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zero modes. Then we derive an explicit formulae for the appropriate supersymmetric volume form
on 9Jt*.

4.1. Action, supersymmetry and equations-of-motion

We start by defining theories in four-dimensional Minkowski space with JT — 1,2 and 4 super-
symmetry. In the interests of brevity we will develop a unified notion that allows us to deal with all
these cases together. To this end, we introduce the fermionic partners of the gauge field XA and XA.
Here, A = \,...,JV is an iJ-symmetry index of the supersymmetry. Since we are working—at least
initially—in Minkowski space, these spinors are subject to the reality conditions

(Xl? = ZiA, & = ^ (« = <*)• (4.12)

In addition, for the theories with extended supersymmetry there are real scalar fields cj)a,
a = 1,...,2(JV - 1). The Minkowski space action is21

(4.13)

The terms involving the scalar fields are, of course, absent in the Jf = 1 theory. The ^-matrices are
associated to the SU(2) and SU(4) iJ-symmetry group of the Jf = 2 and 4 theories, respectively.
For Jf = 2 we take

I f = £^(i,l), ZaAB = £AB(-i,l). (4.14)

In this case the indices A,B,... — 1,2 are spinor indices of the SU(2) subgroup of the U(l) x
SU(2) i?-symmetry group. In this case, we can raise and lower the indices using the e-tensor in the
usual way following the conventions of [47]. For the Jf — 4 case

Za = (-ni,irji,-til,rfj2,-r,\irjl) , (4.15)

where rf, fjc, c = 1-3, are 't Hooft's ^/-symbols defined in Appendix A.
Theory (4.13) is invariant under the on-shell supersymmetry transformations

5An = -?anlA - lAanX
A , (4.16a)

bXA = -iamneFmn - igIab
AB^B[K 4>b] + ZfanlB®n<l>a , (4.16b)

21 We remind the reader that our gauge field is anti-Hermitian rather than Hermitian, otherwise our conventions in
Minkowski space are those of Wess and Bagger [47].
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8lA = ~idmnlAFmn - igZabA
BU<t>a, 4>b] + laABd^t^a , (4.16C)

5<f>a = i<̂  W s + iLzfh • (4.16d)

In the above,

amn = \(omdn - andm\ 5mn = \{uman - <xV) (4.17)

and

iab = \{zazb - ibza\ iab = \(iaib - ibia). (4.18)

In order to construct instanton solutions, we now Wick rotate to Euclidean space. Vector quantities
in Minkowski space a" = (a0,a), with n = 0-3, become an — (a,ia°), with n = 1-4, in Euclidean
space. The Euclidean action is then —i times the Minkowski space action. The exception to this is
that we define the Euclidean cr-matrices as in (2.8) and (2.9). So in Minkowski space a" = (—l,f)
and a" = (—1,—t), whereas in Euclidean space an = (if, 1) and 5n = (—if, 1). Operationally, this
means that when Wick rotating from Minkowski space to Euclidean space we should actually replace
the Minkowski space cr-matrices by —i times the Euclidean space cr-matrices. As usual we treat Xa

and T as independent spinors, i.e. independent integration variables in the functional integral. The
Euclidean space action is

\F2 ^= J d4XtTM I -\F2
mn -

(4-19)

As discussed above, the fact that the fermionic terms in this action are not real will not concern us
further. For the case with JV — 2 supersymmetry, we can recover the more conventional presentation
of the theory by defining a complex scalar field

(j) = (j)i- i<h, 4>] = fa + i<h (4.20)

and spinors X = X1 and i// = X2. The fields (P = {(t>/V2, ij/} form a chiral multiplet and V = {Am, X}
a vector multiplet of Jf = 1 supersymmetry. In terms of these variables, the Euclidean space action
of the yT = 2 theory (4.19) is

^ F*mnFmn - 23>nX~anX -

(4.21)

In the following, we prefer the presentation of the theory in (4.19) since this will allow us to deal
with the theories with different numbers of supersymmetries in a unified way.
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The equations-of-motion following from (4.19) are

®mFnm = 2g[(f>a,2>nfa] + 2gdn{XA,XA} , (4.22a)

$XA = gZA
a

B[fa,XB], (4.22b)

0>XA^ gl.aAB\^a, X ] , (4.22c)

gp-fya = g\$b, [4>b, fa]] + gtaABXAXB + gIABXAXB . (4.22d)

The supersymmetry transformations in Euclidean space are given by (4.16a)-(4.16d) by replacing
the sigma matrices with — i times their Euclidean space versions and by replacing Minkowski space
inner products with Euclidean ones:

5An = \?onlA + \lAanX
A , (4.23a)

5XA = i<rmn£
AFmn - igZab

A
B£,B[fa, fa] - iZAB$falB , (4.23b)

5XA = \dmnlAFmn - \giabABlBl$a, fa] - iZaAB$<l>a£B , (4.23c)

8fa = i^AtaABXB + il^fh . . (4.23d)

4.2. The super-instanton at linear order

We will now attempt to find super-instanton configurations which solve the full coupled equations-
of-motion (4.22a)-(4.22d). First notice that the original instanton solution of the pure gauge theory
(2.49) is a solution of the full equations-of-motion when all other fields are set to zero. In fact,
we can use Am(x;X) as a starting point to find the more general solutions where the fermion and
scalar fields are non-vanishing. As explained in the introduction to this section we will proceed
perturbatively order by order in the coupling. In this connection note the explicit powers of g
appearing on the right-hand side of Eqs. (4.22a)-(4.22d).

The first step, following [38], is to expand to linear order in the fields around the bosonic instanton
solution. To the next order, we must therefore solve the covariant Weyl equations

$XA = 0 , (4.24a)

0>XA = 0 (4.24b)

for the fermions, and the covariant Laplace equation

924>a = 0 (4.25)

for the scalars. It then remains to be seen whether the original instanton solution needs to be modified
due the source term on the right-hand side of (4.22a).

A key result follows from the fact that 01 has no zero modes in an instanton (rather than
anti-instanton) background. Consequently, the solution to (4.24b) is XA — 0. To prove this, (4.24b)
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