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zero modes. Then we derive an explicit formulae for the appropriate supersymmetric volume form
on ;.

4.1. Action, supersymmetry and equations-of-motion

We start by defining theories in four-dimensional Minkowski space with 4" =1,2 and 4 super-
symmetry. In the interests of brevity we will develop a unified notion that allows us to deal with all
these cases together. To this end, we introduce the fermionic partners of the gauge field 14 and A,
Here, A=1,...,.4" is an R-symmetry index of the supersymmetry. Since we are working—at least
initially—in Minkowski space, these spinors are subject to the reality conditions

O =1y (D=4 (a=a). (4.12)

In addition, for the theories with extended supersymmetry there are real scalar fields ¢,
a=1,...,2(# —1). The Minkowski space action is?!

. i0 7
SMmk =/d4xtrN {;Fr%m 116g2 F* an + 2i9ni‘45’n}f4 — —@n¢a@n¢a

+ 9T (G ) + 94 Zaasl P, 4] + % 9’0 ¢b12} : (4.13)

The terms involving the scalar fields are, of course, absent in the 4" =1 theory. The Z-matrices are
associated to the SU(2) and SU(4) R-symmetry group of the 4/ =2 and 4 theories, respectively.
For /" =2 we take

T = 8(i,1), Loz =ean(—i,1). (4.14)

In this case the indices A,B,... = 1,2 are spinor indices of the SU(2) subgroup of the U(1) x
SU(2) R-symmetry group. In this case, we can raise and lower the indices using the e-tensor in the
usual way following the conventions of [47]. For the A" =4 case

o=, it ', i)
o= (=i, -, i, —n',id') (4.15)

where 7°, 1, ¢ = 1-3, are ’t Hooft’s #-symbols defined in Appendix A.
Theory (4.13) is invariant under the on-shell supersymmetry transformations

0y = —E G, Ay — E4G, 00, (4.16a)

6'{]4 = ~io-mn6Aan - igzabABéB[(paa d)b] + ZgBo'nEB@nan ’ (416b)

2 We remind the reader that our gauge field is anti-Hermitian rather than Hermitian, otherwise our conventions in
Minkowski space are those of Wess and Bagger [47].
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Oy = —i6""E o — 195 04" Ep G, $1 + 201" E Db , (4.16c)

Oy = iEA5 508 +iE, 280, . (4.16d)
In the above, '

o = 41(6”‘&” —a"¢"), ¢"=3(¢"¢" ~ ™) (4.17)
and

T =1(ZaEs — 220), Zap=3(CaZs - 2,2,) . (4.18)

In order to construct instanton solutions, we now Wick rotate to Euclidean space. Vector quantities
in Minkowski space a” = (a% @), with n = 0-3, become a, = (@,ia"), with n = 1-4, in Euclidean
space. The Euclidean action is then —1i times the Minkowski space action. The exception to this is
that we define the Euclidean o-matrices as in (2.8) and (2.9). So in Minkowski space ¢" = (—1,7)
and ¢ = (—1,—7), whereas in Euclidean space o, = (i7, 1) and &, = (—i7,1). Operationally, this
means that when Wick rotating from Minkowski space to Euclidean space we should actually replace
the Minkowski space g-matrices by —i times the Euclidean space o-matrices. As usual we treat 4,
and 1 as independent spinors, i.e. independent integration variables in the functional integral. The
Euclidean space action is

‘n 2
_ 4 1 2 09~ T = 44
S—/d Xty {—‘men - 1672 anan ‘—2@,,/1[40',,). +9n¢a@n¢g

— 944228 Bas Ap) -~ G Eausl e ] — § F[ar BT } : (4.19)

As discussed above, the fact that the fermionic terms in this action are not real will not concern us
further. For the case with 4" =2 supersymmetry, we can recover the more conventional presentation
of the theory by defining a complex scalar field

b= —ids, ¢'=¢1+id (4.20)

and spinors 4 = A and ¥ = 42. The fields & = {¢/v/2, ¥} form a chiral multiplet and ¥ = {4,,, A}
a vector multiplet of A" =1 supersymmetry. In terms of these variables, the Euclidean space action

of the A" =2 theory (4.19) is
4 1 5 i0g° . 7= 7~ t
SJV=2= d xtry ——2-an - Ezianan_Zgniani'—zgﬂll,anw_i_@nqs @n¢

+2igl[¢, 2] + 2ig[é", A + %gzw, ¢! 12} : (4.21)

In the following, we prefer the presentation of the theory in (4.19) since this will allow us to deal
with the theories with different numbers of supersymmetries in a unified way.

p=
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The equations-of-motion following from (4.19) are

DnFum = 29(ba Dupa) + 295, {3%, s} , (4.22a)
Dt = gZ B (b, 28] (4.22b)
Dia=gZ sl s, 171, (4.22c)
Do = g* Db, [ 06, Pal] + 92 aand®AE + 228005 . (4.224)

The supersymmetry transformations in Euclidean space are given by (4.16a)—(4.16d) by replacing
the sigma matrices with —i times their Euclidean space versions and by replacing Minkowski space

inner products with Euclidean ones:

0, =180, 04 +1E,6,4 , (4.23a)
83 = iGmnC Fopn — 126" 5 [0 93] — 1Z2° D Pal (4.23b)
834 = Gl 4Fn — 192 abs"Ep[Par $5] — 12045 B $al” (4.23¢)
8y =A%, 48 +1E, 24805 . | | (4.23d)

4.2. The super-instanton at linear order

We will now attempt to find super-instanton configurations which solve the full coupled equations-
of-motion (4.22a)—(4.22d). First notice that the original instanton solution of the pure gauge theory
(2.49) is a solution of the full equations-of-motion when all other fields are set to zero. In fact,
we can use 4,(x;X) as a starting point to find the more general solutions where the fermion and
scalar fields are non-vanishing. As explained in the introduction to this section we will proceed
perturbatively order by order in the coupling. In this connection note the explicit powers of g
appearing on the right-hand side of Egs. (4.22a)-(4.22d).

The first step, following [38], is to expand to linear order in the fields around the bosonic instanton
solution. To the next order, we must therefore solve the covariant Weyl equations

2 =0, (4.24a)

Piy=0 (4.24b)
for the fermions, and the covariant Laplace equation '

P*p, =0 (4.25)

for the scalars. It then remains to be seen whether the original instanton solution needs to be modified

due the source term on the right-hand side of (4.22a).
A key result follows from the fact that & has no zero modes in an instanton (rather than
anti-instanton) background. Consequently, the solution to (4.24b) is 44 = 0. To prove this, (4.24b)
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