us explain this connection in more detail.



2 D3-branes on the Conifold

The conifold may be described by the following equation in four complex variables,

^ O . (13)
a = l

Since this equation is invariant under an overall real rescaling of the coordinates, this
space is a cone. Remarkably, the base of this cone is precisely the space T1'1 [18, 6].
In fact, the metric on the conifold may be cast in the form [18]

dsj = dr2 + r2ds2
Tl>1 , (14)

where

1/ 2 V i 2

dsj>\,\ — — ( dip + / cos Oid<j>i j H — y \d@i H~ sin @id4>i) (15)
y ^ . * o

is the metric on T1'1. Here t\) is an angular coordinate which ranges from 0 to in,
while (8i,(f)i) and (#2,^2) parametrize two S2s in a standard way. Therefore, this
form of the metric shows that T1'1 is an S1 bundle over S2 x S2.

Now placing N D3-branes at the apex of the cone we find the metric

ds2 = 11 + — J (-dt2 + dx\ + dx\ + dx\)

'2

{dr2 + r2c?Syi,i) (16)

whose near-horizon limit is AdSa x T1'1. Using the metric (15) it is not hard to find
that the volume of T1'1 is ^ [8]. From (12) it then follows that

(17)

The same logic that leads us to the maximally supersymmetric version of the AdS/CFT
correspondence now shows that the type IIB string theory on this space should be
dual to the infrared limit of the field theory on Â  D3-branes placed at the singularity
of the conifold. Since Calabi-Yau spaces preserve 1/4 of the original supersymme-
tries we find that this should be an M = 1 superconformal field theory. This field
theory was constructed in [6]: it is SU(N) x SU(N) gauge theory coupled to two
chiral superfields, A;, in the (N,N) representation and two chiral superfields, Bj, in
the (N, N) representation. The A's transform as a doublet under one of the global
SU(2)s while the JB'S transform as a doublet under the other SU(2).



A simple way to motivate the appearance of the fields Aj, Bj is to rewrite the
defining equation of the conifold, (13), as

det Zij = 0 , Zii = 4 | I ] <•*» (18)

where an are the Pauli matrices for n = 1,2,3 and a4 is i times the unit matrix. This
quadratic constraint may be "solved" by the substitution

Z; i = Si; JJi • 1 J_i7 I

where A;, Bj are unconstrained variables. If we place a single D3-brane at the
singularity of the conifold, then we find a U{\) x (7(1) gauge theory coupled to fields
Ai,A2 with charges (1,-1) and Bi,B2 with charges ( — 1,1).

In constructing the generalization to the non-abelian theory on N D3-branes,
cancellation of the anomaly in the U(l) R-symmetry requires that the A's and the
S's each have R-charge 1/2. For consistency of the duality it is necessary that we
add an exactly marginal superpotential which preserves the SU(2) x SU{2) x U(1)R
symmetry of the theory (this superpotential produces a critical line related to the
radius of AdS$ x T1'1). Since a marginal superpotential has R-charge equal to 2 it
must be quartic, and the symmetries fix it uniquely up to overall normalization:

W = eijekltvAiBkAjBi . (20)

Therefore, it was proposed in [6] that the SU(N) x SU(N) SCFT with this superpo-
tential is dual to type IIB strings on AdS$ x T1'1.

This proposal can be checked in an interesting way by comparing to a certain
AdSs x S5/Z2 background. If S5 is described by an equation

$>•=!, (21)

with real variables xi:..., xe, then the Z2 acts as —1 on four of the X{ and as +1 on
the other two. The importance of this choice is that this particular Z2 orbifold of
AdS5 x S5 has M = 2 superconformal symmetry. Using orbifold results for D-branes
[16], this model has been identified [4] as an AdS dual of a U(N) x U(N) theory with
hypermultiplets transforming in (N, N) © (N, N). From an M = 1 point of view, the
hypermultiplets correspond to chiral multiplets Ak,Bi, k,l = 1,2 in the (N,N) and
(N, N) representations respectively. The model also contains, from an M = 1 point



of view, chiral multiplets $ and $ in the adjoint representations of the two £/(JV)'s.
The superpotential is

( i - A2B2) + gTv^iB^ - B2A2) .

Now, let us add to the superpotential of this Z2 orbifold a relevant term,

^ 2 - Tr$2) . (22)

It is straightforward to see what this does to the field theory. We simply integrate
out $ and <f>, to find the superpotential

2
9 [ ( )
m

This expression is the same as (20), so the Z2 orbifold with relevant perturbation (22)
apparently flows to the T1'1 model associated with the conifold.

Let us try to understand why this works from the point of view of the geometry
of S5/Z2. The perturbation in (22) is odd under exchange of the two [/(iV)'s. The
exchange of the two (7(JV)'s is the quantum symmetry of the AdS5 x S5 /Z2 orbifold
- the symmetry that acts as —1 on string states in the twisted sector and +1 in
the untwisted sector. Therefore we associate this perturbation with a twisted sector
mode of string theory on AdS^ x S5/Z2. The twisted sector mode which is a relevant
perturbation of the field theory is the blowup of the orbifold singularity of S5/Z2

into the smooth space T1'1. A somewhat different derivation of the field theory on
D3-branes at the conifold singularity, which is based on blowing up a Z2 x Z2 orbifold,
was given in [7].

It is interesting to examine how various quantities change under the RG flow from
the S5 /Z2 theory to the T1'1 theory. The behavior of the conformal anomaly (which
is equal to the U(l)% anomaly) was studied in [15]. Using the fact that the chiral
superfields carry R-charge equal to 1/2, on the field theory side it was found that

cuv 32 •

On the other hand, all 3-point functions calculated from supergravity on AdS5 x X5

carry normalization factor inversely proportional to Vol(Xs). Thus, on the super-
gravity side

= Vol (S5/Z2) = 27
Vol (T1-1) 32 ' l '

Thus, the supergravity calculation is in exact agreement with the field theory result
(23) [15]. This is a striking and highly sensitive test of the M = 1 dual pair constructed
in [6, 7].



2.1 Dimensions of Chiral Operators

There are a number of further convincing checks of the duality between this field
theory and type IIB strings on AdS*, x T1'1. Here we discuss the supergravity modes
which correspond to chiral primary operators. (For a more extensive analysis of the
spectrum of the model, see [19].) For the AdSs x S5 case, these modes are mixtures
of the conformal factors of the AdSs and S5 and the 4-form field. The same has been
shown to be true for the T1'1 case [15, 20, 19]. In fact, we may keep the discussion of
such modes quite general and consider AdS$ x X5 where X5 is any Einstein manifold.

The diagonalization of such modes carried out in [22] for the S5 case is easily
generalized to any X&. The mixing of the conformal factor and 4-form modes results
in the following mass-squared matrix,

(25)

where E > 0 is the eigenvalue of the Laplacian on X5. The eigenvalues of this matrix
are

m2 = 16 + E ± 8V4 + E . (26)

We will be primarily interested in the modes which correspond to picking the
minus branch: they turn out to be the chiral primary fields. For such modes there is
a possibility of m2 falling in the range

- 4 < m2 < - 3 (27)

where there is a two-fold ambiguity in defining the corresponding operator dimension
[21].

First, let us recall the S5 case where the spherical harmonics correspond to trace-
less symmetric tensors of 5*0(6), d\JAk. Here E = k(k + 4), and it seems that the
bound (27) is satisfied for k = 1. However, this is precisely the special case where
the corresponding mode is missing: for k = 1 one of the two mixtures is the singleton
[22]. Thus, all chiral primary operators in the J\f = 4 SU(N) theory correspond to
the conventional branch of dimension, A+ . It is now well-known that this family of
operators with dimensions A = k, k = 2, 3 , . . . is d^ t- Tv(Xn ... Xtk). The absence
of k = 1 is related to the gauge group being SU(N) rather than U(N). Thus, in this
case we do not encounter operator dimensions lower than 2.

The situation is different for T1'1. Here there is a family of wave functions labeled
by non-negative integer k, transforming under 577(2) x 577(2) as (k/2, k/2), and with



U{1)R charge k [15, 20, 19]. The corresponding eigenvalues of the Laplacian are

¥) . (28)

In [6] it was argued that the dual chiral operators are

tv(AhBn...AlkBJk). (29)

Since the F-term constraints in the gauge theory require that the i and the j indices are
separately symmetrized, we find that their SU(2) x SU{2) x U(l) quantum numbers
agree with those given by the supergravity analysis. In the field theory the A's and
the B's have dimension 3/4, hence the dimensions of the chiral operators are 3k/2.

In studying the dimensions from the supergravity point of view, one encounters
an interesting subtlety discussed in [21]. While for k > 1 only the dimension A+

is admissible, for k = 1 one could pick either branch. Indeed, from (28) we have
E{\) = 33/4 which falls within the range (27). Here we find that A_ = 3/2, while
A+ = 5/2. Since the supersymmetry requires the corresponding dimension to be 3/2,
in this case we have to pick the unconventional A_ branch [21]. Choosing this branch
for k = 1 and A + for k > 1 we indeed find following [15, 20, 19] that the supergravity
analysis based on (26), (28) reproduces the dimensions 3fc/2 of the chiral operators
(29). Thus, the conifold theory provides a simple example of AdS/CFT duality where
the A_ branch has to be chosen for certain operators.

Let us also note that substituting E(l) = 33/4 into (26) we find m2 = —15/4 which
corresponds to a conformally coupled scalar in AdS*, [22]. In fact, the short chiral
supermultiplet containing this scalar includes another conformally coupled scalar and
a massless fermion [19]. One of these scalar fields corresponds to the lower component
of the superfield Tv(AiBj), which has dimension 3/2, while the other corresponds to
the upper component which has dimension 5/2. Thus, the supersymmetry requires
that we pick dimension A+ for one of the conformally coupled scalars, and A_ for
the other.

2.2 Wrapped D3-branes as "dibaryons"

It is of further interest to consider various branes wrapped over the cycles of T1'1

and attempt to identify these states in the field theory [8]. For example, wrapped
D3-branes turn out to correspond to baryon-like operators AN and BN where the
indices of both SU(N) groups are fully antisymmetrized. For large N the dimensions
of such operators calculated from the supergravity are found to be 3iV/4 [8]. This is



in complete agreement with the fact that the dimension of the chiral superfields at
the fixed point is 3/4 and may be regarded as a direct supergravity calculation of an
anomalous dimension in the dual gauge theory.

To show how this works in detail, we need to calculate the mass of a D3-brane
wrapped over a minimal volume 3-cycle. An example of such a 3-cycle is the subspace
at a constant value of (^25^2), and its volume is found to be V3 = 8TT2L3/9 [8]. The
mass of the D3-brane wrapped over the 3-cycle is, therefore,

^ T (30)

For large ml , the corresponding operator dimension A approaches

^ \

where in the last step we used (17).

Let us construct the corresponding operators in the dual gauge theory. Since the
fields A%p, k = 1,2, carry an index a in the N of SU(N)i and an index (3 in the N
of SU(N)2, we can construct color-singlet "dibaryon" operators by antisymmetrizing
completely with respect to both groups:

N

A£ft , (32)

where £)^~kN -g ^e c o mpl e t e ly symmetric SU(2) Clebsch-Gordon coefficient corre-
sponding to forming the N + 1 of SU(2) out of N 2's. Thus the SU(2) x SU(2)
quantum numbers of Bu are (N + 1,1). Similarly, we can construct "dibaryon" op-
erators which transform as (1,N + 1),

N

Bu = iai~a»e^NDkrkN n BL • (33)

Under the duality these operators map to D3-branes classically localized at a constant
(Oi,(f>i). Thus, the existence of two types of "dibaryon" operators is related on the
supergravity side to the fact that the base of the U(l) bundle is S2 x S2. At the quan-
tum level, the collective coordinate for the wrapped D3-brane has to be quantized,
and this explains its SU(2) x SU(2) quantum numbers [8]. The most basic check on
the operator identification is that, since the exact dimension of the A's and the i?'s is
3/4, the dimension of the "dibaryon" operators agrees exactly with the supergravity
calculation.



2.3 Other ways of wrapping D-branes over cycles of T11

There are many other admissible ways of wrapping branes over cycles of T1'1 (for a
complete list, see [23]). For example, a D3-brane may be wrapped over a 2-cycle,
which produces a string in AdS$. The tension of such a "fat" string scales as L2/K ~
N(gsN)~ll2/a'. The non-trivial dependence of the tension on the 't Hooft coupling
gsN indicates that such a string is not a BPS saturated object. This should be
contrasted with the tension of a BPS string obtained in [24] by wrapping a D5-brane
over RP 4 : T ~ N/a'.

In discussing wrapped 5-branes, we will limit explicit statements to D5-branes:
since a (p, q) 5-brane is an SL(2, Z) transform of a D5-brane, our discussion may be
generalized to wrapped (p, q) 5-branes using the SL(2, Z) symmetry of the Type IIB
string theory. If a D5-brane is wrapped over the entire T1'1 then, according to the
arguments in [24, 25], it serves as a vertex connecting N fundamental strings. Since
each string ends on a charge in the fundamental representation of one of the SU(Nys,
the resulting field theory state is a baryon built out of external quarks.

If a D5-brane is wrapped over an S3, with its remaining two dimensions parallel to
R3'1, then we find a domain wall in the dual field theory. Consider positioning a "fat"
string made of a wrapped D3-brane orthogonally to the domain wall. As the string
is brought through the membrane, a fundamental string stretched between them is
created. The origin of this effect is creation of fundamental strings by crossing D5
and D3 branes, as shown in [26, 27].

We should note, however, that the domain wall positioned at some arbitrary AdS*,
radial coordinate r is not stable: its energy scales as r3. Therefore, the only stable
position is at r = 0 which is the horizon. The domain wall is tensionless there, and it is
unlikely that this object really exists in the dual CFT. We will see, however, that the
domain wall made of a wrapped D5-brane definitely exists in the SU(N) x SU(N + M)
generalization of the gauge theory. This theory is confining and, correspondingly, the
dual background does not have a horizon. In this case the wrapped D5-brane again
falls to the minimum value of the radial coordinate, but its tension there is non-
vanishing. This is the BPS domain wall which separates adjacent inequivalent vacua
distinguished by the phase of the gluino condensate.

Finally, we show how to construct the SU(N) x SU(N + M) theories mentioned
above. Consider a D5-brane wrapped over the 2-cycle, with its remaining directions
filling R3>1. If this object is located at some fixed r, then it is a domain walls in
AdS$. The simplest domain wall is a D3-brane which is not wrapped over the compact
manifold. Through an analysis of the five-form flux carried over directly from [24]

10



one can conclude that when one crosses the domain wall, the effect in field theory is
to change the gauge group from SU(N) x SU{N) to SU(N + 1) x SU(N + 1).

The field theory interpretation of a D5-brane wrapped around S2 is more interest-
ing: if on one side of the domain wall we have the original SU(N) x SU(N) theory,
then on the other side the theory is SU(N) x SU(N + 1) [8]. The matter fields Ak

and Bk are still bifundamentals, filling out 2(N,N + 1) © 2(N,N + 1). One piece of
evidence for this claim is the way the D3-branes wrapped over the S3 behave when
crossing the D5-brane domain wall. In homology there is only one S3, but for definite-
ness let us wrap the D3-brane around a particular three-sphere S3^ which is invariant
under the group SU(2)B under which the fields Bk transform. The corresponding
state in the SU(N) x SU(N) field theory is Bx of (33). In the SU(N) x SU(N + 1)
theory, one has instead

or

where we have omitted SU(2) indices. Either the upper index /3/v+i, indicating a
fundamental of SU(N + 1), or the upper index CCJV+I, indicating a fundamental of
SU(N), is free.

How can this be in supergravity? The answer is simple: the wrapped D3-brane
must have a string attached to it. Indeed, after a wrapped D3-brane has passed
through the wrapped D5-brane domain wall, it emerges with a string attached to it
due to the string creation by crossing D-branes which together span 8 dimensions
[26, 27]. Calculating the tension of a wrapped D5-brane as a function of r shows that
it scales as r4/L2. Hence, the domain wall is not stable, but in fact wants to move
towards r = 0. We will assume that the wrapped D5-branes "fall" behind the horizon
and are replaced by their flux in the SUGRA background. This gives a well-defined
way of constructing the SUGRA duals of the SU(N) x SU(N + M) gauge theories.

The D5-branes wrapped over 2-cycles are examples of a more general phenomenon.
For many singular spaces Y6 there are fractional D3-branes which can exist only within
the singularity [28, 29, 8, 9]. These fractional D3-branes are D5-branes wrapped over
(collapsed) 2-cycles at the singularity. In the case of the conifold, the singularity
is a point. The addition of M fractional branes at the singular point changes the
gauge group to SU(N + M) x SU(N); the four chiral superfields remain, now in the
representation (N + M, N) and its conjugate, as does the superpotential [8, 9]. The
theory is no longer conformal. Instead, the relative gauge coupling g±2 — g^2 runs
logarithmically, as pointed out in [9], where the supergravity equations corresponding
to this situation were solved to leading order in M/N. In [10] this solution was

11



completed to all orders; the conifold suffers logarithmic warping, and the relative
gauge coupling runs logarithmically at all scales. The D3-brane charge, i.e. the 5-
form flux, decreases logarithmically as well. However, the logarithm in the solution
is not cut off at small radius; the D3-brane charge eventually becomes negative and
the metric becomes singular.

In [10] it was conjectured that this solution corresponds to a flow in which the
gauge group factors repeatedly drop in size by M units, until finally the gauge groups
are perhaps SU(2M) x SU(M) or simply SU(M). It was further suggested that
the strong dynamics of this gauge theory would resolve the naked singularity in the
metric. The flow is in fact an infinite series of Seiberg duality transformations —
a "duality cascade" — in which the number of colors repeatedly drops by M units
[11]. Once the number of colors in the smaller gauge group is fewer than M, non-
perturbative effects become essential. We will show that these gauge theories have an
exact anomaly-free Z2M R-symmetry, which is broken dynamically, as in pure M = 1
Yang-Mills theory, to Z2. In the supergravity, this occurs through the deformation
of the conifold. In short, the resolution of the naked singularity found in [10] occurs
through the chiral symmetry breaking of the gauge theory. The resulting space, a
warped deformed conifold, is completely nonsingular and without a horizon, leading
to confinement [11].

3 The RG cascade

The addition of M fractional 3-branes (wrapped D5-branes) at the singular point
changes the gauge group to SU(N + M) x SU(N). Let us consider the effect on
the dual supergravity background of adding M wrapped D5-branes. The D5-branes
serve as sources of the magnetic RR 3-form flux through the S3 of T1'1. Therefore, the
supergravity dual of this field theory involves M units of the 3-form flux, in addition
to iV units of the 5-form flux:

n I F3 = M , I f F5 = N . (35)
2a' JS3 (4ir2a')2 JTiA

The coefficients above follow from the quantization rule (4). The warped conifold
solution with such fluxes was constructed in [10].

It will be useful to employ the following basis of 1-forms on the compact space
[30]:

e'-e3
 2 e 2-e 4

9 = —/-r- ' 9 =

12



1 + e3
 A e2 + e4

V2 ' ^
g5 = e5 , (36)

where

e1 = — sin $id4>i , e2 =

e3 = cosipsm62d(f)2 — sin tpd92 ,

e4 = sin ip sin ̂ 2^2 + c o s i>d82 ,

e5 = rfV' + cos M ^ i + cos 02d<t>2 • (37)

In terms of this basis, the Einstein metric on T1'1 assumes the form

' ) 2 • (38)1 ' 9 V ' L
4 = 1

Keeping track of the normalization factors, in order to be consistent with the
quantization conditions (35),

TP Ma> R 3gsMa'
F3 = - g - " * , B2 = u2 ln(r/r0) , (39)

3n A/I n1

H3 = dB2 =
 9s dr A u2 , (40)

2r
where

cu2 = -(flf1 Aflf2 +g3 /\g4) = -(s in^!^! A # i - sin M ^ A # 2 ) , (41)

^3 = \g" A (^ A i + / A / ) . (42)

One can show that [31]

LU2 = 4TT , UJ3 = 8TT2 (43)

s2 J s 3

where the S12 is parametrized by ip = 0, 9\ = ^2 and 0i = —</>2, and the S3 by
92 = cf)2 = 0. As a result, the quantization condition for RR 3-form flux is obeyed.

Both u>2 and co3 are closed. Note also that

gs *6 F3 = H3, gsF3 = - *6 H3 , (44)
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where *6 is the Hodge dual with respect to the metric ds\. Thus, the complex 3-form
G3 satisfies the self-duality condition

*6 G3 = iG3 , G3 = F3- -H3 . (45)
9s

Note that the self-duality fixes the relative factor of 3 in (39) (see (14), (15)). We
will see that this geometrical factor is crucial for reproducing the well-known factor
of 3 in the M = 1 beta functions.

It follows from (44) that
92

SF
2 = Hi , (46)

which implies that the dilaton is constant, $ = 0. Since F^^uxH^u = 0, the RR
scalar vanishes as well.

The 10-d metric found in [10] has the structure of a "warped product" of R3'1 and
the conifold:

ds\0 = h-1/2{r)dxndxn + h1/2{r)(dr2 + r2ds2
TUl) . (47)

The solution for the warp factor h may be determined from the trace of the Einstein
equation:

C\A \ 3 ' J s 3 / - i o 3 * v /

This implies

r5 dr 6 3

Integrating this differential equation, we find that

, , , 277r(a')2bsiV + a(gsM)2 ln(r/r0) + a(gsM)2/4]

with a = 3/(2TT).

An important feature of this background is that F$ acquires a radial dependence
[10]. This is because

F5 = F5 + B2AF3, F5 = dCA , (51)

and u>2 A u>3 = 54vol(T1'1). Thus, we may write

F5 = ^ 5 + *.F5 , ^5 = 277ra'2^e//(r)vol(T1 '1) , (52)

and
Neff{r) = N + --gsM

2 ln(r/r0) . (53)
Z7T
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The novel phenomenon in this solution is that the 5-form flux present at the UV scale
r = r0 may completely disappear by the time we reach a scale where Neff = 0. The
non-conservation of the flux is due to the type IIB SUGRA equation

dF5 = H3f\F3. (54)

A related fact is that Jg2 B2 is no longer a periodic variable in the SUGRA solution
once the M fractional branes are introduced: as the B2 flux goes through a period,
Neff{r) ~^ Ne/f(r) — M which has the effect of decreasing the 5-form flux by M
units. Note from (53) that for a single cascade step Nejj{r) —» JVe//(r) — M the
radius changes by a factor r2/Vi = exp(—27r/3gsM), agreeing with a result of [32].

Due to the non-vanishing RHS of (54), u^la,\2 /Ti,i -̂ 5 is not quantized. We may
identify this quantity with Nefj defining the gauge group SU(Nefj + M) x SU(Neff)
only at special radii rj. = roex'p(—2irk/3gsM) where k is an integer. Thus, Ne/f =
N—kM. Furthermore, we believe that the continuous logarithmic variation of Nejj(r)
is related to continuous reduction in the number of degrees of freedom as the theory
flows to the IR. Some support for this claim comes from studying the high-temperature
phase of this theory using black holes embedded into asymptotic KT geometry [33].
The effective number of degrees of freedom computed from the Bekenstein-Hawking
entropy grows logarithmically with the temperature, in agreement with (53).

The metric (47) has a naked singularity at r — rs where h(rs) = 0. Writing

^ , (55)

we find a purely logarithmic RG cascade:

r2

ds = dxndxn H -— dr + L -\/m(r/rs)dsTi i . (56)
L2^\n(r/rs) r2

Since T1'1 expands slowly toward large r, the curvatures decrease there so that cor-
rections to the SUGRA become negligible. Therefore, even if gsM is very small, this
SUGRA solution is reliable for sufficiently large radii where gsNefj(r) ^> 1. In this
regime the separation between the cascade steps is very large, so that the SUGRA
calculation of the /3-functions may be compared with SU(Nejj + M) x SU(Nefj)
gauge theory. We will work near r = r0 where Neff may be replaced by N.

3.1 Matching of the /3-functions

In order to match the two gauge couplings to the moduli of the type IIB theory on
AdS5 x T1-1, one notes that the integrals over the S2 of T1'1 of the NS-NS and R-R
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2-form potentials, B2 and C2, are moduli. In particular, the two gauge couplings are
determined as follows [6, 7]:1

f + f = ̂ ' (57)

4TT2 4TT2

* ^ ' ' " l (mod 2TT) . (58)9 9

91 92 J
From the quantization condition on H3, ^ 7 ( J g 2 52) must be a periodic variable with
period 2?r. This periodicity is crucial for the cascade phenomenon. These equations
are crucial for relating the SUGRA background to the field theory /3-functions when
the theory is generalized to SU(N + M) x SU(N) [9, 10].

In gauge/gravity duality the 5-dimensional radial coordinate defines the RG scale
of the dual gauge theory [1, 2, 3, 36, 35]. There are different ways of establishiing the
precise relation. The simplest one is to identify the field theory energy scale A with
the energy of a stretched string ending on a probe brane positioned at radius r. For
all metrics of the form (47) this gives

A ~ r . (59)

In this section we adopt this UV/IR relation, which typically corresponds to the
Wilsonian renormalization group.

Now we are ready to interpret the solution of [10] in terms of RG flow in the dual
SU(N + M) x SU(N) gauge theory. The constancy of the dilaton translates into the
vanishing of the /3-function for ^5- + ^jr. Substituting the solution for Bi into (58)
we find

Q_2 S77-2

-5 j - = 6Mln(r/rs) + const . (60)
9i 92

Since ln(r/r s) = ln(A//i), (60) implies a logarithmic running of \ — \ in the SU(N +
M) x SU(N) gauge theory. As we mentioned earlier, this SUGRA result is reliable for
any value of gsM provided that gsN 3> 1. We may consider, for instance, gsM <C 1
so that the cascade jumps are well-separated.

1 Exactly the same relations apply to the J\f = 2 supersymmetric %2 orbifold theory [4, 34].
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Let us compare with the Shifman-Vainshtein /3-functions [37] :2

fef = 3(iV + M) - 2AT(1 - 7) , (61)

7 ) , (62)

where 7 is the anomalous dimension of operators TrAiBj. The conformal invariance
of the field theory for M = 0, and symmetry under M —> — M, require that 7 =
— I + O^M/Af)2™] where n is a positive integer [11]. Taking the difference of the two
equations in (61) we then find

7)] (63)
9i 92

0[(M/N)2n]) .

Remarkably, the coefficient 6M is in exact agreement with the result (60) found on the
SUGRA side. This consitutes a geometrical explanation of a field theory /^-function,
including its normalization.

We may also trace the jumps in the rank of the gauge group to a well-known
phenomenon in the dual M = 1 field theory, namely, Seiberg duality [40]. The
essential observation is that l/gf and \jg\ flow in opposite directions and, according
to (61), there is a scale where the SU(N + M) coupling, gi: diverges. To continue
past this infinite coupling, we perform a Af = 1 duality transformation on this gauge
group factor. The SU(N + M) gauge factor has 2N flavors in the fundamental
representation. Under a Seiberg duality transformation, this becomes an SU(2N —
[N + M]) = SU(N - M) gauge group. Thus we obtain an SU(N) x SU(N - M)
theory which resembles closely the theory we started with [11].

As the theory flows to the IR, the cascade must stop, however, because negative
Â  is physically nonsensical. Thus, we should not be able to continue the solution (56)
to the region where Nejj is negative. To summarize, the fact that the solution of [10]
is singular tells us that it has to be modified in the IR. The necessary modification
proceeds via the deformation of the conifold, and is discussed in section 5.

2 These expressions for the /3-functions differ from the standard NSVZ form [38] by a factor
of 1/(1 — g2Nc/8n2). The difference comes from the choice of normalization of the vector super-
fields. We choose the normalization so that the relevant kinetic term in the field theory action is
•tt f d4xd26Tr(WaWa)+ h.c; this choice is dictated by the form of the supergravity action and
differs from the canonical normalization by a factor of l/g2. With this convention the additional
factor in the /3-function does not appear. A nice review of the derivation of the exact /^-functions is
in [39].
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4 The Chiral Anomaly

In theories with M = 1 supersymmetry, /3-functions are related to chiral anomalies
[37]. The essential mechanism is the /3-functions contribute to the trace anomaly,
(T/), which is related by supersymmetry to the divergence of the U(\)R current,
diJ1. In the previous section we showed how the logarithmic running of the gauge
couplings manifests itself in the dual supergravity solution of [10]. Here we show that
the chiral anomaly can be read off the solution as well. Although the metric has a
continuous U(1)R symmetry, the full supergravity solution is only invariant under a
Z 2 M subgroup of this U(l). In the dual quantum field theory there are chiral fermions
charged under the U(1)R, and so we can understand the R-symmetry breaking as
an effect of the chiral anomaly. Anomalies are especially interesting creatures for
the gauge/gravity duality, because the Adler-Bardeen theorem [41] guarantees that
anomaly coefficients computed at one loop are exact, with no radiative corrections;
the significance of this fact is that we can compute anomaly coefficients in the field
theory at weak coupling, then extrapolate the results to strong coupling, where we
can use dual gravity methods to check the calculation. In this section we will study
some aspects of the anomaly in detail for the cascading gauge theory.

There are three lessons that we can take away from this analysis [42]. First, the
anomaly coefficients computed on each side of the duality agree exactly, even for our
non-conformal cascading theory with only M — 1 supersymmetry; although this result
is hardly surprising, it is a nice check of the duality. Second, the symmetry breaking
is a classical effect on the gravity side. There is no need to appeal to instantons,
which is a good thing as they do not appear anywhere explicitly in the gravity dual.
Finally, the R-symmetry is broken spontaneously in the supergravity solution - the
bulk vector field dual to the R-current of the gauge theory acquires a mass. The
symmetry breaking then appears "anomalous" if one insists on a four-dimensional
description.

4.1 The Anomaly as a Classical Effect in Supergravity

The asymptotic UV metric (47,15) has a U(l) symmetry associated with the rotations
of the angular coordinate [3 = ip/2, normalized so that /3 has period 2TT. This is the
R-symmetry of the dual gauge theory. It is crucial, however, that the background
value of the R-R 2-form C2 does not have this continuous symmetry. Indeed, although
F3 is U(l) symmetric, there is no smooth global expression for C2- Locally, we may
write

C2 -> Ma'f3u2 . (64)
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This expression is not single-valued as a function of the angular variable f3, but it
is single-valued up to a gauge transformation, so that F3 = dC2 is single-valued. In
fact, F3 is completely independent of j3. Because of the explicit f3 dependence, C2 is
not [/(l)-invariant. Under the transformation f3 —y f3 + e,

C2 -+ C2 + Ma'tuj2 . (65)

Since L2 C2 is defined modulo 47r2a', a gauge transformation can shift C2/(4:Tr2a') by
an arbitrary integer multiple of 0)2/(4ir), SO f3 —> /3 + e is a symmetry precisely if e is an
integer multiple of TT/M. Because e is anyway only defined mod 2TT, a I12M subgroup
of the U(l) leaves fixed the asymptotic values of the fields, and thus corresponds to
a symmetry of the system. This Z 2 M is a symmetry since it respects the asymptotic
values of the fields.

Let us compare the above analysis with the gauge theory. (A similar comparison
for the case of an J\f = 2 orbifold theory appeared in [43].) As pointed out in [6], the
integral of the RR 2-form potential C2 over the S2 of T1'1 is a modulus. Because the
integral of J92 was dual to the difference of gauge couplings for the two gauge groups,
it is natural that the integral of C2 is dual to the difference of 0-angles (it is possible
to check this statement explicitly in orbifold backgrounds). The 0-angles are given

by

0! - 02 = — [ C2 , 0! + 02 ~ C , (66)
Tra' JS2

where C is the RR scalar, which vanishes for the case under consideration. Using the
fact that Jg2 W2 = 4TT, we find that the small U(l) rotation /?—>/? + £ induces

0X = _ 0 2 = 2Me . (67)

With a conventional normalization, the 0 terms appear in the gauge theory action
as

If we assume that e is a function of the 4 world volume coordinates x\ then under
the U(l) rotation (67) the terms linear in e in the dual gauge theory (68) are

(69)

where J% is the chiral jR-current. The appearance of the second term is due to the
non-invariance of C2 under the U(l) rotation. Varying with respect to e, we therefore
obtain

(70)
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This anomaly equation, derived from supergravity, agrees exactly with our expec-
tations from the gauge theory. A standard result of quantum field theory is that in
a theory with chiral fermions charged under a global U(l) symmetry of the classi-
cal Lagrangian, the Noether current associated with that symmetry is not generally
conserved but instead obeys the equation

where nm is the number of chiral fermions with R-charge Rm circulating in the loop
of the relevant triangle diagram. In the case of interest, there are two gauge groups,
so let us define F% and G\3 to be the field strengths of SU(N + M) and SU(N)
respectively. Now, the chiral superfields Ai,Bj contribute 2N flavors to the gauge
group SU(N + M), and each one carries R-charge 1/2. The chiral fermions which are
their superpartners have R-charge — 1/2 while the gluinos have R-charge 1. Therefore,
the anomaly coefficient is j | ^ . An equivalent calculation for the SU(N) gauge group
with 2(iV + M) flavors produces the opposite anomaly, so the anomaly equation as
computed from field theory is just (70).

The upshot of the calculation presented above is that the chiral anomaly of the
SU(N + M) x SU(N) gauge theory is encoded in the ultraviolet (large r) behavior of
the dual classical supergravity solution. No additional fractional D-instanton effects
are needed to explain the anomaly. Thus, as often occurs in the gauge/gravity duality,
a quantum effect on the gauge theory side turns into a classical effect in supergravity.
Similar methods have been used to describe chiral anomalies in other supersymmetric
gauge theories [42, 43, 44].

4.2 The Anomaly as Spontaneous Symmetry Breaking in

Let us look for a deeper understanding of the anomaly from the dual gravity point of
view. On the gauge theory side, the R-symmetry is global, but in the gravity dual it as
usual becomes a gauge symmetry, which must not be anomalous, or the theory would
not make sense at all. Rather, we will find that the gauge symmetry is spontaneously
broken: the 5-d vector field dual to the R-current of the gauge theory 'eats' the scalar
dual to the difference of the theta angles and acquires a mass.3 A closely related
mechanism was observed in studies of RG flows from the dual gravity point of view

3 The connection between anomalies in a D-brane field theory and spontaneous symmetry break-
ing in string theory was previously noted in [45] (and probably elsewhere in the literature).
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[46, 48]. There R-current conservation was violated not through anomalies but by
turning on relevant perturbations or expectation values for fields. In these cases it was
shown [46, 48] that the 5-d vector field dual to the R-current acquires a mass through
the Higgs mechanism. We will show that symmetry breaking through anomalies can
also have the bulk Higgs mechanism as its dual.

In the absence of fractional branes there are no background three-form fluxes,
so the U(l) R-symmetry is a true symmetry of the field theory. Because the R-
symmetry is realized geometrically by invariance under a rigid shift of the angle f3, it
becomes a local symmetry in the full gravity theory, and the associated gauge fields
A = A^dx^ appear as fluctuations of the ten-dimensional metric and RR four-form
potential [22, 19]. The natural metric ansatz is of the familiar Kaluza-Klein form:

ds2 = h(r)-1/2 (dxndxn)

h(r)1/2r2

r = l

(72)

where h(r) = L4/r4, and L4 — ̂ (Ana'2gsN). It 1S convenient to define the one-form
X = g5 — 2A, which is invariant under the combined gauge transformations

P ->• p + A, A -> A + dX. (73)

The equations of motion for the field A^ appear as the x/i components of Einstein's
equations,

2
PQRS^MPQRSr N

The five-form flux will also fluctuate when we activate the Kaluza-Klein gauge
field; indeed, the unperturbed F5 of (52) is not self-dual with respect to the gauged
metric (72). An appropriate ansatz to linear order in A is

d4^dh-l + 1 ^ ^ \ ^ x ^g2 ^g:i

3 1
-dA Ag5 /\dgb + — *5 dA A dg5 \. (75)

The five-dimensional Hodge dual *5 is defined with respect to the AdSs metric
ds5

2 = h~1'2dxndxn + hl'2dr2. It is straightforward to show that the supergrav-
ity field equation dF5 = 0 implies that the field A satisfies the equation of motion for
a massless vector field in AdSs space:

d*5dA = 0. (76)
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Using the identity dg5 A dg5 = —2g1 A g2 A g3 A g4, we can check that the expression
for C4 is

C4 — —h 1d4x l f\g2

9s

ft A 5 (& / i / \ Q I • ( i i )
Om I

Another way to see that A is a massless vector in AdS$ is to consider the Ricci scalar
for the metric (72)

U / 2 2

F^F"" (78)

so that on reduction from ten dimensions the five-dimensional supergravity action
will contain the action for a massless vector field.

The story changes when we add wrapped D5-branes. As described in Section 2,
the 5-branes introduce M units of RR flux through the three-cycle of T1'1. Now,
the new wrinkle is that the RR three-form flux of (39) is not gauge-invariant with
respect to shifts of /? (73). To restore the gauge invariance, we introduce a new field
6 ~ Js2 C2:

Ma'
F3 = dC2 = — (g5 + 2dli6dx>i) A u2 (79)

so that F3 is invariant under the gauge transformation /3 —»• /3 + A, 6 —> 9 — A. Let us
also define W^ = A^ + d^B. In terms of the gauge invariant forms \ a n d W = W^dx^,

Ma'
( + 2W)Au2. (80)

From (80) we can immediately see how the anomaly will appear in the gravity
dual. Assuming that the NS-NS three form is still given by (40), we find that up to
terms of order gsM

2 /N the three-form equation implies

W = 0 => —diW1 + \drr
5Wr = 0 (81)

which is just what one would expect for a massive vector field in five dimensions. To
a four dimensional observer, however, a massive vector field would satisfy diW% = 0.
Thus in the field theory one cannot interpret the £7(1) symmetry breaking as being
spontaneous, and the additional Wr term in (81) appears in four dimensions to be an
anomaly.

22



Another way to see that the vector field becomes massive is to compute its equation
of motion. To do this calculation precisely, we should derive the XV components
of Einstein's equations, and also find the appropriate expressions for the five-form
and metric up to quadratic order in gsM and linear order in fluctuations. This
approach is somewhat nontrivial. A more heuristic approach is to consider the type
IIB supergravity action to quadratic order in W, ignoring the 5-form field strength
contributions:

2
q _ ' / JW / p I D y « _ | p i2i , f o 9 \

102/C

1
9K 2 d10

+ ... (83)

This is clearly the action for a massive four-dimensional vector field, which has as its
equation of motion

d^hr7 F^) = m2hr7Wu (84)

which in differential form notation is d(hr'4r7 *5 dW) = —fh2h7'4r7 *5 W. From the
action (83), we see that the mass-squared is given by

^ . (85)

This result, however, ignores the subtlety of the type IIB action in presence of the
self-dual 5-form field. A more precise calculation [49], which takes the mixing into
account, gives instead the following equation for the transverse vector modes:

= 0, (86)

This shows that the 10-d mass actually appears at a higher order in perturbation
theory compared to the result (85) that ignores the mixing with the 5-form.

Let us compare this result to earlier work. In [46, 47, 48] it was shown that the
5-d vector field associated with a U(1)R symmetry acquires a mass in the presence of
a symmetry-breaking relevant perturbation, and that this mass is related in a simple
way to the warp factor of the geometry.4 It is conventional to write the 5-d gauged
supergravity metric in the form

= e2T^rjijdxidxj + dq2. (87)
4We are grateful to O. DeWolfe and K. Skenderis for pointing out the relevance of this work to

the present calculation.
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The result of [46] is that m2 = ~2T". To relate the 5-d metric (87) to the 10-d metric
(97) we must normalize the 5-d metric so that the graviton has a canonical kinetic
term. Doing this carefully we find

G^dx^dx" = (hr4/L4)5/6 (h-1/\jdxidxj + h1/2dr2). (88)

The factor (hr4/L4) arises due to the radial dependence of the size of T1'1 through
the usual Kaluza-Klein reduction. The radial variables q and r are related, at leading
order in gsM

2 /JV, by

We can also show that — 2T = —21og(r)+(terms which do not affect the mass to
leading order in gsM

2/N), so now computing the mass-squared by the prescription
of [46] we obtain

2 _ 4 (gsM)2

'(3

where this mass applies to a vector field V with a canonical kinetic term for the metric
(88). For these calculations it is convenient to work with the transverse 4-d vector
modes Vi and to decouple the longitudinal modes such as Vr. The equation of motion
of Vis

{ ' 2 T 2 T + ~2

In fact, this equation follows from (86) after a rescaling [49]

Vi = {hr4/L4)2^Wi. (92)

The nonvanishing vector mass is consistent with gauge invariance because the massless
vector field A has eaten the scalar field 9, spontaneously breaking the gauge symmetry,
as advertised. It is interesting that the anomaly appears as a bulk effect in AdS space,
in contrast to some earlier examples [3, 50] where anomalies arose from boundary
terms.

The appearance of a mass implies that the R-current operator should acquire an
anomalous dimension. From (90) it follows that

)2

• ( 9 3 )
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Using the AdS/CFT correspondence (perhaps naively, as the KT metric is not asymp-
totically AdS) we find that the dimension of the current J^ dual to the vector field

A = 2 + y/l + {™Ly . (94)

Therefore, the anomalous dimension of the current is

& ( 9 5 )

We can obtain a rough understanding of this result by considering the relevant weak
coupling calculation in the gauge theory. The leading correction to the current-
current two-point function comes from the three-loop Feynman diagram composed of
two triangle diagrams glued together, and the resulting anomalous dimension jj is
quadratic in M and N. jj must vanish when M = 0, and it must be invariant under
the map M —> — M, N —> N + M, which simply interchanges the two gauge groups.
Thus, the lowest order piece of the anomalous dimension will be of order (gsM)2. Our
supergravity calculation predicts that this anomalous dimension is corrected at large
gsN by an extra factor of l/(gsN). Of course, it would be interesting to understand
this result better from the gauge theory point of view.

5 Deformation of the Conifold

It was shown in [11] that, to remove the naked singularity found in [10] the conifold
(13) should be replaced by the deformed conifold

in which the singularity of the conifold is removed through the blowing-up of the S3

of T1'1. The 10-d metric of [11] takes the following form:

ds\Q = h-^2(r)dxndxn + hll\T)ds\ , (97)

where ds\ is the metric of the deformed conifold (98). This is the same type of "D-
brane" ansatz as (47), but with the conifold replaced by the deformed conifold as the
transverse space.

The metric of the deformed conifold was discussed in some detail in [18, 30, 51].
It is diagonal in the basis (36):

d4 = \eA'*K{r) [ ^ y ( ^ 2 + (/)2) + cosh2 (I) [(gy + (s4)2]
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(98)

where
_ (B i n h (2 r )2 r )

{>~ 2'/3sinhT • l '
For large r we may introduce another radial coordinate r via

and in terms of this radial coordinate ds\ —Y dr2 + r 2 ^ 2 ^ .

At T = 0 the angular metric degenerates into

dill = \c4/3(m1/3[\(95)2 + (a3)2 + (g4)2], (ioi)

which is the metric of a round S3 [18, 30]. The additional two directions, correspond-
ing to the S2 fibered over the S3, shrink as

i£
4/3(2/3)1/3r2[(/)2 + (s2)2] . (102)

The simplest ansatz for the 2-form fields is

F3 =

, (103)

with F(0) = 0 and F(oo) = 1/2, and

B2 = 9-^-[f{r)gl A <? + k(r)g5 A g*] , (104)

\(k - f)g5 A (g1 A g3 + g2 A <?4)] . (105)

As before, the self-dual 5-form field strength may be decomposed as F$ =
We have

f5 = B2AF3=
 9sM]{a>)2 W A g2 A g* A g4 A g* , (106)
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where

£ = f(l-F) + kF, (107)

and

* .F5 = 4gsM
2(a')2e-8/3dx° A dx1 A dx2 A dx3 A dr ^ _, x . (108)

A"2/i2 sinh (r)

5.1 The First-Order Equations and Their Solution

In searching for BPS saturated supergravity backgrounds, the second order equations

should be replaced by a system of first-order ones. Luckily, this is possible for our

ansatz [11]:

/ ' = ( l -F) tanh 2 ( r /2) ,

k' = Fcoth2(r/2) ,

F' = \(k-f), (109)

and
/(I -F) + kF

where

a = 4{9sMa')2e-8/3 . (Ill)

These equations follow from a superpotential for the effective radial problem [52].

Note that the first three of these equations, (109), form a closed system and need

to be solved first. In fact, these equations imply the self-duality of the complex 3-form

with respect to the metric of the deformed conifold: *QG3 = iG?,. The solution is

_ s inhr-r
1 J ~ 2sinhr '

rcothr- 1
f T) = o • u (coshr-1),

2 sinh r

= rco thr -1 / c o g h r + 1 ) _ ( n 2 )

2 sinn T

Now that we have solved for the 3-forms on the deformed conifold, the warp factor

may be determined by integrating (HO). First we note that

£(T) = / ( I -F) + kF= r c o t h r 1 ( s i n h 2 r _ 2 r ) .
4 sinh r
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This behaves as r3 for small r. For large r we impose, as usual, the boundary
condition that h vanishes. The resulting integral expression for h is

h(r) = a^I(r) = (<7sMa')222/V8/3/(r) , (114)

where
°° T rntVi T — 1

dx 2

sinh x
/

T rntVi T — 1

dx 2 (sinh(2x) - Ixflz . (115)
ihWe have not succeeded in evaluating this integral in terms of elementary or well-known

special functions, but it is not hard to see that

I(T -> 0) -> a0 + O(T2) ; (116)

j ( r _> oo) _> 3 • 2-1 /3 f r - ^ e"4^3 , (117)

where ao « 0.71805. This /(r) is nonsingular at the tip of the deformed conifold
and, from (100), matches the form of the large-r solution (55). The small r behavior
follows from the convergence of the integral (114), while at large r the integrand
becomes ~ xe~4x'3.

Thus, for small r the ten-dimensional geometry is approximately K.3'1 times the
deformed conifold:

4/3

2 nn + l
gsMa'

^ 2 ^ 2 / 2 } (118)

This metric will be useful in section 6 where we investigate various infrared phe-
nomenon of the gauge theory.

Very importantly, for large gsM the curvatures found in our solution are small
everywhere. This is true even far in the IR, since the radius-squared of the S3 at
r = 0 is of order gsM in string units. This is the 't Hooft coupling of the gauge
theory found far in the IR. As long as this is large, the curvatures are small and the
SUGRA approximation is reliable.

5.2 SO(4) invariant expressions for the 3-forms

In [53, 54] it was shown that the warped background of the previous section preserves
M = 1 SUSY if and only if G3 is a (2,1) form on the CY space. Perhaps the easiest
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way to see the supersymmetry of the deformed conifold solution is through a T-
duality. Performing a T-duality along one of the longitudinal directions, and lifting
the result to M-theory maps our background to a Becker-Becker solution supported
by a G4 which is a (2,2) form on T2 x CY. G-flux of this type indeed produces a
supersymmetric background [55].

While writing G3 in terms of the angular 1-forms gl is convenient for some pur-
poses, the (2,1) nature of the form is not manifest. That G3 is indeed (2,1) was
demonstrated in [56] with the help of a holomorphic basis. Below we write the G3
found in [11] in terms of the obvious 1-forms on the deformed conifold: dz1 and dz\

_ Ma' r s inh(2r) -2r , _ , , _ , ,
G3 = . „ . . 4 i r~r [eijki ZiZj dzk A dz\) A (zm dzm)

2e6 smh r I- smh r

+2(1 - r coth r)(tijki ZiZj dzk A dz{) A (zm dzm)\. (119)

We also note that the NS-NS 2-form potential is an SO(4) invariant (1,1) form:

igsMa' r coth r - 1
B2 = ——: —2 tijki ZiZj dzk A dzi . (120)

smh T

The derivation of these formulae is given in [31]. Our expressions for the gauge fields
are manifestly 5*0(4) invariant, and so is the metric.

6 Infrared Physics

We have now seen that the deformation of the conifold allows the solution to be
non-singular. In the following sections we point out some interesting features of
the SUGRA background we have found and show how they realize the expected
phenomena in the dual field theory. In particular, we will now demonstrate that there
is confinement; that the theory has glueballs and baryons whose mass scale emerges
through a dimensional transmutation; that there is a gluino condensate that breaks
the Z2M chiral symmetry down to Z2 and that there are domain walls separating
inequivalent vacua. Other stringy approaches to infrared phenomena in M = 1 SYM
theory have recently appeared in [57, 58, 59].

6.1 Dimensional Transmutation and Confinement

The resolution of the naked singularity via the deformation of the conifold is a super-
gravity realization of the dimensional transmutation. While the singular conifold has
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no dimensionful parameter, we saw that turning on the R-R 3-form flux produces the
logarithmic warping of the KT solution. The scale necessary to define the logarithm
transmutes into the the parameter e that determines the deformation of the conifold.
From (100) we see that e2/3 has dimensions of length and that

r = 3 m(r/e2 /3) + const . (121)

Thus, the scale rs entering the UV solution (55) should be identified with £2/3. On
the other hand, the form of the IR metric (118) makes it clear that the dynamically
generated 4-d mass scale, which sets the tension of the confining flux tubes, is

p2/3

(122)

The reason the theory is confining is that in the metric for small r (118) the
function multiplying dxndxn approaches a constant. This should be contrasted with
the AdSs metric where this function vanishes at the horizon, or with the singular
metric of [10] where it blows up. Consider a Wilson contour positioned at fixed T,
and calculate the expectation value of the Wilson loop using the prescription [60, 61].
The minimal area surface bounded by the contour bends towards smaller r. If the
contour has a very large area A, then most of the minimal surface will drift down
into the region near r = 0. From the fact that the coefficient of dxndxn is finite at
r = 0, we find that a fundamental string with this surface will have a finite tension,
and so the resulting Wilson loop satisfies the area law. A simple estimate shows that
the string tension scales as

We will return to these confining strings in the next section.

The masses of glueball and Kaluza-Klein (KK) states scale as

£2/3

mgiuehau ~ mKK ~ ——— . (124)
gsMa'

Comparing with the string tension, we see that

Ts ~ gsM{mglueballf . (125)

Due to the deformation, the full SUGRA background has a finite 3-cycle. We may
interpret various branes wrapped over this 3-cycle in terms of the gauge theory. Note
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that the 3-cycle has the minimal volume near r = 0, hence all the wrapped branes
will be localized there. A wrapped D3-brane plays the role of a baryon vertex which
ties together M fundamental strings. Note that for M = 0 the D3-brane wrapped
on the S3 gave a dibaryon [8]; the connection between these two objects becomes
clearer when one notes that for M > 0 the dibaryon has M uncontracted indices, and
therefore joins M external charges. Studying a probe D3-brane in the background of
our solution show that the mass of the baryon scales as

2/3

Mb ~ M . (126)
a'

6.2 Tensions of the g-Strings

The existence of the blown up 3-cycle with M units of RR 3-form flux through it is
responsible for another interesting infrared phenomenon, the appearance of composite
confining strings. To explain what they are, let us recall that the basic string corre-
sponds to the Wilson loop in the fundamental representation. The classic criterion
for confinement is that this Wilson loop obey the area law

-ln(W1(C))=T1A(C) (127)

in the limit of large area. An interesting generalization is to consider Wilson loops in
antisymmetric tensor representations with q indices where q ranges from 1 to M — 1.
q = 1 corresponds to the fundamental representation as denoted above, and there is
a symmetry under q —>• M — q which corresponds to replacing quarks by anti-quarks.
These Wilson loops can be thought of as confining strings which connect q probe
quarks on one end to q corresponding probe anti-quarks on the other. For q = M
the probe quarks combine into a colorless state (a baryon); hence the corresponding
Wilson loop does not have an area law.

It is interesting to ask how the tension of this class of confining strings depends
on q. If it is a convex function,

Tq+q, <Tq + Tg> , (128)

then the g-string will not decay into strings with smaller q. This is precisely the situ-
ation found by Douglas and Shenker (DS) [62] in softly broken M = 2 gauge theory,
and later by Hanany, Strassler and Zaffaroni (HSZ) [63] in the MQCD approach to
confining M = 1 supersymmetric gauge theory [64, 65]:

r g = A 2 s i n ^ , q = l,2,...,M-l (129)
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where A is the overall IR scale.

This type of behaviour is also found in the supergravity duals of J\f = 1 gauge
theories [66]. Here the confining g-string is described by q coincident fundamental
strings placed at r = 0 and oriented along the R3'1.5 In the deformed conifold solution
analyzed above both F5 and B2 vanish at r = 0, but it is important that there are
M units of F3 flux through the S3. In fact, this R-R flux blows up the q fundamental
strings into a D3-brane wrapping an S2 inside the S3. Although the blow-up can be
shown directly, for brevity we build on a closely related result of Bachas, Douglas and
Schweigert [68]. In the S-dual of our type IIB gravity model, at r = 0 we find the
R3'1 x S3 geometry with M units of NS-NS H3 flux through the S3 and q coincident
Dl-branes along the R3>1. T-dualizing along the Dl-brane direction we find q D0-
branes on an S3 with M units of NS-NS flux. This geometry is very closely related
to the setup of [68] whose authors showed that the q DO-branes blow up into an S2.
We will find the same phenomenon, but our probe brane calculation is somewhat
different from [68] because the radius of our S3 is different.

After applying S-duality to the KS solution, at r = 0 the metric is

£4/3

dxndxn + bMa'idip2 + sin2 ibdVtl) , (130)
>

where b = 2<2Q 6"1/3 ~ 0.93266. We are now using the standard round metric on
S3 so that i\) is the azimuthal angle ranging from 0 to n. The NS-NS 2-form field at
T = 0 is

B2 = Ma' U - S m ^ \ sin0dO A d<f> , (131)

while the world volume field is

F = --sin6d6 A d<f> . (132)

Following [68] closely we find that the tension of a D3-brane which wraps an S2

located at the azimuthal angle ^ is

£
4/3

67 * 4 / i I /
s in ip -\- \ip —

sin(2'0) irq

2 M

Minimizing with respect to ip we find

1/2

(133)

4-j% = l-lf sin(2̂ ) . (134)
5 Qualitatively similar confining flux-tubes were examined in [67] where the authors use the near

horizon geometry of non-extremal D3-branes to model confinement.
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The tension of the wrapped brane is given in terms of the solution of this equation

by

Ti = 1O1/, 9 9 » s i n ^ V1 + (b2 ~ 1) cos2 0 . (135)

Note that under q —>• M — q, we find ip —> IT — if), so that T~M-q — Tq. This is a crucial
property needed for the connection with the g-strings of the gauge theory.

Although (134) is not exactly solvable, we note that (1 — b2)/2 « 0.06507 is small
numerically. If we ignore the RHS of this equation, then ip « rrq/M and

T , ~ s i n ^ . (136)

The deviations from this formulae are small: even when ip = 7r/4 and correspondingly
q « M/4, the tension in the KS case is approximately 96.7% of that in the 6 = 1
case.

It is interesting to compare (136) with the naive string tension (123) we obtained in
the previous section. In the large M limit, we expect interactions among the strings
to become negligible and the ^-string tension to become just q times the ordinary
string tension (123). Indeed, we find that gsTq = qTs in the large M limit. The extra
gs appears because we have been computing tensions in the dual background. When
we S-dualize back to the original background with RR-flux and q F-strings, all the
tensions are multiplied by gs.

An analogous calculation for the MN background [57] proceeds almost identically.
In this background only the F3 flux is present; hence after the S-duality we find only
H3 = dB2. The value of B2 at the minimal radius is again given by (131). There is
a subtle difference however from the calculation for the KS background in that now
the parameter b entering the radius of the S3 is equal to 1. This simplifies the probe
calculation and makes it identical to that of [68]. In particular, now we find

without making any approximations.

Our argument applied to the MN background leads very simply to the DS-HSZ
formula for the ratios of g-string tensions (137). As we have shown earlier, this formula
also holds approximately for the KS background. It is interesting to note that recent
lattice simulations in non-supersymmetric pure glue gauge theory [69] appear to yield
good agreement with (137).
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6.3 Chiral Symmetry Breaking and Gluino Condensation

Our SU(N + M) x SU(N) field theory has an anomaly-free Z 2 M R-symmetry. In
section 3 we showed that the corresponding symmetry of the UV (large r) limit of
the metric is

2ivk
^^^ + W fc = l ,2 , . . . ,M. (138)

Recalling that ij> ranges from 0 to 4?r, we see that the full solution, which depends on ip
through cos i\) and sin^7, has the Z2 symmetry generated by ij) —>• ip + 2n. As a result,
there are M inequivalent vacua: there are exactly M different discrete orientations
of the solution, corresponding to breaking of the TLIM UV symmetry through the IR
effects. The domain walls constructed out of the wrapped D5-branes separate these
inequivalent vacua.

Let us consider domain walls made of k D5-branes wrapped over the finite-sized S3

at r = 0, with remaining directions parallel to R3'1. Such a domain wall is obviously
a stable object in the KS background and crossing it takes us from one ground state
of the theory to another. Indeed, the wrapped D5-brane produces a discontinuity in
JB F3, where B is the cycle dual to the S3. If to the left of the domain wall JB F3 — 0,
as in the basic solution derived in the preceding sections, then to the right of the
domain wall

f F3 = 4n2a'k , (139)
JB

as follows from the quantization of the D5-brane charge. The B-cycle is bounded by
a 2-sphere at r = 00, hence JB F3 = Jg2 AC2. Therefore from (43) it is clear that to
the right of the wall

AC2 -»• na'kuj2 (140)

for large r. This change in C2 is produced by the Z 2 M transformation (138) on the
original field configuration (64).

It is expected that flux tubes can end on these domain walls [70]. Indeed, a
fundamental string can end on the wrapped D5-brane. Also, baryons can dissolve in
them. By studying a probe D5-brane in the metric, we find that the domain wall
tension is

&

In supersymmetric gluodynamics the breaking of chiral symmetry is associated
with the gluino condensate (AA). A holographic calculation of the condensate was
carried out by Loewy and Sonnenschein in [71] (see also [72] for previous work on
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gluino condensation in conifold theories.) They looked for the deviation of the com-
plex 2-form field C2 -B2 from its asymptotic large r form that enters the KT

9s

solution:

S [C2 B2 ~ ——re T[gi Afe + ^ A f t - i(gi A 92 - #3 A g4)]

^ - I n ( r / e 2 / 3 ) e ' ^ i - i sin01(#i) A (d62 - i sind2dcj>2) . (142)

In a space-time that approaches AdSs a perturbation that scales as r~3 corresponds to
the expectation value of a dimension 3 operator. The presence of an extra ln(r/e2//3)
factor is presumably due to the fact that the asymptotic KT metric differs from AdS*,
by such logarithmic factors. From the angular dependence of the perturbation we see
that the dual operator is SU(2) x SU(2) invariant and carries R-charge 1. These are
precisely the properties of AA. Thus, the holographic calculation tells us that

e2

(AA) ~ M - — . (143)

Thus, the parameter e2 which enters the deformed conifold equation has a dual in-
terpretation as the gluino condensate.6
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