the
abdus salam
international centre for theoretical physics

TKIT LORI Anumversawy

SMR.1566-6

Introductory School on

RECENT DEVELOPMENTS
 IN SUPERSYMMETRIC GAUGE THEORIES

14-25 June 2004

INSTANTON PHYSICS (Part III)

Nick Dorey
University of Wales, Swansea, U.K.

zero modes. Then we derive an explicit formulae for the appropriate supersymmetric volume form on \mathfrak{M}_{k}.

4.1. Action, supersymmetry and equations-of-motion

We start by defining theories in four-dimensional Minkowski space with $\mathcal{N}=1,2$ and 4 supersymmetry. In the interests of brevity we will develop a unified notion that allows us to deal with all these cases together. To this end, we introduce the fermionic partners of the gauge field λ^{A} and $\bar{\lambda}_{A}$. Here, $A=1, \ldots, \mathcal{N}$ is an R-symmetry index of the supersymmetry. Since we are working-at least initially-in Minkowski space, these spinors are subject to the reality conditions

$$
\begin{equation*}
\left(\lambda_{\alpha}^{A}\right)^{\dagger}=\bar{\lambda}_{\alpha A}, \quad\left(\bar{\lambda}_{A}^{\dot{\alpha}}\right)^{\dagger}=\lambda^{\alpha A} \quad(\alpha=\dot{\alpha}) . \tag{4.12}
\end{equation*}
$$

In addition, for the theories with extended supersymmetry there are real scalar fields ϕ_{a}, $a=1, \ldots, 2(\mathscr{N}-1)$. The Minkowski space action is ${ }^{21}$

$$
\begin{align*}
S^{\mathrm{Mink}}= & \int \mathrm{d}^{4} x \operatorname{tr}_{N}\left\{\frac{1}{2} F_{m n}^{2}+\frac{\mathrm{i} \theta g^{2}}{16 \pi^{2}} F_{m n}^{*} F^{m n}+2 \mathrm{i} \mathscr{D}_{n} \bar{\lambda}_{A} \bar{\sigma}^{n} \lambda^{A}-\mathscr{D}^{n} \phi_{a} \mathscr{D}_{n} \phi_{a}\right. \\
& \left.+g \bar{\lambda}_{A} \Sigma_{a}^{A B}\left[\phi_{a}, \bar{\lambda}_{B}\right]+g \lambda^{A} \bar{\Sigma}_{2 A B}\left[\phi_{a}, \lambda^{B}\right]+\frac{1}{2} g^{2}\left[\phi_{a}, \phi_{b}\right]^{2}\right\} . \tag{4.13}
\end{align*}
$$

The terms involving the scalar fields are, of course, absent in the $\mathcal{N}=1$ theory. The Σ-matrices are associated to the $\mathrm{SU}(2)$ and $\mathrm{SU}(4) R$-symmetry group of the $\mathcal{N}=2$ and 4 theories, respectively. For $\mathcal{N}=2$ we take

$$
\begin{equation*}
\Sigma_{a}^{A B}=\varepsilon^{A B}(\mathrm{i}, 1), \quad \bar{\Sigma}_{a A B}=\varepsilon_{A B}(-\mathrm{i}, 1) . \tag{4.14}
\end{equation*}
$$

In this case the indices $A, B, \ldots=1,2$ are spinor indices of the $\operatorname{SU}(2)$ subgroup of the $\mathrm{U}(1) \times$ $\operatorname{SU}(2) R$-symmetry group. In this case, we can raise and lower the indices using the ε-tensor in the usual way following the conventions of [47]. For the $\mathcal{N}=4$ case

$$
\begin{align*}
& \Sigma_{a}=\left(\eta^{3}, \mathrm{i} \bar{\eta}^{3}, \eta^{2}, \mathrm{i}^{2}, \eta^{1}, \mathrm{i} \bar{\eta}^{1}\right), \\
& \bar{\Sigma}_{a}=\left(-\eta^{3}, \mathrm{i} \bar{\eta}^{3},-\eta^{2}, \mathrm{i} \bar{\eta}^{2},-\eta^{1}, \mathrm{i} \bar{\eta}^{1}\right), \tag{4.15}
\end{align*}
$$

where $\eta^{c}, \bar{\eta}^{c}, c=1-3$, are 't Hooft's η-symbols defined in Appendix A.
Theory (4.13) is invariant under the on-shell supersymmetry transformations

$$
\begin{align*}
& \delta A_{n}=-\xi^{A} \sigma_{n} \bar{\lambda}_{A}-\bar{\xi}_{A} \bar{\sigma}_{n} \lambda^{A}, \tag{4.16a}\\
& \delta \lambda^{A}=-\mathrm{i} \sigma^{m n} \xi^{A} F_{m n}-\mathrm{i} g \Sigma_{a b}{ }^{A}{ }_{B} \xi^{B}\left[\phi_{a}, \phi_{b}\right]+\Sigma_{a}^{A B} \sigma^{n} \bar{\xi}_{B} \mathscr{D}_{n} \phi_{a}, \tag{4.16b}
\end{align*}
$$

[^0]\[

$$
\begin{align*}
& \delta \bar{\lambda}_{A}=-\mathrm{i} \bar{\sigma}^{m n} \bar{\xi}_{A} F_{m n}-\mathrm{i} g \bar{\Sigma}_{a b A}^{B} \bar{\xi}_{B}\left[\phi_{a}, \phi_{b}\right]+\bar{\Sigma}_{a A B} \bar{\sigma}^{n} \xi^{B} \mathscr{D}_{n} \phi_{a}, \tag{4.16c}\\
& \delta \phi_{a}=\mathrm{i} \xi^{A} \bar{\Sigma}_{a A B} \lambda^{B}+\mathrm{i} \bar{\xi}_{A} \Sigma_{a}^{A B} \bar{\lambda}_{B} . \tag{4.16~d}
\end{align*}
$$
\]

In the above,

$$
\begin{equation*}
\sigma^{m n}=\frac{1}{4}\left(\sigma^{m} \bar{\sigma}^{n}-\sigma^{n} \bar{\sigma}^{m}\right), \quad \bar{\sigma}^{m n}=\frac{1}{4}\left(\bar{\sigma}^{m} \sigma^{n}-\bar{\sigma}^{n} \sigma^{m}\right) \tag{4.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\Sigma_{a b}=\frac{1}{4}\left(\Sigma_{a} \bar{\Sigma}_{b}-\Sigma_{b} \bar{\Sigma}_{a}\right), \quad \bar{\Sigma}_{a b}=\frac{1}{4}\left(\bar{\Sigma}_{a} \Sigma_{b}-\bar{\Sigma}_{b} \Sigma_{a}\right) \tag{4.18}
\end{equation*}
$$

In order to construct instanton solutions, we now Wick rotate to Euclidean space. Vector quantities in Minkowski space $a^{n}=\left(a^{0}, \vec{a}\right)$, with $n=0-3$, become $a_{n}=\left(\vec{a}, \mathrm{i} a^{0}\right)$, with $n=1-4$, in Euclidean space. The Euclidean action is then -i times the Minkowski space action. The exception to this is that we define the Euclidean σ-matrices as in (2.8) and (2.9). So in Minkowski space $\sigma^{n}=(-1, \vec{\tau})$ and $\bar{\sigma}^{n}=(-1,-\vec{\tau})$, whereas in Euclidean space $\sigma_{n}=(i \vec{\tau}, 1)$ and $\bar{\sigma}_{n}=(-i \vec{\tau}, 1)$. Operationally, this means that when Wick rotating from Minkowski space to Euclidean space we should actually replace the Minkowski space σ-matrices by -i times the Euclidean space σ-matrices. As usual we treat λ_{α} and $\bar{\lambda}^{\dot{\alpha}}$ as independent spinors, i.e. independent integration variables in the functional integral. The Euclidean space action is

$$
\begin{align*}
S= & \int \mathrm{d}^{4} x \operatorname{tr}_{N}\left\{-\frac{1}{2} F_{m n}^{2}-\frac{\mathrm{i} \theta g^{2}}{16 \pi^{2}} F_{m n}^{*} F_{m n}-2 \mathscr{D}_{n} \bar{\lambda}_{A} \bar{\sigma}_{n} \lambda^{A}+\mathscr{D}_{n} \phi_{a} \mathscr{D}_{n} \phi_{a}\right. \\
& \left.-g \bar{\lambda}_{A} \Sigma_{a}^{A B}\left[\phi_{a}, \bar{\lambda}_{B}\right] \cdots g \lambda^{A} \bar{\Sigma}_{a A B}\left[\phi_{a}, \lambda^{B}\right]-\frac{1}{2} g^{2}\left[\phi_{a}, \phi_{b}\right]^{2}\right\} . \tag{4.19}
\end{align*}
$$

As discussed above, the fact that the fermionic terms in this action are not real will not concern us further. For the case with $\mathcal{N}=2$ supersymmetry, we can recover the more conventional presentation of the theory by defining a complex scalar field

$$
\begin{equation*}
\phi=\phi_{1}-\mathrm{i} \phi_{2}, \quad \phi^{\dagger}=\phi_{1}+\mathrm{i} \phi_{2} \tag{4.20}
\end{equation*}
$$

and spinors $\lambda \equiv \lambda^{1}$ and $\psi \equiv \lambda^{2}$. The fields $\Phi=\{\phi / \sqrt{2}, \psi\}$ form a chiral multiplet and $V=\left\{A_{m}, \lambda\right\}$ a vector multiplet of $\mathscr{N}=1$ supersymmetry. In terms of these variables, the Euclidean space action of the $\mathscr{N}=2$ theory (4.19) is

$$
\begin{align*}
S_{\mathscr{N}=2}= & \int \mathrm{d}^{4} x \operatorname{tr}_{N}\left\{-\frac{1}{2} F_{m n}^{2}-\frac{\mathrm{i} \theta g^{2}}{16 \pi^{2}} F_{m n}^{*} F_{m n}-2 \mathscr{D}_{n} \bar{\lambda} \bar{\sigma}_{n} \lambda-2 \mathscr{D}_{n} \bar{\psi} \bar{\sigma}_{n} \psi+\mathscr{D}_{n} \phi^{\dagger} \mathscr{D}_{n} \phi\right. \\
& \left.+2 \mathrm{i} g \bar{\psi}[\phi, \bar{\lambda}]+2 \mathrm{i} g\left[\phi^{\dagger}, \lambda\right] \psi+\frac{1}{4} g^{2}\left[\phi, \phi^{\dagger}\right]^{2}\right\} . \tag{4.21}
\end{align*}
$$

In the following, we prefer the presentation of the theory in (4.19) since this will allow us to deal with the theories with different numbers of supersymmetries in a unified way.

The equations-of-motion following from (4.19) are

$$
\begin{align*}
& \mathscr{D}_{m} F_{n m}=2 g\left[\phi_{a}, \mathscr{D}_{n} \phi_{a}\right]+2 g \bar{\sigma}_{n}\left\{\lambda^{A}, \bar{\lambda}_{A}\right\}, \tag{4.22a}\\
& \mathscr{D} \lambda^{A}=g \Sigma_{a}^{A B}\left[\phi_{a}, \bar{\lambda}_{B}\right], \tag{4.22b}\\
& \mathscr{D} \bar{\lambda}_{A}=g \bar{\Sigma}_{a A B}\left[\phi_{a}, \lambda^{B}\right], \tag{4.22c}\\
& \mathscr{D}^{2} \phi_{a}=g^{2}\left[\phi_{b},\left[\phi_{b}, \phi_{a}\right]\right]+g \bar{\Sigma}_{a A B} \lambda^{A} \lambda^{B}+g \Sigma_{a}^{A B} \bar{\lambda}_{A} \bar{\lambda}_{B} . \tag{4.22d}
\end{align*}
$$

The supersymmetry transformations in Euclidean space are given by (4.16a)-(4.16d) by replacing the sigma matrices with -i times their Euclidean space versions and by replacing Minkowski space inner products with Euclidean ones:

$$
\begin{align*}
& \delta A_{n}=\mathrm{i} \xi^{A} \sigma_{n} \bar{\lambda}_{A}+\mathrm{i} \bar{\xi}_{A} \bar{\sigma}_{n} \lambda^{A} \tag{4.23a}\\
& \delta \lambda^{A}=\mathrm{i} \sigma_{m n} \xi^{A} F_{m n}-\mathrm{i} g \Sigma_{a b}{ }_{B} \xi^{B}\left[\phi_{a}, \phi_{b}\right]-\mathrm{i} \Sigma_{a}^{A B} \not D \phi_{a} \bar{\xi}_{B}, \tag{4.23b}\\
& \delta \bar{\lambda}_{A}=\mathrm{i} \bar{\sigma}_{m n} \bar{\xi}_{A} F_{m n}-\mathrm{i} g \bar{\Sigma}_{a b A}{ }^{B} \bar{\xi}_{B}\left[\phi_{a}, \phi_{b}\right]-\mathrm{i} \bar{\Sigma}_{a A B} \not \partial \phi_{a} \xi^{B}, \tag{4.23c}\\
& \delta \phi_{a}=\mathrm{i} \xi^{A} \bar{\Sigma}_{a A B} \lambda^{B}+\mathrm{i} \bar{\xi}_{A} \Sigma_{a}^{A B} \bar{\lambda}_{B} . \tag{4.23d}
\end{align*}
$$

4.2. The super-instanton at linear order

We will now attempt to find super-instanton configurations which solve the full coupled equations-of-motion (4.22a)-(4.22d). First notice that the original instanton solution of the pure gauge theory (2.49) is a solution of the full equations-of-motion when all other fields are set to zero. In fact, we can use $A_{m}(x ; X)$ as a starting point to find the more general solutions where the fermion and scalar fields are non-vanishing. As explained in the introduction to this section we will proceed perturbatively order by order in the coupling. In this connection note the explicit powers of g appearing on the right-hand side of Eqs. (4.22a)-(4.22d).

The first step, following [38], is to expand to linear order in the fields around the bosonic instanton solution. To the next order, we must therefore solve the covariant Weyl equations

$$
\begin{align*}
& \mathscr{D} \lambda^{A}=0, \tag{4.24a}\\
& \mathscr{D} \bar{\lambda}_{A}=0 \tag{4.24b}
\end{align*}
$$

for the fermions, and the covariant Laplace equation

$$
\begin{equation*}
\mathscr{D}^{2} \phi_{a}=0 \tag{4.25}
\end{equation*}
$$

for the scalars. It then remains to be seen whether the original instanton solution needs to be modified due the source term on the right-hand side of (4.22a).
A key result follows from the fact that \mathscr{D} has no zero modes in an instanton (rather than anti-instanton) background. Consequently, the solution to (4.24b) is $\bar{\lambda}_{A}=0$. To prove this, (4.24b)
ore-loop effects

- running coupling -

$$
\begin{align*}
& g_{\text {eff }}^{2}=g_{I R}^{2}=g^{2}(\mu=|a|) \\
& \Lambda=\mu \exp \left(-\frac{2 \pi^{2}}{g^{2}(\mu)}\right) \\
& \Rightarrow g_{\text {eff }}^{2}=\frac{2 \pi^{2}}{\log \left(\frac{|a|}{\Lambda}\right)}
\end{align*}
$$

- anomaly $v(1)_{R}$ rotation: $a \rightarrow e^{2 i \delta} a$ equivalent to shifting $\theta_{\text {eff }}$ by -8 δ

$$
\begin{gather*}
\Rightarrow \theta_{\text {eft }}=-4 \operatorname{m}(\log (a / \pi)) \tag{B}\\
4+\operatorname{cst}
\end{gather*}
$$

$$
\begin{aligned}
(\alpha)+(B) \Rightarrow & \begin{aligned}
\frac{\partial^{2} F_{1-\operatorname{loop}}}{\partial a^{2}} & =\frac{4 \pi i}{g_{e f t}^{2}}+\frac{\theta_{e f t}}{2 \pi} \\
& =\frac{2 i}{\pi} \log \left(\frac{a}{\lambda}\right) \\
\Rightarrow F_{1-\operatorname{loop}} & =\frac{i}{2 \pi} a^{2} \log \left(a^{2} / \Lambda^{2}\right)
\end{aligned}
\end{aligned}
$$

- holomorphic as required

Adler-Bardeen Theorem
\Rightarrow no further renormalisation of chiral anomaly at any order in perturbation theory
\Rightarrow no perturbative corrections to $F_{1-100 p} 5$

Non-perturbative prepotential constraints:

- holomorphy
- RG invariance

$$
\Rightarrow F=F(a, \wedge)
$$

- $U(1)_{R}$ anomaly
$\mathcal{L}_{\text {eft }}$ invariant under $U(1)_{R}$ except for the effects of anomaly
- $\theta_{\text {eft }}=-4 \mu(\log (a / n))$ + single-ralued
- $U(1)_{R}$ conservation violated by $8 k$ units in sector of topological charge R
$\mathcal{L}_{\text {eff }} \sim \operatorname{Im} \int d^{4} \theta \mathcal{F}$ invariant
$\Rightarrow F$ has charge 4 under $U(1)_{R}$
most general allowed form:

$$
\begin{aligned}
& F(a)=\frac{i}{2 \pi} a^{2} \log \left(\frac{a^{2}}{n^{2}}\right) \\
& \text { seiberg } \\
& \text { are-100p } \quad-i / \pi \sum_{k=1}^{\infty} F_{k}\left(\frac{\Lambda}{a}\right)^{4 k} a^{2} \\
& \text { contribution from } \\
& \text { topdegical charge } k
\end{aligned}
$$

$$
\cdot \Lambda^{4 k} \sim e^{-\frac{8 \pi^{2} k+i k \theta}{9^{2}}}
$$

$\Rightarrow k^{\prime} t h$ term corresponds to leading semiclassical contribution of k instartons

$$
\begin{aligned}
& F(a)=\frac{i}{2 \pi} a^{2} \log \left(\frac{a^{2}}{\Lambda^{2}}\right) \\
& -\frac{i}{\pi} \sum_{k=1}^{\infty} F_{k}\left(\frac{n}{a}\right)^{4 k} a^{2} \\
& =1-100 p+\text { instantons }
\end{aligned}
$$

- no perturbative corrections in k-instanton background
Seiberg-Witten solution (1994) predicts exact function \mathcal{F}
\Rightarrow prediction for coefs F_{k}

$$
\begin{aligned}
F_{1}=1 / 2, F_{2}=5 / 14, \ldots . & F_{k} \in Q \\
& \text { Why??? }
\end{aligned}
$$

- check agoinst first priaciples calculation Fimel + Pouliot $N D+$ Khoge + Maltis

Testing SW theory

$$
\mathcal{L}_{\text {eff }} \supset \frac{\partial^{4} F(a)}{\partial a^{4}} \psi^{2} \lambda^{2} \leftarrow^{4-\text { fermion }}
$$

\Rightarrow non-jero contribution to long-distance behavior of correlator,

$$
\left|x_{i}-x_{j}\right| \gg|a|
$$

$$
\begin{aligned}
&\left\langle\bar{\psi}\left(x_{1}\right) \bar{\psi}\left(x_{2}\right) \bar{\lambda}\left(x_{3}\right) \bar{\lambda}\left(x_{4}\right)\right\rangle \\
& \sim \frac{\partial^{2} F}{\partial a^{4}} \int d^{4} x \prod_{i=1}^{4} S_{F}\left(x_{i}-x\right) \\
& \tau_{\text {masters }}
\end{aligned}
$$ fermion propagator

- gets contributions from all numbers of instatous $\sim F_{k}$
eg l-instanton contribution to

$$
\begin{aligned}
& G^{(4)}=\left\langle\bar{\psi}\left(x_{1}\right) \bar{\psi}\left(x_{2}\right) \bar{\lambda}\left(x_{3}\right) \bar{\lambda}\left(x_{4}\right)\right\rangle \\
& \left.\sim \frac{\partial^{4} F_{1}\left(\frac{\Lambda^{4}}{\partial a^{4}}\right) a^{2}}{a^{4}}\right) \\
& \sim F_{1}\left(\frac{\Lambda^{4}}{a^{6}}\right)
\end{aligned}
$$

check:

$$
\text { R-charge of LHS }=-4
$$

R-charge of RHS $=-12$

$$
\Delta Q_{R}=-4-(-12)=8
$$

note contribution of $V E V$ a to counting reflects spaitaneous breaking of $U(1)_{R}$

Semiclassical Calculation
Solve Euclidean e.o.m order by order in g^{2}

$$
\begin{aligned}
& D_{m} F_{\sim m n}=2 g\left[\phi_{a}, D_{n} \phi_{a}\right]+2 g \bar{\sigma}_{A}\left\{\lambda^{A}, \bar{\lambda}_{A} \mid\right. \\
& \bar{\phi} \lambda^{A}=g \sum_{a}^{A B}\left[\phi_{a}, \bar{\lambda}_{B}\right] \\
& \Delta \hat{D} \bar{\lambda}_{A}^{A}=g \sum_{a}^{A B}\left[\phi_{a}, \lambda_{B}\right] \\
& D^{2} \phi^{a}=g^{2}\left[\phi^{b},\left[\phi^{b}, \phi^{a}\right]\right] \\
& +g \bar{\Sigma}_{a A B} \lambda^{A} \lambda^{B}+g \Sigma_{a}^{A B} \bar{\lambda}_{A} \bar{\lambda}_{l}
\end{aligned}
$$

notation:
$\phi_{a} a=1,2 \quad$ real adjoint scalars

$$
\begin{aligned}
& \underset{\sim}{\phi}={\underset{\sim 1}{ }}+i{\underset{\sim 2}{ }} \in \mathbb{C} \\
& 11 \quad \lambda^{\prime}=\lambda \quad \lambda^{2}=\Psi
\end{aligned}
$$

vacuum boundary condition:

$$
\underset{\sim}{\phi}(x) \rightarrow \frac{i a \tau^{3}}{2} \quad|x| \rightarrow \infty
$$

Zero'th order: $k=1$

$$
\begin{gathered}
D_{m} F_{m n}=0 \\
\bar{\phi} \lambda^{A}=0 \quad \phi \bar{\lambda}^{A}=0 \\
D^{2} \phi=0
\end{gathered}
$$

Bosons

$$
A_{m}=A_{m}^{c l} r^{\text {BPST }} \text { instanton }
$$

collective coords: X_{M}, l, U_{G} position $S_{\text {sife }}^{3}$ orieatocter

$$
\phi=\phi^{c l}=\frac{(x-x)^{2}}{(x-x)^{2}+e^{2}} \cdot \frac{i a r^{3}}{2}
$$

12
$A_{M}=A_{\sim}^{c l} \quad \phi=\phi^{c l}$ is not a solution of full e.o.m.
symptom:

$$
1 / g^{2} S\left[A_{\mu}^{d}, \phi^{d}\right]=\frac{8 \pi^{2}}{g^{2}}+4 \pi^{2} e^{2}|a|^{2}
$$

instanton unstable to scale transformation
reflects spontaneous breaking of conformal invariance
\Rightarrow corresponding zero mode Lifted
potential on instanton moduli space
fermions $\quad \bar{\phi}_{c l} \lambda^{A}=0 \quad 4$ gromodes $\Delta \phi_{c 1} \bar{\lambda}_{A}=0$ no jero modes

$$
{\underset{\sim}{\lambda}}_{\alpha}^{\text {set }}=\lambda_{\alpha \alpha}^{d A}=\sum_{l=1}^{4} \alpha_{l}^{A} \Psi_{\alpha l}^{(0)}(x: x, l, v)
$$

$$
\bar{\lambda}_{\dot{\alpha} A}=0
$$

\hat{i} grassmann parameters
collective coordinates:

$$
\left.\begin{array}{ll}
\alpha_{1}^{A}
\end{array} \xi_{\alpha}^{A} \quad \begin{array}{l}
\text { susY zodes } \\
\alpha_{2}^{A}
\end{array}\right] \begin{aligned}
& \text { supero } \\
& \alpha_{3}^{A} \leftrightarrow \bar{\eta}_{\dot{\alpha} A} \\
& \alpha_{4}^{A}
\end{aligned} \begin{aligned}
& \text { zero mormal }
\end{aligned}
$$

$A_{M}^{C}, \phi^{C l}, \lambda_{\alpha}^{A} C l$ is not a solution of the full e.o.m
symptom:

$$
\frac{1}{g^{2}} L^{\prime}=\frac{8 \pi^{2}}{9^{2}}+4 \pi^{2} e^{2}|a|^{2}+c \bar{a} \bar{\eta}_{1}^{-1} \bar{\eta}_{2 A} e^{2}
$$

\Rightarrow superconformal zero modes "Lifted" by VaV
selection rules altered
quadratic fluctuation operators
fermions: $\Delta_{F}^{\dot{\alpha} \alpha}=\bar{\phi}_{\mathrm{cl}}^{\dot{\alpha} \alpha} L^{43 \mathrm{moodes}}$ gauge: $\left(\Delta_{B}\right)_{\alpha}^{\beta}=\left(\Delta \phi_{c l}\right)_{\alpha \dot{\alpha}}^{L}\left(\bar{\phi}_{c l}\right)^{\dot{\alpha} \beta}$ also define $\quad-\dot{\alpha} \alpha \alpha^{n o}$ spodes $\left(\bar{\Delta}_{B}\right)^{\dot{\alpha}}{ }_{\dot{\beta}}=\left(\bar{\phi}_{c}\right)_{15}^{\dot{\alpha} \alpha}\left({ }_{\alpha}^{\text {K }}{ }^{n o}\right)_{\alpha \dot{\beta}}^{\text {per }}$
yields $1: 1$ paining of non-zero modes $\psi(\lambda) \xrightarrow[1: 1]{\longleftrightarrow} \bar{\psi}^{(\lambda)}$

$$
\Rightarrow Q=\left(\frac{\operatorname{det} \bar{\Delta}_{B}}{\operatorname{det}^{\prime} \Delta_{B}}\right)^{1 / 2}=1!!
$$

major simplification true $\forall k$ more precisely. should regulate the theory with Pauli-Villars mass scale $\mu_{P V}$

$$
R_{P V}=\left(\frac{\operatorname{det} \bar{\Delta}_{B}}{\operatorname{det}^{\prime} \Delta_{B}}\right)^{1 / 2}\left(\frac{\operatorname{det}\left(\Delta_{B}+\mu_{w}^{2}\right)}{\operatorname{det}\left(\bar{\Delta}_{B}+\mu_{P V}^{2}\right)}\right)^{1 / 2}
$$

4 zero modes of $\Delta_{B} \Rightarrow$

$$
R=\mu_{p v}^{4}
$$

total contribution of quadratic fluctuations:

$$
\begin{aligned}
& =\text { gauge }+ \text { ghost }+ \text { fermion + scalar } \\
& R=\left(\frac{\operatorname{det} \bar{\Delta}_{B}}{\operatorname{det}^{\prime} \Delta_{B}}\right)^{1 / 2}
\end{aligned}
$$

zero
eigenvalues
removed
SUSY \Rightarrow pairing of non-zero
modes of Δ_{B} and $\bar{\Delta}_{B}$
Exercise:
suppose $\Delta_{B} \psi^{(\lambda)}=\lambda \psi^{(\lambda)}, \lambda \neq 0$
define $\bar{\psi}^{(\lambda)}=\overline{X X}_{c 1} \psi^{(\lambda)}$
then,

$$
\begin{align*}
& \bar{\Delta}_{B} \bar{\psi}^{(\lambda)}=\bar{\phi}_{c} \phi_{a} \bar{\phi}_{c l} \psi^{(\lambda)} \\
& =\bar{\phi}_{c l} \Delta_{B} \psi^{(\lambda)}=\lambda_{17}^{(\lambda)}
\end{align*}
$$

Iterating ع.O.M to $O\left(g^{2}\right)$
\Rightarrow anti-fermions $\bar{\lambda}_{A \dot{\alpha}}$ turn on

$$
\left.\bar{\lambda}_{A \dot{\alpha}}^{d l} \rightarrow\right\}_{\alpha A} S_{F}(x-x)^{\alpha \alpha} \dot{\alpha}
$$

$|x-x| \gg|a|$ fermion propagator
The calculation:

$$
\begin{aligned}
& \left\langle\bar{\lambda}\left(x_{1}\right) \bar{\lambda}\left(x_{L}\right) \bar{\psi}\left(x_{3}\right) \bar{\psi}\left(x_{4}\right)\right\rangle \\
& =\int d^{4} x \prod_{i=1}^{4} S_{F}\left(x_{i}-x\right) \int d^{4} \xi \cdot \xi^{4} \\
& \times \int d e d^{2} \bar{\eta} e^{\left.-e^{2}|a|^{2}-\bar{a} e^{2} \bar{q} \cdot \bar{\eta}\right\}} \\
& \times \underbrace{\mu_{p v}^{4} e^{-\frac{8 \pi^{2}}{g^{2}(\mu p v)}}+i \theta}_{=\Lambda_{p v}^{4}} \quad 18
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle\bar{\lambda}\left(x_{1}\right) \bar{\lambda}\left(x_{2}\right) \bar{\psi}\left(x_{1}\right) \bar{\psi}\left(x_{2}\right)\right\rangle \\
= & c_{1}\left(\frac{\Lambda_{0 v}^{4}}{a^{6}}\right) \int d^{4} x \prod_{i=1}^{4} S_{f}(x-x)
\end{aligned}
$$

- after careful matching of $\Lambda_{S W} \Lambda_{P V}$ coef c_{1} precisely agreas with SW prediction $F_{1}=1 / 2 \quad$ Fined + Parliot 199s
- text for $k=2$ (no matching required) - works also

ND + those + Mattie 1996
tests repeated for $k=1,2$ different gauge group

+ rotter content
- Remarkalle all order calculation 19 Nekmasor 2002

[^0]: ${ }^{21}$ We remind the reader that our gauge field is anti-Hermitian rather than Hermitian, otherwise our conventions in Minkowski space are those of Wess and Bagger [47].

