SCHOOL ON SYNCHROTRON RADIATION AND APPLICATIONS
In memory of J.C. Fuggle & L. Fonda

19 April - 21 May 2004

Miramare - Trieste, Italy

Synchrotron Radiation (Part 1 - 2 - 3 - 4)

Leonid Rivkin
Synchrotron Radiation
An Introduction

L. Rivkin
Swiss Light Source

Books

Helmut Wiedemann
- Synchrotron Radiation
 Springer-Verlag Berlin Heidelberg 2003

A. W. Chao, M. Tigner
- Handbook of Accelerator Physics and Engineering
 World Scientific 1999

A. A. Sokolov, I. M. Ternov
- Synchrotron Radiation
 Pergamon, Oxford 1968
CERN Accelerator School Proceedings

Synchrotron Radiation and Free Electron Lasers

- Grenoble, France, 22 - 27 April 1996
 (in particular A. Hofmann’s lectures on synchrotron radiation)
 CERN Yellow Report 98-04
 http://cas.web.cern.ch/cas/CAS_Proceedings-DB.html

- Brunnen, Switzerland, 2 – 9 July 2003
 http://cas.web.cern.ch/cas/BRUNNEN/lectures.html

Crab Nebula
6000 light years away

First light observed
1054 AD

GE Synchrotron
New York State

First light observed
1947
20 000 users world-wide

THEORETICAL UNDERSTANDING ➔

1873 Maxwell’s equations

→ made evident that changing charge densities would result in electric fields that would radiate outward

1887 Heinrich Hertz demonstrated such waves:

….. this is of no use whatsoever !
Maxwell equations (poetry)

War es ein Gott, der diese Zeichen schrieb
Die mit geheimnisvoll verborg’ nem Trieb
Die Kräfte der Natur um mich enthüllen
Und mir das Herz mit stiller Freude füllen.
Ludwig Boltzman

Was it a God whose inspiration
Led him to write these fine equations
Nature’s fields to me he shows
And so my heart with pleasure glows.
translated by John P. Blewett

Why do they radiate?

Charge at rest: Coulomb field

Uniformly moving charge \(v = \text{const.} \)

Accelerated charge
Bremstrahlung

1898 Liénard:

ELECTRIC AND MAGNETIC FIELDS PRODUCED BY A POINT CHARGE MOVING ON AN ARBITRARY PATH
(by means of retarded potentials)
Liénard-Wiechert potentials

\[\varphi(t) = \frac{q}{4\pi \varepsilon_0 \sqrt{1 - n \cdot \beta}} \]

\[\vec{A}(t) = \frac{q}{4\pi \varepsilon_0 c^2 \sqrt{1 - n \cdot \beta}} \frac{\vec{v}}{r} \]

and the electromagnetic fields:

\[\nabla \cdot \vec{A} + \frac{1}{c^2} \frac{\partial \varphi}{\partial t} = 0 \] \hspace{1cm} \text{(Lorentz gauge)}

\[\vec{B} = \nabla \times \vec{A} \]

\[\vec{E} = -\nabla \varphi - \frac{\partial \vec{A}}{\partial t} \]

Fields of a moving charge

\[\vec{E}(t) = \frac{q}{4\pi \varepsilon_0 c^2} \left[\frac{\vec{n} - \vec{\beta}}{r^2 \sqrt{1 - \vec{n} \cdot \vec{\beta} \cdot \vec{n} \cdot \vec{\beta}}} \right] \cdot \left[\frac{1}{r^2} \right]_{ret} \]

\[\left(\frac{\vec{n} \times (\vec{n} - \vec{\beta}) \times \vec{\beta}}{1 - \vec{n} \cdot \vec{\beta} \cdot \vec{n} \cdot \vec{\beta}} \cdot \frac{1}{r^2} \right)_{ret} \]

\[\vec{B}(t) = \frac{1}{c} \vec{n} \times \vec{E} \]
Transverse acceleration

Radiation field quickly separates itself from the Coulomb field

Longitudinal acceleration

Radiation field cannot separate itself from the Coulomb field
Moving Source of Waves

Time compression

Electron with velocity β emits a wave with period T_{emit} while the observer sees a different period T_{obs} because the electron was moving towards the observer.

$T_{obs} = (1 - n \cdot \beta) T_{emit}$

The wavelength is shortened by the same factor

$\lambda_{obs} = (1 - \beta \cos \theta) \lambda_{emit}$

in ultra-relativistic case, looking along a tangent to the trajectory.

$\lambda_{obs} = \frac{1}{2\gamma} \lambda_{emit}$

since

$1 - \beta = \frac{1 - \beta^2}{1 + \beta} \approx \frac{1}{2\gamma^2}$
Angular Collimation

Galileo: sound waves \(v_s = 331 \text{ m/s} \)

\[
\theta = \frac{v_{s\perp}}{v_{s\parallel} + v} = \frac{v_{s\perp}}{v_{s\parallel}} \cdot \frac{1}{1 + \frac{v}{v_s}} \approx \theta c \cdot \frac{1}{1 + \frac{v}{v_s}}
\]

Lorentz: speed of light \(c = 3 \cdot 10^8 \text{ m/s} \)

\[
\theta = \frac{1}{\gamma} \cdot \theta c
\]

Radiation is emitted into a narrow cone
Typical frequency of synchrotron light

Due to extreme collimation of light

- observer sees only a small portion of electron trajectory (a few mm)

- Pulse length: difference in times it takes an electron and a photon to cover this distance

\[\Delta t \sim \frac{l}{\beta c} - \frac{l}{c} = \frac{l}{\beta c}(1 - \beta) \]
Synchrotron radiation power

Power emitted is proportional to: \(P \propto E^2 B^2 \)

\[
P_{\text{SR}} = \frac{c C_\gamma}{2 \pi} \frac{E^4}{\rho^2}
\]

\[
C_\gamma = \frac{4\pi}{3} \frac{r_e}{(m_e c^2)^3} = 8.858 \cdot 10^{-5} \left[\frac{m}{\text{GeV}^3} \right]
\]

Energy loss per turn:

\[
U_0 = C_\gamma \cdot \frac{E^4}{\rho^2}
\]

\[
P_{\text{SR}} = \frac{2}{3} \alpha \hbar c \gamma^4 \frac{E^4}{\rho^2}
\]

\[
\alpha = \frac{1}{137}
\]

\[
\hbar c = 197 \text{ Mev} \cdot \text{fm}
\]

The power is all too real!
Spectrum of synchrotron radiation

- Synchrotron light comes in a series of flashes every T_0 (revolution period)

 \[\omega_0 = \frac{1}{T_0} \]

- The spectrum consists of harmonics of

 \[\omega_{typ} \approx \gamma^3 \omega_0 \]

- Flashes are extremely short: harmonics reach up to very high frequencies

- At high frequencies the individual harmonics overlap continuous spectrum!

\[\gamma \approx 4000 \]

\[\omega_{typ} \approx 10^{16} \text{ Hz!} \]

\[\begin{align*}
\frac{dP}{d\omega} &= \frac{P_{tot}}{\omega_c} S\left(\frac{\omega}{\omega_c}\right) \\
P_{tot} &= \frac{2}{3} \hbar c^2 \alpha \frac{\gamma^4}{\rho} \\
\omega_c &= \frac{3 c \gamma^3}{2 \rho}
\end{align*} \]

\[S(x) = \frac{9 \sqrt{3}}{8 \pi} x \int_0^x K_{\frac{x}{\rho}}(x')dx' \quad \int_0^\infty S(x')dx' = 1 \]

\[G_1(x) = x \int_0^\infty K_{\frac{x}{\rho}}(x')dx' \]

\[E_{[\text{eV}]} = 665 E_{[\text{GeV}]} B_{[\text{T}]} \]

\[x = \omega/\omega_c \]

\[\begin{align*}
G_1(x) &= x \int_0^\infty K_{\frac{x}{\rho}}(x')dx' \\
S(x) &= \frac{9 \sqrt{3}}{8 \pi} x \int_0^x K_{\frac{x}{\rho}}(x')dx' \\
P_{tot} &= \frac{2}{3} \hbar c^2 \alpha \frac{\gamma^4}{\rho} \\
\omega_c &= \frac{3 c \gamma^3}{2 \rho}
\end{align*} \]
Synchrotron radiation flux for different LEP energies

Flux from a dipole magnet:

\[
\text{Flux} = \frac{\text{photons}}{\text{s} \cdot \text{mrad} \cdot 0.1\%\text{BW}} = 2.46 \cdot 10^{13} E[\text{GeV}] I[A] G(\delta)
\]

Power density at the peak:

\[
\frac{P_{\text{net}}}{\omega_c} = \frac{4}{9} \alpha h c \frac{\gamma}{\rho}
\]
Polarisation

Synchrotron radiation observed in the plane of the particle orbit is horizontally polarized, i.e. the electric field vector is horizontal.

Observed out of the horizontal plane, the radiation is elliptically polarized.

Polarisation: spectral distribution

\[
\frac{dP}{d\omega} = \frac{P_{\text{tot}}}{\omega_c} S(x) = \frac{P_{\text{tot}}}{\omega_c} \left[S_\sigma(x) + S_\pi(x) \right]
\]

\[
S_\sigma = \frac{7}{8} S
\]

\[
S_\pi = \frac{1}{8} S
\]
Angular divergence of radiation

• at the critical frequency

• well below

\[\omega = 0.2 \omega_c \]

• well above

\[\omega = 2 \omega_c \]

Angular divergence of radiation

The rms opening angle \(R' \)

• at the critical frequency:

\[\omega = \omega_c \quad R' \approx \frac{0.54}{\gamma} \]

• well below

\[\omega \ll \omega_c \quad R' \approx \frac{1}{\gamma} \left(\frac{\omega}{\omega_c}\right)^{\frac{3}{2}} \approx 0.4 \left(\frac{\lambda}{\rho}\right)^{\frac{3}{2}} \]

\text{independent of } \gamma \]

• well above

\[\omega \gg \omega_c \quad R' \approx \frac{0.6}{\gamma} \left(\frac{\omega}{\omega_c}\right)^{\frac{3}{2}} \]
Synchrotron Radiation
Sources and properties

L. Rivkin

Swiss Light Source

20 000 users world-wide
The “brightness” of a light source:

Source area, S

Angular divergence, Ω

Flux, F

Brightness = constant $\times \frac{F}{S \times \Omega}$

G. Margaritondo
The electron beam “emittance”:

\[\text{Emittance} = S \times \Omega \]

WHAT DO USERS EXPECT FROM A HIGH PERFORMANCE LIGHT SOURCE?

- PROPER PHOTON ENERGY FOR THEIR EXPERIMENTS
- BRILLIANCE
- STABILITY

\[B = \frac{\Phi}{(2\pi)^2 \sum_x \sum_x' \sum_y \sum_y'} \]

FIGURE OF MERIT

\[\Sigma^2 = \sigma_e^2 + \sigma_y^2 \]
\[\sum_x \sum_x' \approx \sigma_x \sigma_x' \approx \varepsilon_x \]

Photon beam size (U):

\[\sigma_x' = \frac{\lambda}{\sqrt{L}} \]
\[\sigma_y = \frac{\sqrt{2}\lambda L}{4\pi} \]
3 types of storage ring sources:

1. Bending magnets: $B \sim N_e$

G. Margaritondo
3 types of storage ring sources:

2. Wigglers: \[B \sim N_e N_w \times 10 \]

3. Undulators: \[B \sim N_e N_u^2 \times 10^3 \]
The three generations

1. First experiments

2. Basic phenomena, new methods
tunability, flux
photoeffect, X-rays

3. Brightness, coherence, time structure

From rings to linacs (ERLs) to X-ray FELs:
new community
new techniques

FIRST GENERATION

About 60 ring sources world-wide

J.Als-Nielsen, Des Mc Morrow
Protein structure

Diffraction pattern
Protein Data Bank

There is an increasing need for higher photon energies!

Medium energy machines can only get there by:

- Small period (low gap) undulators
- The use of higher harmonics
- Solve lifetime problem + stability with top up injection
Radiation Field from a Planar Undulator in time Domain

\[\lambda = \frac{\lambda_0}{\sqrt{1 - \frac{v^2}{c^2}} \cos \theta} \approx \lambda_0 \left(1 - \frac{v^2}{c^2} \right) \approx \frac{\lambda_0}{2 \gamma^2} \left(1 + \frac{K^2}{2} + \gamma^2 \theta^2 \right) \]

Undulator based sources

Brightness

\[B = \frac{N_{ph}}{N_u} \cdot \frac{1}{\Delta S \cdot \Delta \Omega} \cdot \frac{1}{\Delta \lambda} \]

Flux \(N_{ph} \propto N_u \) (periods)

The line width \(\frac{\Delta \lambda}{\lambda} \sim \frac{1}{N_u} \) if

\[\frac{1}{N_u} > 2\pi \cdot \frac{\sigma_f^2}{E} \]

If energy spread is small enough

\[B \sim N_u^2 \]
Undulator line width

Undulator of infinite length

\[N_{\mu} = \infty \Rightarrow \frac{\Delta \lambda}{\lambda} = 0 \]

Finite length undulator

- radiation pulse has as many periods as the undulator
- the line width is

\[\frac{\Delta \lambda}{\lambda} = \frac{1}{N_{\mu}} \]

Due to the electron energy spread

\[\frac{\Delta \lambda}{\lambda} \approx \frac{2 \sigma_E}{E} \]

Undulator line width

\[J(\Delta \omega) = \frac{\sin \left(\frac{\pi N_{\mu} \Delta \omega}{\omega_0} \right)}{\pi N_{\mu} \Delta \omega / \omega_0} \]
Electron Dynamics
with radiation

L. Rivkin
Swiss Light Source

Radiation effects in electron storage rings

Average radiated power restored by RF
- Electron loses energy each turn
- RF cavities provide voltage to accelerate electrons back to the nominal energy

\[U_0 \approx 10^{-3} \text{ of } E_0 \]

\[\text{RF > } U_0 \]

Radiation damping
- Average rate of energy loss produces DAMPING of electron oscillations in all three degrees of freedom (if properly arranged!)

Quantum fluctuations
- Statistical fluctuations in energy loss (from quantised emission of radiation) produce RANDOM EXCITATION of these oscillations

Equilibrium distributions
- The balance between the damping and the excitation of the electron oscillations determines the equilibrium distribution of particles in the beam
Average energy loss per turn

- Every turn electron radiates small amount of energy
 \[E_1 = E_0 - U_0 = E_0 \left(1 - \frac{U_0}{E_0}\right) \]

- Since the radiation is emitted along the tangent to the trajectory, only the amplitude of the momentum changes

\[P_1 = P_0 - \frac{U_0}{c} = P_0 \left(1 - \frac{U_0}{E_0}\right) \]

Energy gain in the RF cavities

- Only the longitudinal component of the momentum is increased in the RF cavity

\[eV_{\text{RF}} = U_0 \]

- The transverse momentum, or the amplitude of the betatron oscillation remains small
Energy of betatron oscillation

- Transverse momentum corresponds to the energy of the betatron oscillation
 \[E_\beta \propto A^2 \]

\[A_1^2 = A_0^2 \left(1 - \frac{U_0}{E_0} \right) \quad \text{or} \quad A_1 \approx A_0 \left(1 - \frac{U_0}{2E_0} \right) \]

- The relative change in the betatron oscillation amplitude that occurs in one turn (time \(T_0 \))
 \[\frac{\Delta A}{A} = -\frac{U_0}{2E} \]

Exponential damping

- But this is just the exponential decay law!
 \[\frac{\Delta A}{A} = -\frac{U_0}{2E} \]

- The amplitudes are exponentially damped
 \[A = A_0 e^{-U_0 / \tau} \]

 with the damping decrement
 \[\frac{1}{\tau} = \frac{U_0}{2ET_0} \]
Adiabatic damping in linear accelerators

In a **linear accelerator**:

\[x' = \frac{p_\perp}{p} \text{ decreases } \propto \frac{1}{E} \]

In a **storage ring** beam passes many times through same RF cavity

- Clean loss of energy every turn (no change in \(x' \))
- Every turn is re-accelerated by RF (\(x' \) is reduced)
- Particle energy on average remains constant

Damping time

- the time it would take particle to lose all of its energy

\[\tau_e = \frac{E T_0}{U_0} \]

- or in terms of radiated power

\[\tau_e = \frac{E T_0}{U_0} = \frac{E}{P_\gamma} \]

remember that \(P_\gamma \propto E^4 \)

\[\tau_e \propto \frac{1}{E^3} \]
Longitudinal motion: compensating radiation loss U_0

- RF cavity provides accelerating field with frequency
 - h – harmonic number

- The energy gain:
 \[U_{RF} = eV_{RF}(\tau) \]

- Synchronous particle:
 - has design energy
 - gains from the RF on the average as much as it loses per turn U_0

Longitudinal motion: phase stability

- Particle ahead of synchronous one
 - gets too much energy from the RF
 - goes on a longer orbit (not enough B)
 - >> takes longer to go around
 - comes back to the RF cavity closer to synchronous part.

- Particle behind the synchronous one
 - gets too little energy from the RF
 - goes on a shorter orbit (too much B)
 - catches-up with the synchronous particle
Longitudinal motion: dampening of synchrotron oscillations \(P_\gamma \propto E^2 B^2 \)

During one period of synchrotron oscillation:
- when the particle is in the upper half-plane, it loses more energy per turn, its energy gradually reduces
- when the particle is in the lower half-plane, it loses less energy per turn, but receives \(U_0 \) on the average, so its energy deviation gradually reduces

The synchrotron motion is damped
- the phase space trajectory is spiraling towards the origin

Radiation loss

Displaced off the design orbit particle sees fields that are different from design values
- betatron oscillations: zero on average
 - linear term in \(B^2 \) - averages to zero
 - quadratic term - small
- energy deviation
 - different energy: \(P_\gamma \propto E^2 \)
 - different magnetic field
 particle moves on a different orbit, defined by the off-energy or dispersion function \(D_x \)

\[\Rightarrow \] both contribute to linear term in \(P_\gamma(\epsilon) \)
Radiation loss

To first order in ε

$$U_{\text{rad}} = U_0 + U' \cdot \varepsilon$$

electron energy changes slowly, at any instant it is moving on an orbit defined by D_x

after some algebra one can write

$$U' = \left(\frac{U_0}{E_0^2 + D}\right)$$

$D \neq 0$ only when $\frac{k}{\rho} \neq 0$

Energy balance

Energy gain from the RF system:

$$U_{RF} = eV_{RF}(\tau) = U_0 + eV_{RF} \cdot \tau$$

- synchronous particle ($\tau = 0$) will get exactly the energy loss per turn
- we consider only linear oscillations

Each turn electron gets energy from RF and loses energy to radiation within one revolution time T_0

$$\Delta \varepsilon = (U_0 + eV_{RF} \cdot \tau) - (U_0 + U' \cdot \varepsilon)$$

$$\frac{d\varepsilon}{dt} = \frac{1}{T_0}(eV_{RF} \cdot \tau - U' \cdot \varepsilon)$$

An electron with an energy deviation will arrive after one turn at a different time with respect to the synchronous particle

$$\frac{d\tau}{dt} = -\alpha \cdot \frac{\varepsilon}{E_0}$$
Synchrotron oscillations: damped harmonic oscillator

Combining the two equations

\[
\frac{d^2 \epsilon}{dt^2} + 2\alpha_\epsilon \frac{d\epsilon}{dt} + \Omega^2 \epsilon = 0
\]

- where the oscillation frequency \(\Omega^2 \equiv \frac{\alpha e V_{RF}}{T_0 E_0}\)
- the damping is slow: \(\alpha_\epsilon \equiv \frac{U'}{2T_0}\) typically \(\alpha_\epsilon \ll \Omega\)
- the solution is then:
 \(\epsilon(t) = \epsilon_0 e^{-\alpha_\epsilon t} \cos(\Omega t + \theta)\)
- similarly, we can get for the time delay:
 \(\tau(t) = \tau_0 e^{-\alpha_\epsilon t} \cos(\Omega t + \theta)\)

Synchrotron (time - energy) oscillations

The ratio of amplitudes at any instant

\[
\xi = \frac{\alpha \epsilon}{\Omega E_0}
\]

Oscillations are 90 degrees out of phase

\[
\theta_\epsilon = \theta + \frac{\pi}{2}
\]

The motion can be viewed in the phase space of conjugate variables
Orbit Length

Length element depends on x

\[dl = \left(1 + \frac{x}{\rho}\right) ds \]

Horizontal displacement has two parts:

- $x = x_\beta + x_\epsilon$
- To first order x_β does not change L
- x_ϵ – has the same sign around the ring

Length of the off-energy orbit

\[
L_e = \int dl = \int \left(1 + \frac{x}{\rho}\right) ds = L_0 + \Delta L
\]

\[
\Delta L = \delta \int \frac{D(s)}{\rho(s)} ds \quad \text{where} \quad \delta = \frac{\Delta p}{p} = \frac{\Delta E}{E}
\]

\[
\frac{\Delta L}{L} = \alpha \cdot \delta
\]

Momentum compaction factor

\[
\alpha = \frac{1}{L} \int \frac{D(s)}{\rho(s)} ds
\]

Like the tunes Q_x, Q_y - α depends on the whole optics

- A quick estimate for separated function guide field:

\[
\alpha = \frac{1}{L_0 P_0} \int_{\text{mag}} D(s) ds = \frac{1}{L_0 P_0} \langle D \rangle \cdot L_{\text{mag}}
\]

\[
\rho = \rho_0 \quad \text{in dipoles} \quad \rho = \infty \quad \text{elsewhere}
\]

- But

\[
L_{\text{mag}} = 2\pi \rho_0
\]

\[
\alpha = \frac{\langle D \rangle}{R}
\]

- Since dispersion is approximately

\[
D \approx \frac{R}{Q^2} \Rightarrow \alpha \approx \frac{1}{Q^2} \quad \text{typically} \quad < 1\%
\]

and the orbit change for $\sim 1\%$ energy deviation

\[
\frac{\Delta L}{L} = \frac{1}{Q^2} \cdot \delta \approx 10^{-4}
\]
Something funny happens on the way around the ring...

Revolution time changes with energy

\[
\frac{\Delta T}{T} = \frac{\Delta L}{L} - \frac{\Delta \beta}{\beta}
\]

- Particle goes faster (not much!)

\[
\frac{d\beta}{\beta} = \frac{1}{\gamma^2} \cdot \frac{dp}{p} \quad \text{(relativity)}
\]

- while the orbit length increases (more!)

\[
\frac{\Delta L}{L} = \alpha \cdot \frac{dp}{p}
\]

- The “slip factor” \(\eta \approx \alpha \) since \(\alpha \gg \frac{1}{\gamma^2} \)

\[
\frac{\Delta T}{T} = (\alpha - \frac{1}{\gamma^2}) \cdot \frac{dp}{p} = \eta \cdot \frac{dp}{p}
\]

- Ring is above “transition energy”

isochronous ring: \(\eta = 0 \) or \(\gamma = \gamma_r \)

Not only accelerators work above transition
Robinson theorem
Damping partition numbers

- Transverse betatron oscillations are damped with
 \[\frac{1}{\tau_x} = \frac{1}{\tau_z} = \frac{U_0}{2ET_0} \]
- Synchrotron oscillations are damped twice as fast
 \[\frac{1}{\tau_e} = \frac{U_0}{ET_0} \]
- The total amount of damping (Robinson theorem) depends only on energy and loss per turn
 \[\frac{1}{\tau_x} + \frac{1}{\tau_y} + \frac{1}{\tau_e} = \frac{2U_0}{2ET_0} = \frac{U_0}{ET_0}(J_x + J_y + J_e) \]
 the sum of the partition numbers \(J_x + J_z + J_e = 4 \)

Quantum nature of synchrotron radiation
Damping only
- If damping was the whole story, the beam emittance (size) would shrink to microscopic dimensions!*
- Lots of problems! (e.g. coherent radiation)

Quantum fluctuations
- Because the radiation is emitted in quanta, radiation itself takes care of the problem!
- It is sufficient to use quasi-classical picture:
 » Emission time is very short
 » Emission times are statistically independent (each emission - only a small change in electron energy)

Purely stochastic (Poisson) process
Quantum nature of synchrotron radiation

Damping only
- If damping was the whole story, the beam emittance (size) would shrink to microscopic dimensions!*
- Lots of problems! (e.g. coherent radiation)

* How small? On the order of electron wavelength – Compton wavelength

\[E = \gamma mc^2 = h\nu = \frac{hc}{\lambda_e} \quad \Rightarrow \quad \lambda_e = \frac{1}{\gamma} \frac{h}{mc} = \frac{\lambda_C}{\gamma} \]

\[\lambda_C = 2.4 \cdot 10^{-12} \text{m} \]

Diffraction limited electron emittance

\[\varepsilon \geq \frac{\lambda_C}{4\pi} N^{\frac{1}{3}} \text{ (fermions)} \]

Visible quantum effects

I have always been somewhat amazed that a purely quantum effect can have gross macroscopic effects in large machines;

and, even more,

that Planck’s constant has just the right magnitude needed to make practical the construction of large electron storage rings.

A significantly larger or smaller value of \(\hbar \)

would have posed serious -- perhaps insurmountable -- problems for the realization of large rings.

Mathew Sands
Quantum excitation of energy oscillations

Photons are emitted with typical energy $u_{ph} \approx \hbar \omega_{ph} = \hbar c \frac{\gamma}{\beta}$ at the rate (photons/second) $\mathcal{N} = \frac{P_{\gamma}}{u_{ph}}$

Fluctuations in this rate excite oscillations

During a small interval Δt electron emits photons losing energy of $N\cdot u_{ph}$

Actually, because of fluctuations, the number is $N \pm \sqrt{N}$ resulting in **spread in energy loss** $\pm \sqrt{N} \cdot u_{ph}$

For large time intervals RF compensates the energy loss, providing damping towards the design energy E_0

Steady state: typical deviations from $E_0 \approx$ typical fluctuations in energy during a damping time τ_e

Equilibrium energy spread: rough estimate

We then expect the rms energy spread to be $\sigma_{\epsilon} \approx \sqrt{N \cdot \tau_e \cdot u_{ph}}$

and since $\tau_e \approx \frac{E_0}{P_{\gamma}}$ and $P_{\gamma} = N \cdot u_{ph}$

$\sigma_{\epsilon} \approx \sqrt{E_0 \cdot u_{ph}}$ geometric mean of the electron and photon energies!

Relative energy spread can be written then as:

$$\frac{\sigma_{\epsilon}}{E_0} \approx \gamma \sqrt{\frac{\lambda_c}{\rho}}$$

$\lambda_c = \frac{\hbar}{m_e c} \sim 4 \cdot 10^{-13} m$

it is roughly constant for all rings

- typically $E \propto \rho^2$

\[\frac{\sigma_{\epsilon}}{E_0} \sim \text{const} \sim 10^{-3} \]
Equilibrium energy spread

More detailed calculations give

- for the case of an ‘isomagnetic’ lattice

\[\rho(s) = \begin{cases} \rho_0 & \text{in dipoles} \\ \infty & \text{elsewhere} \end{cases} \]

\[
\left(\frac{\sigma_E}{E} \right)^2 = \frac{C_q E^2}{J_\rho \rho_0}
\]

with

\[C_q = \frac{55}{32\sqrt{3}} \frac{h c}{(m c^2)^3} = 1.468 \cdot 10^{-6} \frac{m}{[\text{GeV}^2]} \]

It is difficult to obtain energy spread < 0.1%

- limit on undulator brightness!

Equilibrium bunch length

Bunch length is related to the energy spread

- Energy deviation and time of arrival (or position along the bunch) are conjugate variables (synchrotron oscillations)

\[
\tau = \frac{\alpha}{\Omega_s (E)} \frac{\sigma_E}{E}
\]

- recall that \(\Omega_s \propto \sqrt{V_{RF}} \)

Two ways to obtain short bunches:

- RF voltage (power!)

- Momentum compaction factor in the limit of \(\alpha = 0 \)

 - isochronous ring: particle position along the bunch is frozen

 \[\sigma_\tau \propto \alpha \]
Horizontal oscillations: equilibrium

After an electron emits a photon

- its energy decreases:
 \[E = E_0 - u_{ph} \]
- Neither its position nor angle change after emission
- its reference orbit has smaller radius (Dispersion)

\[x_{ref} = D \cdot \delta \]

It will start a betatron oscillation around this new reference orbit

\[x_{\beta} = D \cdot \delta \]

Horizontal oscillations excitation

Emission of photons is a random process

- Again we have random walk, now in \(x \). How far particle will wander away is limited by the radiation damping
- The balance is achieved on the time scale of the damping time \(\tau_x = 2 \tau_e \)

\[\sigma_{x\beta} \approx \sqrt{\mathcal{N} \cdot \tau_x \cdot D \cdot \delta} = \sqrt{2} \cdot D \cdot \sigma_e \]

- In smooth approximation for \(D \)
 or, typically \(10^{-4} \) of \(R \),
 reduced further by \(Q^2 \) focusing!
 In large rings \(Q^2 \sim R \), so \(D \sim 1 \text{ m} \)
 Typical horizontal beam size \(\sim 1 \text{ mm} \)

Quantum effect visible to the naked eye!

Vertical size - determined by coupling
Equilibrium horizontal emittance

Detailed calculations for isomagnetic lattice

\[\varepsilon_{x0} \equiv \frac{\sigma_{\beta}^2}{\beta} = \frac{C_q E^2}{J_x} \cdot \frac{\langle \mathcal{H} \rangle_{\text{mag}}}{\rho} \]

where

\[\mathcal{H} = \frac{\gamma D^2 + 2 \alpha DD' + \beta D'^2}{\beta} = \frac{1}{\beta^2} [D^2 + (\beta D' + \alpha D)^2] \]

and \(\langle \mathcal{H} \rangle_{\text{mag}} \) is average value in the bending magnets

For simple lattices (smooth approximation)

\[\mathcal{H} \sim \frac{D^2}{\beta} \sim \frac{R}{Q^3} \]

\[\varepsilon_{x0} \approx \frac{C_q E^2}{J_x} \cdot \frac{R}{\beta^2} \cdot \frac{1}{Q^3} \]

FODO Lattice emittance

\[\varepsilon \propto \frac{1}{Q^2} \]

\[\varepsilon \propto \frac{E^2}{J_x} \theta^3 F_{\text{FODO}}(\mu) \]
Ionization cooling

sim similar to radiation damping, but there is multiple scattering in the absorber that blows up the emittance

\[\sigma_0 \rightarrow \sigma' \]

\[\sigma' = \sqrt{\sigma'_0^2 + \sigma'_{MS}^2} \]

\[\sigma'_0 > > \sigma_{MS} \]

to minimize the blow up due to multiple scattering in the absorber we can focus the beam

Summary of radiation integrals

Momentum compaction factor

\[\alpha = \frac{I_1}{2\pi R} \]

Energy loss per turn

\[U_0 = \frac{1}{2\pi} C_e E^4 \cdot I_2 \]

\[C_e = \frac{4\pi}{3} \frac{r_e}{(m_e c \gamma)^3} = 8.858 \cdot 10^{-5} \frac{m}{\text{GeV}^3} \]

\[I_1 = \int \frac{D}{\rho} \, ds \]

\[I_2 = \int \frac{ds}{\rho^3} \]

\[I_3 = \int \frac{ds}{[\rho]} \]

\[I_4 = \int \frac{D}{P} \left(2k + \frac{1}{\rho^3} \right) ds \]

\[I_5 = \int \frac{H}{[\rho]} \, ds \]
Summary of radiation integrals (2)

Damping parameter
\[D = \frac{I_2}{I_2} \]

Damping times, partition numbers
\[J_x = 2 + D , \quad J_y = 1 - D , \quad J_y = 1 \]
\[\tau_i = \tau_0 \frac{J_i}{J} \]
\[\tau_0 = \frac{2ET_0}{U_0} \]

Equilibrium energy spread
\[\left(\frac{\sigma_E}{E} \right)^2 = \frac{C_q E^2}{J_x} \cdot \frac{I_3}{I_2} \]

Equilibrium emittance
\[\varepsilon_x = \frac{\sigma_x}{\beta_x} = \frac{C_q E^2}{J_x} \cdot \frac{I_3}{I_2} \]

\[C_q = \frac{55}{32\sqrt{3}} \frac{\hbar c}{(m_c^2)^3} = 1.468 \cdot 10^{-6} \left(\frac{m}{\text{GeV}^2} \right) \]

\[\mathcal{H} = \gamma D^2 + 2\alpha DD' + \beta D'^2 \]

Smooth approximation

Betatron oscillation approximated by harmonic oscillation
\[x(s) = a\sqrt{\beta(s)} \cos \left(\varphi(s) - \varphi_0 \right) \]
\[\varphi(s) = \int_0^s \frac{ds}{\beta(s)} \]

\[x = a\sqrt{\beta} \cos \left(\frac{s}{\beta - \varphi_0} \right) \quad \Rightarrow \quad x'' + k_{\text{eff}} \cdot x = 0, \quad k_{\text{eff}} = \frac{1}{\beta} \]
\[\beta(s) = \beta_x = \text{const} \]

- Phase advance around the ring
\[2\pi Q = \int \frac{ds}{\beta_0} = \frac{1}{\beta_0} \cdot 2\pi R \quad \Rightarrow \quad \beta_0 = \frac{R}{Q} \]

- Dispersion obeys the equation
\[D'' + k_{\text{eff}} D = \frac{1}{R} \quad \Rightarrow \quad D_n = \frac{\beta^2_n}{R} = \frac{R}{Q^2} \]

- Momentum compaction factor \(\alpha \)
\[\alpha = \frac{\langle D \rangle}{R} = \frac{\beta^2_n}{R^2} \quad \Rightarrow \quad \alpha \approx \frac{1}{Q^2} \]
Take a standard photon source with limited brightness and no lateral coherence … … with a pinhole (size ξ), we can extract coherent light with good geometrical characteristics (at the cost of losing most of the emission).

However, if the pinhole size is too small diffraction effects increase the beam divergence so that:

$$\xi \theta \gg \lambda$$

No source geometry beats this diffraction limit.
PERFORMANCE OF 3rd GENERATION LIGHT SOURCES

BRIGHTNESS:

MUCH HIGHER BRIGHTNESS CAN BE REACHED BY COHERENT EMISSION OF THE ELECTRONS

INCOHERENT EMISSION COHERENT EMISSION
Emittance damping in linacs:

\[\varepsilon = \frac{\varepsilon}{2} = \frac{\varepsilon}{4} \]

\[\Omega = \frac{\Omega}{2} = \frac{\Omega}{4} \]

\[\gamma = 2\gamma = 4\gamma \]

\[\varepsilon \propto \frac{1}{\gamma} \]

or

\[\gamma \varepsilon = \text{const.} \]
BRIGHTNESS OF SYNCHROTRON RADIATION

<table>
<thead>
<tr>
<th>Type</th>
<th>Electrons N_e</th>
<th>Periods N</th>
<th>Intensity $\propto N^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bending magnet</td>
<td>$\sim N_e$</td>
<td></td>
<td>10^{10}</td>
</tr>
<tr>
<td>Wiggler</td>
<td>$\sim N_e$</td>
<td>$\sim N$</td>
<td>10^4</td>
</tr>
<tr>
<td>Undulator</td>
<td>$\sim N_e$</td>
<td>$\sim N^2$</td>
<td>10^{12}</td>
</tr>
<tr>
<td>FEL</td>
<td>$\sim N_{\mu-b}^2$</td>
<td>$\sim N^2$</td>
<td>10^{10}</td>
</tr>
<tr>
<td>Superradiance</td>
<td>$\sim N_e^2$</td>
<td>$\sim N^2$</td>
<td>10^{12}</td>
</tr>
</tbody>
</table>

COHERENT EMISSION BY THE ELECTRONS

Intensity $\propto N$ \hspace{1cm} Intensity $\propto N^2$

INCOHERENT EMISSION \hspace{2cm} COHERENT EMISSION
FIRST DEMONSTRATIONS OF COHERENT EMISSION (1989-1990)

![Graph](image)

180 MeV electrons
T. Nakazato et al., Tohoku University, Japan

30 MeV electrons
J. Ohkuma et al., Osaka University, Japan

![Graph](image)

FIG. 3. The intensity of the CR measured for the bandwidth indicated with horizontal bars, the spectrum calculated according to Eq. (1) for 10% bandwidth (solid line), and the intensity expected for the complete coherence over the bunch for 10% bandwidth (open circles).

Free Electron Laser

![Diagram](image)
Mixing light, e- and undulator

\[\frac{d}{dt}(mc^2) = -e v_x E_x \neq 0 \]

S. Werin

Undulator radiation

S. Werin
Energy exchange

E-field

\[\begin{array}{cccccc}
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\hline
\varepsilon^- & \circ & \circ & \circ & \circ & \circ \\
\hline
+0 & -0 & +0 & -0 & +0
\end{array} \]

\[v_x \]

\[\lambda \gamma \]

Some e- gain energy
Some e- lose energy
\[\Sigma = 0 \]

Bunching

\[\begin{array}{cccccc}
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\hline
\varepsilon^- & \circ & \circ & \circ & \circ & \circ \\
\hline
-\Delta E & +\Delta E
\end{array} \]

Detour & lower v
Shortcut & higher v

\[\lambda \gamma \]

Bunched e- with distance of light wavelength

S. Werin
Radiator

- Light generated in an undulator
- Coherent
- With harmonics

Amplification

- All e^- loose energy
- E-field gains energy
- $\Sigma \oplus 0$
Saturation

E-field

- Overbunching
- Amplification dies off

S. Werin

Resonator FEL

- IR 5-250 μm
- UV ≈ 200 nm
- Tunable: magnet / e- energy
- Mirrors limit

- **Storage ring**: high rep. Rate, "stable"
- **Linac**: high peak power, "unstable"

S. Werin
Self-amplified spontaneous emission x-ray free-electron lasers (SASE X-FEL’s)

Normal (visible, IR, UV) lasers:
optical amplification in amplifying medium
plus optical cavity (two mirrors)

X-ray lasers: no mirrors → no optical cavity → need for one-pass high optical amplification

SASE strategy:

<table>
<thead>
<tr>
<th>LINAC (linear accelerator)</th>
<th>Wiggler</th>
</tr>
</thead>
<tbody>
<tr>
<td>electron bunch</td>
<td></td>
</tr>
</tbody>
</table>

The microbunching increases the electron density and the amplification and creates very short pulses

REQUIRES AN EXTREMELY SMALL ELECTRON BEAM!

PHOTON BEAM SIZE

ELECTRON BEAM SIZE
Magnetic Bunch Compression

\[V = V_0 \sin(\omega \tau) \]
\[\Delta z = R \frac{56}{\sigma_z} \frac{\Delta \epsilon}{\epsilon} \]

RF Accelerating Voltage
Path Length-Energy Dependent Beamline
P. Emma

SASE FEL

- UNBEATABLE BRILLIANCE
 \((10^{30} - 10^{33})\)

- HIGH AVERAGE BRILLIANCE
 \((10^{22} - 10^{25})\)

- SHORT PULSES
 \((1 \text{ ps} - 50 \text{ fs})\)
Many projects are under way ...

SASE FELs

<table>
<thead>
<tr>
<th>YEAR</th>
<th>NAME</th>
<th>INSTITUTE</th>
<th>λ [nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>TTF1</td>
<td>DESY</td>
<td>90</td>
</tr>
<tr>
<td>2000</td>
<td>LEUTL</td>
<td>ARGONNE</td>
<td>530</td>
</tr>
<tr>
<td>2004</td>
<td>TTF2</td>
<td>DESY</td>
<td>24-6</td>
</tr>
<tr>
<td>2006</td>
<td>SCSS</td>
<td>SPRING-8</td>
<td>30-20</td>
</tr>
<tr>
<td>2008</td>
<td>LCSL</td>
<td>SLAC</td>
<td>0.15</td>
</tr>
<tr>
<td>2008</td>
<td>BESSY</td>
<td>BESSY</td>
<td>100-20</td>
</tr>
<tr>
<td>2011</td>
<td>X-FEL</td>
<td>DESY</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Seeded-Amplifier X-FELs

![Diagram of Seeded-Amplifier X-FELs]

- First Wiggler (SASE Emitter)
- Monochromator
- Second Wiggler (Amplifier)
- Electron Beam Bypass
- Photon Beam
- Electron Dump
CHG - Coherent Harmonic Generation

- $i = 1, 3, 5, \ldots$
- $\lambda \approx 100 \text{ nm}$
- coherent

- S. Werin

\[\lambda = \frac{\lambda_0}{i} \]

\[\Rightarrow \text{SASE FREE ELECTRON LASER} \]

(Self Amplified Spontaneous Emission)
A REDUCTION OF THE GUN EMITTANCE COULD STRONGLY REDUCE THE DIMENSION OF A FEL

\[\varepsilon \leq \frac{\lambda}{4\pi} \]
- FOR DIFFRACTION LIMITED BEAM

\[\varepsilon_N = \varepsilon \beta \gamma \rightarrow \gamma \geq \frac{4\pi \varepsilon_N}{\lambda} \]
- FOR REDUCED LINAC ENERGY

\[\rho^3 \approx \frac{I_{\text{peak}}}{\varepsilon \gamma^2} \]
- FOR HIGHER FEL GAIN

\[\lambda_U = \lambda \frac{2\gamma^2}{1 + K^2/2} \]
- FOR SHORTER UNDULATOR LENGTHS

X-FEL based on last 1-km of existing SLAC linac

LCLS at SLAC
1.5-15 Å

The LCLS
(Linac Coherent Light Source)

LCLS

X-FEL based on last 1-km of existing SLAC linac
Smaller emittance helps!

• Present TESLA design
 \[\varepsilon = 1 \quad I = 5000 \, \text{A} \quad L_u = 250 \, \text{m} \]

• TESLA + LEG
 \[\varepsilon = 0.1 \quad I = 100 \, \text{A} \quad L_u = 100 \, \text{m} \]

A POSSIBLE WAY?

- FIELD EMISSION
- NANOSTRUCTURED TIP ARRAYS
- UNIFORM CHARGE DISTRIBUTION WITH SPACE CHARGE COMPENSATION
- HIGH GRADIENT ACCELERATION
CRITICAL ELEMENT OF A FEL = ELECTRON GUN

FOR SMALL INITIAL BEAM SIZES THE DIMENSIONS OF A FEL ARE CORRESPONDINGLY REDUCED

Ideal cathode

- Emits electrons freely, without any form of persuasion such as heating or bombardment (electrons would leak off from it into vacuum as easily as they pass from one metal to another
- Emits copiously, supplying an unlimited current density
- Lasts forever, its electron emission continuing unimpaired as long as it is needed
- Emits electrons uniformly, traveling at practically zero (transverse) velocity

J. R. Pierce, 1946
CRITICAL ELEMENT OF A FEL = ELECTRON GUN

FOR SMALL INITIAL BEAM SIZES THE DIMENSIONS OF A FEL ARE CORRESPONDINGLY REDUCED

NOVEL CONCEPT OF AN ELECTRON GUN

FIELD EMISSION FROM A LARGE NUMBER OF NANOSTRUCTURED TIPS

Ultimatively smallest TIP built up by 4 Tungsten atoms
H.-W. Fink, UNIZH
X-FEL FOR 1 Å

.... WITH 10 to 100 TIMES SMALLER EMITTANCE FROM THE ELECTRON GUN →

Coherence

• High brightness gives coherence

• Wave optics methods for X-rays

• Holography
Coherence: “the property that enables a wave to produce visible diffraction and interference effects”

Example:

The diffraction pattern may or may not be visible on the fluorescent screen depending on the source size ξ, on its angular divergence θ and on its wavelength bandwidth $\Delta\lambda$.

G. Margaritondo

Relevance of Coherence

Diffraction Pattern of a Duck

A (two-dimensional) duck

...creates this diffraction pattern (the colors encode the phase)

R. Ischebeck
Images by Kevin Cowtan, Structural Biology Laboratory, University of York
Relevance of Coherence

Diffraction Pattern of a Cat

A Cat … and its Diffraction Pattern

Combine the amplitude of the diffraction pattern of the cat and the phase of the diffraction pattern of the duck

The result: a duck!

R. Ischebeck
Images by Kevin Cowtan, Structural Biology Laboratory, University of York
Relevance of Coherence Reconstruction

Of course, one can also do the opposite trick:
combine the amplitude of the duck and the phase of the cat

This is the famous Phase Problem

R. Ischebeck
Images by Kevin Cowtan, Structural Biology Laboratory, University of York

ONLY FELs CAN PROVIDE THIS EXTRAORDINARY LIGHT

H.-D. Nuhn, H. Winick