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ABSTRACT

We review some of the recent work on the dynamics of four dimensional, su-
persymmetric gauge theories. The kinematics are largely determined by holo-
morphy and the dynamics are governed by duality. The results shed light on
the phases of gauge theories. Some results and interpretations which have not
been published before are also included.
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1. Introduction

Recently, it has become clear that certain aspects of four dimensional supersym-
metric field theories can be analyzed exactly, providing a laboratory for the analysis
of the dynamics of gauge theories (for a recent elementary presentation and a list of
references see [1]). For example, the phases of gauge theories and the mechanisms
for phase transitions can be explored in this context. The dynamical mechanisms
explored are standard to gauge theories and thus, at least at a qualitative level,
the insights obtained are expected to also be applicable for non-supersymmetric
theories. We summarize some of the recent ideas. The discussion is not in historical
order and other examples appear in the literature.

1.1. Phases of gauge theories

The phases of gauge theories can be characterized by the potential V(R) between
electric test charges separated by a large distance R. Up to a non-universal, additive

* To appear in the Proc. of Trieste '95 spring school, TASI '95, Trieste '95 summer

school, and Cargese '95 summer school.
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The first three phases have massless gauge fields and potentials of the form
V(R) ~ e2(R)lR. In the Coulomb phase, the electric charge e2(iZ) ^constant. In
the free electric phase, massless electrically charged fields renormalize the charge to
zero at long distances as e~2(R) ~ log(iZA). Similar behavior occurs when the long
distance theory is a non-Abelian theory which is not asymptotically free. The free
magnetic phase occurs when there are massless magnetic monopoles, which renor-
malize the electric coupling constant to infinity at large distance with a conjectured
behavior e2(R) ~ log(iJA). In the Higgs phase, the condensate of an electrically
charged field gives a mass gap to the gauge fields by the Anderson-Higgs mecha-
nism and screens electric charges, leading to a potential which, up to the additive
non-universal constant, has an exponential Yukawa decay to zero at long distances.
In the confining phase, there is a mass gap with electric flux confined into a thin
tube, leading to the linear potential with string tension <r.

All of the above phases can be non-Abelian as well as Abelian. In particular,
in addition to the familiar Abelian Coulomb phase, there are theories which have a
non-Abelian Coulomb phase with massless interacting quarks and gluons exhibiting
the above Coulomb potential. This phase occurs when there is a non-trivial, infrared
fixed point of the renormalization group. These are thus non-trivial, interacting four
dimensional conformal field theories.

We can also consider the behavior of the potential V(R) for magnetic test charges
separated by a large distance R. Up to an additive, non-universal constant, the
potential behaves as
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The behavior in the first three phases can be written as V(R) = g2(R)/R where the
effective magnetic charge g2(R) is related to the effective electric charge appearing
in (1.1) by the Dirac condition, e(R)g(R) ~ 1. The linear potential in the Higgs
phase reflects the string tension in the Meissner effect.

The above behavior is modified when there are matter fields in the fundamental
representation of the gauge group because virtual pairs can be popped from the
vacuum and completely screen the sources. Indeed, in this situation there is no
invariant distinction between the Higgs and the confining phases [2], In particular,
there is no phase with a potential behaving as the "confining" potential in (1.1) at
large distances - the flux tube can break. For large expectation values of the fields,
a Higgs description is most natural while, for small expectation values, it is more
natural to interpret the theory as "confining." Because there is really no distinction,
it is possible to smoothly interpolate from one interpretation to the other.

Note that under electric-magnetic duality, which exchanges electrically charged
fields with magnetically charged fields, the behavior in the free electric phase is
exchanged with that of the free magnetic phase. Mandelstam and 'tHooft sug-
gested that, similarly, the Higgs and confining phases are exchanged by duality.
Confinement can then be understood as the dual Meissner effect associated with
a condensate of monopoles. As we will review, in supersymmetric theories it is
possible to show that this picture is indeed correct.

Dualizing a theory in the Coulomb phase, we remain in the same phase (the
behavior of the potential is unchanged). For an Abelian Coulomb phase with free
massless photons, this follows from a standard duality transformation. What is not
obvious is that this is also the case in a non-Abelian Coulomb phase. This was first
suggested by Montonen and Olive [3]. The simplest version of their proposal is true
only in N = 4 supersymmetric field theories [4] and in finite N = 2 supersymmetric
theories [5,6,7]. The extension of these ideas to asymptotically free N — I theories
first appeared in [8] and will be reviewed here.

1.2. Super Yang-Mills theories

We briefly review standard lore concerning iV = 1 supersymmetric Yang-Mills
theories - i.e. pure super glue with no matter. The lore presented here can be
proven via the analysis in the following sections, by adding vector-like matter and
then integrating it out.

We consider a theory based on a simple group G\ the generalization to semi-
simple Yang-Mills theories is obvious. The theory consists of the G vector bosons
and gauginos Aa in the adjoint of G. There is a classical U(1)R symmetry, gaug-
ino number, which is broken to a discrete Zih subgroup by instantons, ((AA)ft) =
const.A3'1, where h = Ci{A) is the Casimir in the adjoint normalized so that, for
example, h — Nc for SU(NC). The lore is that this theory confines, gets a mass

gap, and that there are h vacua associated with the spontaneous breaking of the
Z2I1 symmetry to Zi by gaugino condensation, (AA) = const.A3. These vacua each
contribute (-1)F = 1 and thus the Witten index [9] is Tr (-1)F = C2(A).

1.3. Outline

In sect. 2, we discuss general techniques for analyzing supersymmetric theories.
In sect. 3, we discuss the classical moduli spaces of degenerate vacua which super-
symmetric gauge theories with matter often have. In particular, we discuss the
classical vacuum degeneracy for N = 1 supersymmetric QCD. In sect. 4, we discuss
supersymmetric QCD for Nf < Nc +1 massless flavors of quarks in the fundamental
representation of SU(NC). In sect. 5, we discuss Nf > Nc + 1 and duality. Sect. 6 is
a brief discussion of the phases and duality of supersymmetric SO(NC) with matter
fields in the Nc dimensional representation. In sect. 7, we discuss general aspects of
supersymmetric theories which have a low energy Abelian Coulomb phase. In sect.
8, we consider the examples of SU(2) with Nf = 1 and Nf = 2 adjoints, which have
electric-magnetic-dyonic triality.

2. Holomorphy and symmetries

2.1. General considerations

The basic approach will be to consider the low energy effective action for the light
fields, integrating out degrees of freedom above some scale. Assuming that we are
working above the scale of possible supersymmetry breaking, the effective action will
have a linearly realized supersymmetry which can be made manifest by working in
terms of superfields. The light matter fields can be combined into chiral superfields
Xr = <j>T + 6aip" + • .., where the <j>r are scalars and the ff>° are Weyl fermions.
In addition, there are the conjugate anti-chiral superfields X$ = <f>l + <?i0j" + ....
Similarly, light gauge fields combine into supermultiplets involving a gauge boson
Ap and gauginos \a and A .̂

We will focus on a particular contribution to the effective Lagrangian - the
superpotential term

(2.1)

where Xr are the light fields, the gj are various coupling constants, and A is the
dimensional transmutation scale associated with the gauge dynamics, —|?-r ~
log A/p. Upon doing the 8 integral, the superpotential yields a potential for the
scalars and a Yukawa type interaction with the scalars and the fermions.

The key fact is that supersymmetry requires Weft to be holomorphic in the chiral
superfields Xr, independent of the X}..



We will think of all the coupling constants gi in the tree level superpotential
Wtree and the scale A as background fields [10]. Then, the quantum, effective
superpotential, We(((Xr,gi, A) is constrained by:

1. Symmetries and selection rules: By assigning transformations laws both to the
fields and to the coupling constants, the theory has a large symmetry. The
effective Lagrangian should be invariant under it.

2. Holomorphy: Weff is independent of g\ [10]. This is the key property. Just as the
superpotential is holomorphic in the fields, it is also holomorphic in the coupling
constants (the background fields). This is unlike the effective Lagrangian in non-
supersymmetric theories, which is not subject to any holomorphy restrictions.
This use of holomorphy extends considerations of [11,12,13]. It is similar in
spirit to the proofs of non-renormalization in sigma model perturbation theory
[14] and in semi-classical perturbation theory [15] in string theory.

3. Various limits: Weg can be analyzed approximately at weak coupling. The
singularities have physical meaning and can be controlled.

Often these conditions completely determine Weg. The point is that a holomor-
phic function (more precisely, a section) is determined by its asymptotic behavior
and singularities. The results can be highly non-trivial, revealing interesting non-
perturbative dynamics.

When there is a Coulomb phase, the kinetic terms for the gauge fields are also
constrained by the above considerations. The relevant term in the effective La-
grangian is

' d29Im[ref[(Xr,gr,A)W2]; (2.2)
/ •

W2 gives the supersymmetric completion of F2 4- iFF so

2ir
+ • (2.3)

is the effective gauge coupling constant. refi(Xr,gr, A) is holomorphic in its argu-
ments and can often be exactly determined.

2.2. Example: Wess-Zumino Model

In order to demonstrate the above rules, we consider the simplest Wess-Zumino
model and rederive the known non-renormalization theorem. Consider the theory
based on the tree level superpotential

(2.4)

We will make use of two U{1) symmetries. The charges of the field <f> and the
coupling constants m and g are

m

g

U(l)
1

- 2
- 3

x U(l)R

1
0
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(2.5)

where U(l)n is an R symmetry under which d28 has charge —2 and thus, in order
for (2.1) to be invariant, the superpotential has charge 2. Note that non-zero values
for m and g explicitly break both £ (̂1) symmetries. However, they still lead to
selection rules.

The symmetries and holomorphy of the effective superpotential restrict it to be
of the form

Consider the limit g —f 0 and m - > 0 with arbitrary gjra. We must have We/f —>
Wtree and, therefore, f(t = (g<j>/m)) —± 1 + t in this limit of vanishing coupling.
Now, because t is arbitrary in this limit, f(t) is thus evaluated to be given by
f(t) = 1 +1 for all t. Therefore, the exact effective superpotential is found to be

i.e. the superpotential is not renormalized [10].
This argument rederives the standard perturbative non-renormalization theorem

[16] and extends it beyond perturbation theory. Strictly speaking, the Wess-Zumino
model probably does not exist as an interacting quantum field theory in four di-
mensions except as an effective low energy theory of a more fundamental theory
and, therefore, this non-perturbative result is only of limited interest. This non-
perturbative proof of the Wess-Zumino non-renormalization can be directly applied
to two dimensions, where such models do exist as interacting quantum field theories.

If there are several fields, some light and some heavy, the heavy fields can be
integrated out to yield a low energy effective Lagrangian for the light fields. The
contribution of tree diagrams with intermediate heavy fields should be then included
in the effective action. The above simple rules allow such diagrams to contribute and
are thus compatible with the known tree level renormalization of the superpotential.

2.3. The 1PI effective action

There are two different objects which are usually called "the effective action:"
the 1PI effective action and the Wilsonian one. When there are no interacting
massless particles, these two effective actions are identical. This is often the case



in the Higgs or confining phases. However, when interacting massless particles are
present, the 1PI effective action suffers from IR ambiguities and might suffer from
holomorphic anomalies [17]. These are absent in the Wilsonian effective action.

Consider the theory with a tree level superpotential with sources for the gauge
invariant polynomials Xr in the matter fields, Wtree = Ylr9rXr, with the gr re-
garded as background chiral superfield sources [10]. The functional integral with the
added source terms gives the standard generating function for the correlation func-
tions, r(g). If supersymmetry is not broken, T(g) is supersymmetric (otherwise we
should include the Goldstino field and supersymmetry will be realized non-linearly)
and1 T(g) = .. .-\-Jd29W[,(g). Using W[,(g) we can compute the expectation values

9WL(g)
dgr

(2.8)

It is standard to perform a Legendre transform to find the 1PI effective action for
the operators Xr:

= [WL(gr)- (2.9)
<9r>

where the {gr} are the solutions of (2.8). The transformation from W^(gr) to
Wdyn(Xr) can be inverted by the inverse Legendre transform as

WL(g)=
(X')

where the Xr are evaluated at their expectation values {Xr), which solve

The 1PI effective superpotential

WeK{X,g) = Wdya(X
r) +

(2.10)

(2.11)

(2.12)

has the property that the equations of motion (2.11) for the fields Xr derived from it
determine their expectation values. In some cases the superpotential Weg obtained

In writing this expression we should think of the coupling constants gr as background
superflelds. Otherwise, WL{Q) is a constant superpotential, which has no effect in global
supersymmetry. Indeed, the following equation can be interpreted as differentiating the
action with respect to the F component of gr.

by the above Legendre transform is the same as the Wilsonian superpotential for
the light fields. In applying this procedure we should be careful of the following
pitfalls:
1. The theory with the sources should have a gap. Otherwise, the 1PI action is ill

defined.
2. The theory with the sources might break supersymmetry. In that case WL is ill

defined.
3. As the sources are turned off, some particles become massless. Their interpolat-

ing fields should be among the composite fields Xr. If some massless particles
cannot be represented by a gauge invariant operator Xr, the effective superpo-
tential derived this way will not include them. This often leads to singularities.

4. The theory might also have other branches which are present only when some
sources vanish. In this case there are new massless particles at that point and the
1PI action might miss some of the branches. In other words, then the Legendre
transform does not exist.

5. If some composites do not represent massless particles, they should be integrated
out. Although we can use the effective superpotential to find their expectation
values, we cannot think of them as fields corresponding to massive particles
except near a point where they become massless.

There are known examples2 of each of these situations; in these cases the 1PI
effective action is misleading, failing to capture important aspects of the physics.

When we can use this procedure to find the Wilsonian action, the linearity of
WefF (2.12) in the sources provides a derivation of the linearity of the Wilsonian
effective action in the sources. See [19,20] for a related discussion.

This approach is particularly useful when we know how to compute Wi,(gr)
exactly. Then, Wdya and Weff follow simply from the Legendre transform (2.9);
this is the "integrating in" discussed in [21,22]. One situation where Wi(gr) can
be determined is when the Xr are all quadratic in the elementary fields. In that

As a simple example of a situation in which the Legendre transform analysis is incom-
plete because supersymmetry is dynamically broken by the added source terms, consider
N = 1 supersymmetric 5(7(2) with a single field Q in the 4 of SU(2) [18]. The the-
ory without added source terms has a one complex dimensional smooth moduli space of
vacua labeled by (X)r where X = Q4 is the basic gauge invariant, with a superpotential
W(X) ~ 0. Adding a source W = gX does not lead to a supersymmetric effective su-
perpotential W(g) - rather, it breaks supersymmetry [18]. (As discussed in [18], it is also
possible that there is a non-Abelian Coulomb phase at the origin of the moduli space and
that supersymmetry is unbroken with the added source term. In that case the 1PI analysis
again fails to capture the physics.)



case, the sources gr are simply mass terms for the matter fields and WL (g) is the
superpotential for the low energy gauge theory with the massive matter integrated
out, expressed in terms of the quantities in the high-energy theory.

These issues will be exhibited and further discussed in later sections.

2.4- Extended supersymmetry

Theories with extended supersymmetry are further constrained. For example,
JV = 2 supersymmetry combines an JV = 1 vector superfield with a chiral superfield
$ in the adjoint representation of the gauge group into an TV = 2 vector multiplet. In
particular, JV = 2 supersymmetry includes a global SU(2)R symmetry which rotates
the gluino component of an JV = 1 vector superfield into the fermion component
of the chiral superfield. This symmetry relates the Kahler potential for the chiral
superfield to the reff in the kinetic term (2.2) for the gauge field. Therefore, the
Kahler potential for chiral superfields which are part of JV = 2 vector multiplets
are determined in terms of holomorphic functions and can thus often be obtained
exactly.

Another type of JV = 2 supermultiplet is the hypermultiplet, consisting of two
JV = 1 chiral multiplets Q and Q. The global SU(2)R symmetry rotates the scalar
component of Q into the scalar component of QK This symmetry implies that the
Kahler potential for these fields must yield a metric which is hyper-Kahler. TV = 2
supersymmetry further implies that this metric is not corrected by quantum effects.

Another condition on theories with JV = 2 supersymmetry is the Bogomol'nyi-
Prasad, Sommerfeld bound [23,24], which is related to the central term in the JV = 2
algebra [25]. The mass of any state satisfies

M > V2\Z\, (2.13)

where Z is the central term of the JV = 2 algebra, involving the gauge and global
quantum numbers of the state. The BPS saturated states, for which the inequality
(2.13) is saturated, are some of the stable states in the spectrum. Because Z is a
holomorphic object, it can often be exactly determined; (2.13) then yields the exact
mass spectrum for some of the stable states.

This review will focus on JV = 1 supersymmetry. We refer the reader to the
literature for further details about extended supersymmetry.

3. Classical super gauge theories - classical moduli spaces of vacua

The classical Lagrangian of a supersymmetric theory with gauge group G, matter
superfields $y in representations R(f) of G, and zero tree level superpotential is

c = co + ]T 4 r T ; w + /».<=. + £ ( £ ^ r ^ / ) 2 , (3.1)

where Co are the obvious gauge invariant kinetic terms for the gauge and matter
fields and T? are the G generators in representation R(f). The interactions in (3.1)
are related by supersymmetry to the coupling in Co of gauge fields to matter.

Classical gauge theories often have "D-flat" directions of non-zero {(j>f) along
which the squark potential in (3.1) vanishes. In other words, these theories often
have classical moduli spaces of degenerate vacua. As a simple example, consider
£7(1) gauge theory with a matter superfield Q of charge 1 and Q of charge —1.
The squark potential in (3.1) is V = (Q*Q — Q^Q)2 and thus there is a continuum
of degenerate vacua labeled, up to gauge equivalence, by (Q) = {Q) = a, for any
complex a. In vacua with a ^ 0 the gauge group is broken by the super Higgs
mechanism. The gauge superfield gets mass \a\ by "eating" one chiral superfield
degree of freedom from the matter fields. Since we started with the two superfields Q
and Q, one superfield degree of freedom remains massless. The massless superfield
can be given a gauge invariant description as X = QQ. In the vacuum labeled
as above by a, (X) = a2. Because a is arbitrary, there is no potential for X,
Wci(X) = 0 - classically X is a "modulus" field whose expectation value labels
a classical moduli space of degenerate vacua. The classical Kahler potential of
the microscopic theory is Kci = Q^evQ + Q<ie~vQ. In terms of the light field X,
Kci = 2vXTX, which has a conical (Zi orbifold) singularity at X = 0. A singularity
in a low energy effective action generally reflects the presence of additional massless
fields which should be included in the effective action. Indeed, the singularity at
X — 0 corresponds to the fact that the gauge group is unbroken and all of the
original microscopic fields are classically massless there.

As in the above simple example, the classical moduli space of vacua is the space
of squark expectation values (</>/}, modulo gauge equivalence, along which the po-
tential in (3.1) vanishes. It can always be given a gauge invariant description in
terms of the space of expectation values (Xr) of gauge invariant polynomials in the
fields subject to any classical relations. This is because setting the potential in (3.1)
to zero and modding out by the gauge group is equivalent to modding out by the
complexified gauge group. The space of chiral superfields modulo the complexified
gauge group can be parameterized by the gauge invariant polynomials modulo any
classical relations. These results follow from results in geometrical invariant theory
[26]; see also [27] for a recent discussion. As in the above example, the fields Xr

correspond to the matter fields left massless after the Higgs mechanism and are
classical moduli, Wci(Xr) = 0.

The vacuum degeneracy of classical moduli spaces of vacua is not protected
by any symmetry. In fact, vacua with different expectation values of the fields
are physically inequivalent: as in the above example, the masses of the massive
vector bosons depend on the expectation values (Xr). Therefore, the degeneracy
of a classical moduli space of vacua is accidental and can be lifted in the quantum
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theory by a dynamically generated Wes(Xr). We will often be able to determine
Weff(Xr) by the considerations discussed above.

Example: SUSY QCD

Consider supersymmetric SU(NC) gauge theory with Nf quark flavors Q' in the
fundamental representation and Q; in the anti-fundamental, i,i = 1... Nf. In the
absence of mass terms, there is a classical moduli space of vacua given, up to gauge
and global symmetry transformations, by:

(3.2)

aNf

for Nf < Nc, with a; arbitrary, and by

fax

Q =

a2

(3.3)

\

ai\2 — \Si\2 = independent of i,

for Nf>Nc.
For Nf < Nc, the gauge invariant description of the classical moduli space

is in terms of arbitrary expectation values of the "mesons" M~ = Q'Q~. For
Nf > Nc, it is also possible to form "baryons" B'l"'Nc = Q'1 ... Q'Nc and
B"i1 ~iN ~ Qii • • • Q'iN • The gauge invariant description of the classical moduli
space for Nf > Nc is given in terms of the expectation values of M, B and B, sub-
ject to the following classical constraints. Up to global symmetry transformations,
the expectation values are

\

(3.4)

B1 c =

BX,...,NC =

11

with all other components of M, B and B vanishing. Therefore, the rank of M is
at most iVc. If it is less than Nc, either B = 0 with B having rank at most one or
B = 0 with B having rank at most one. If the rank of M is equal to Nc, both B and
B have rank one and the product of their eigenvalues is the same as the product of
non-zero eigenvalues of M.

As discussed above, the physical interpretation of the flat directions is that the
gauge group is Higgsed. If B = B = 0 and M has rank k, SU(NC) is broken to
SU(NC - k) with Nf-k light flavors.

Already at the classical level, we can integrate out the massive fields and consider
an effective Lagrangian for the massless modes. Their expectation values label the
particular ground state we expand around, and hence they are coordinates on the
classical moduli space. The classical moduli space is not smooth. Its singularities
are at the points of enhanced gauge symmetry. For instance, when a,- = a; = 0 for
every i the gauge symmetry is totally unbroken. Therefore, the low energy effective
theory of the moduli is singular there. This should not surprise us. At these singular
points there are new massless particles - gluons. An effective Lagrangian without
them is singular. If we include them in the low energy description, the Lagrangian
is smooth.

In the next two sections we will see how this picture changes in the quantum
theory. At large expectation values of the fields, far from the classical singularities,
the gauge symmetry is broken at a high scale, the quantum theory is weakly coupled,
and semi-classical techniques are reliable. We expect the quantum corrections to
the classical picture to be small there. On the other hand, at small field strength
the quantum theory is strongly coupled and the quantum corrections can be large
and dramatically modify the classical behavior. In particular, the nature of the
classical singularities, which are at strong coupling, is generally totally different in
the quantum theory.

4. SUSY QCD for Nf <NC + 1

Because these theories have matter fields in the fundamental representation of
the gauge group, as mentioned in the introduction, there is no invariant distinction
between the Higgs and the confining phases [2]. It is possible to smoothly interpolate
from one interpretation to the other.

4.1. Nf < Nc - No Vacuum

The first question to ask is whether the classical vacuum degeneracy can be
lifted quantum mechanically by a dynamically generated superpotential. The form

12



of such a superpotential is constrained by the symmetries. At the classical level,
the symmetries are

SU{Nf)L x SU{Nf)R x U{\)A X U(1)B X U(1)R

where the the quarks transform as

(4.1)

(4.2)

U(1)R is an R symmetry (the gauginos have charge +1, the squark components of
Q and Q have the charge R(Q) indicated above, and the charge of the fermion
components is i?(V>) = R(Q) — 1). The charges were chosen so that only the
symmetry U{\)A is anomalous in the quantum theory. Considering the anoma-
lous U(1)A as explicitly broken by fermion zero modes in an instanton back-
ground, U(1)A leads to a selection rule. The instanton amplitude is proportional
to e-

s">" = e-8T2<r2M+.9 = (A//j,)3N'-N', where A is the dynamically generated
scale of the theory, and we integrated the 1-loop beta function. Therefore, U(1)A is
respected provided we assign \3N'~Ni charge 2Nf to account for the charge of the
fermion zero modes under U(1)A- The dependence on the scale A is thus determined
by the U(\)A selection rule.

There is a unique superpotential which is compatible with these symmetries [28]

(4.3)
det QQ )

where CNC,N[ are constants which depend on the subtraction scheme. Therefore, if
the vacuum degeneracy is lifted, this particular superpotential must be generated.
For Nf > Nc this superpotential does not exist (either the exponent diverges or the
determinant vanishes) and therefore the vacuum degeneracy cannot be lifted. We
will return to Nf > Nc in the next subsections.

Note that the superpotential (4.3) is non-perturbative and is thus not in conflict
with the perturbative non-renormalization theorem. Indeed, the above argument
demonstrates that the perturbative non-renormalization and its non-perturbative
violation can be understood simply as the need for obtaining a well-defined charge
violation of the anomalous U(1)A as occurs, for example, in an instanton back-
ground.

The superpotential (4.3) is further constrained by considering various limits.
For example, consider the limit of large M^f, i.e. large a^, in (3.2), which breaks

13

SU(NC) with Nf flavors to SU(NC - 1) with Nf - 1 light flavors by the Higgs
mechanism at energy atq;. Matching the running gauge coupling at energy a^t, the
low energy theory has scale Af ' " 1 ' " ' " ' " ' 1 = AiN'~N'/a2

N/. The fact that the
scales are so matched without any threshold factors reflects a choice of subtraction
scheme; this is the correct matching, for example, in the DR scheme. Requiring
(4.3) to properly reproduce the superpotential of the low energy theory in this limit
gives CNC,N, = CNC-N,-

Next consider giving QNt and Qjj a large mass by adding Wtree = m ^ r / •
The low energy theory is SU{NC) with Nf — 1 flavors. Matching the running gauge
coupling at the transition scale m, the low energy theory has scale AL ° ' =
mA3Nc-Nf Again, this equality is up to a scheme dependent threshold factor which
is one in the DR scheme. Using the symmetries, the exact superpotential with the
added mass term is of the form

(4.4)
det M

In the limit of small mass and weak coupling, we know that f(t) = CNC,N/ + t.
Because all values of t can be obtained in this limit, the function /(i) is evaluated
in this understood limit to be f(t) = C?fctpft +t for all t. The exact superpotential
with the added mass term is thus

V detJW )
(4.5)

Requiring (4.5) to give the correct superpotential in the low energy theory upon
integrating out M-' relates CMC,NI to CNC,N;-I which, when combined with
CNc,Nf = CNC-N,, determine that CNctN/ = (JV,. - N{)C

l^N^-N') with C a uni-
versal constant.

For Nf = Nc — 1, the superpotential (4.3) is proportional to the one-instanton
action and, thus, the constant C can be exactly computed via a one-instanton
calculation. Because the gauge group is completely broken by the Higgs mechanism
for Nf — Nc - 1 (for det M ^ 0), the instanton calculation is reliable (there is no
infra-red divergence). The universal constant C can be computed by considering
the particular case Nc = 2, Nf = 1. The direct instanton calculation [29] reveals
that the constant C / 0 . The more detailed analysis of [30] shows that C = 1 in
the DR scheme. For Nf < Nc there is thus a dynamically generated superpotential

(4.6)
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While WefF is generated by instantons for Nf = Nc — 1, for Nf < Nc — 1 it is
associated with gaugino condensation in the unbroken SU(NC — Nf) gauge group
[29]. In particular, the low energy theory has a WZ term3

(4.7)

to account for the matching to the high energy theory. If gaugino condensation
occurs in the low energy theory, (AA) = cA3

N^_N where c is a constant and ANC-N;

is the scale of the low energy SU(NC — Nf) gauge theory, given in terms of the
scale A of the high-energy theory by A ^ " ^ = A3N'~N> / det M, (4.7) yields a
term cA3

N _N M~x FM in the effective Lagrangian. Our superpotential (4.6) indeed
gives exactly such a term, (A3N'-Ni / det Mf^N'-N^M~lFM = A ^ ^ M ^ F M ,
in the effective Lagrangian. Therefore, gaugino condensation occurs m. N = 1
SU{NC — Nf) Yang-Mills theory with the normalization

with k = 1... (Nc - Nf), (4.8

where we explicitly exhibit the phase. Using (4.6)(whose normalization follows from
a well understood instanton calculation), we have derived gaugino condensation
(4.8), including its normalization in the DR scheme, in the low energy N = 1
Yang-Mills theory. (For related work on this model see also references [11] and
[31].)

The dynamically generated superpotential (4.6) leads to a squark potential which
slopes to zero for det M —> oo. Therefore, the quantum theory does not have a
ground state. We started with an infinite set of vacua in the classical theory and
ended up in the quantum theory without a vacuum!

Consider adding Wtree = Tr mM, giving masses to the Nf flavors. As in (4.5),
symmetries and the weak coupling and small mass limit determine that the ex-
act superpotential is Wiai\ = Weff + Wtree> The vacua are given by (M) solving
^ |<M> = 0. This gives Nc vacua

(Mi) = (6etmA3N>-N>)1/N' (-)' ,1 \mJj
(4.9)

corresponding to the Nc branches of the A^-th root. For large m, the matter fields
are very massive and decouple, leaving a low energy SU(NC) pure Yang-Mills theory.
Indeed, the low energy theory has confinement with a mass gap and Nc vacua.

3 We absorb a factor of l/32;r2 into the definition of
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Evaluating (4.6) with the expectation values (4.9) yields

WL(m) = NC{A3N'~N> detm)l/N< = NCA3
L, (4.10)

where At is the scale of the low energy SU(NC) Yang- Mills theory. Expressed
in terms of AL, the superpotential (4.10) is interpreted as the result of gaugino
condensation in the low energy SU(NC) Yang-Mills theory. Expressed in terms of
m and A, the superpotential (4.10) is the effective superpotential which yields the
expectation values (4.9) via (2.8), 3 w ^ m ) = (M). As in (2.9), WL(m) leads to an
effective superpotential for the operators M:

yn = (Nc - Nf)
detM

(4.11)

In this case Waya agrees with the Wilsonian effective superpotential (4.6), as could
have been expected because this theory satisfies all of the conditions spelled out
in sect. 2.3. The fact that the Wilsonian effective action is here the same as the
1PI effective action provides a simple alternate derivation of the linearity derived
in (4.5).

It is also possible to "integrate in" operators which do not correspond to massless
particles. Then, the effective action can be used only to compute their expectation
values, rather than for studying them as massive particles. An example is the
"glueball" field S = —Wl, whose source is log A3N*~N>. Integrating in S by the
Legendre transform of (4.11) with respect to the source log A3N'~N> yields

W(S,M) = S [log
r

= S [l (4.12)

the superpotential obtained in [32], Adding mass terms Wtree = Tr mM and
integrating out M yields

3Afc

(4.13)

where A/, is the scale of the low energy SU(NC) Yang-Mills theory, A3/'0 =
det mA3Wt"w ' . This superpotential simply gives the information discussed above:
supersymmetric SU(NC) Yang-Mills theory has Nc supersymmetric vacua with the
gaugino condensates (4.8) and superpotential W = NCA\, Working with such effec-
tive superpotentials which include massive fields can be convenient when interesting
but complicated dynamics is encoded in the integrating out of these massive fields.
Several such examples can be found in [21]. However, as stressed above, we should
not think of S as a field describing a massive particle.
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4-2. Nf — Nc - Quantum moduli space with confinement with chiral symmetry
breaking

As we said above, for Nf > Nc the vacuum degeneracy can not be lifted. There-
fore, the quantum theory also has a continuous space of inequivalent vacua. Since
this space can be different than the classical one, we will refer to it as the "quantum
moduli space." The most interesting questions about it are associated with the
nature of its singularities. Classically, the singularities were associated with mass-
less gluons. Are there singularities in the quantum moduli space? What massless
particles are associated with those singularities?

The classical moduli space for Ar/ = Nc is given in terms of the gauge invariant
description (3.4) as the the space of expectation values of mesons M-., and baryons

B and B subject to the classical constraint

det M -BB = 0, (4.14)

which follows from Bose statistics of Q and Q. This space has a singular submanifold
B = B = 0 and rank(M) < Nc - 2, where <f(det M - BB) = 0. Physically, the
classical singularities reflect the fact that there are additional degrees of freedom,
SU(NC — rank(M)) gluons, on this submanifold.

The quantum moduli space is parameterized by the same fields but the constraint
is modified [33] to

det M - BB = A2N'. (4.15)

This can be seen by adding mass terms Wtree = Tr mM and taking m —»• 0. It follows
from (4.9) that det(M) = A2Wc, independent of m, for Ar/ = Nc. This agrees with
(4.15) for (BB) = 0, which is the case with only added mass terms. Considering
more generally Wtree = Tr mM + bB + bB with m, b, b -> 0, (BB) can be non-zero
and the expectation values are found to satisfy (4.15)[22]. Because the right hand
side of (4.15) is proportional to the one-instanton action, the quantum modification
of the classical constraint is exactly given by a one-instanton contribution.

There are no singularities on the quantum moduli space given by (4.15) - all of
the classical singularities have been smoothed out by quantum effects. As a similar
but simpler example of the deformed moduli space, consider the space XY = ju in
C2. For fi = 0 the space is a pair of cones (corresponding to the X plane and the
Y plane) touching at their tips; the space is singular at the origin, where the cones
touch. In the deformed space pi ^ 0, the two cones are smoothed out to a single
sheeted hyperboloid. It asymptotes to the two cones far from the origin but has a
smooth hourglass shape where they connect. Similarly, the quantum space (4.15)
is smooth, which is dramatically different from the classical space (4.14) near the
origin. For large expectation values M, B and B, the difference becomes negligible,
as it should be in the weak coupling region.
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Since there are no singularities on the quantum moduli space, the only mass-
less particles are the moduli, the fluctuations of M, B, and B preserving (4.15).
In the semi-classical region of large fields it is appropriate to think of the theory
as "Higgsed." Near the origin, because the quantum theory is smooth in terms
of the mesons and baryons, it is appropriate to think of the theory as being con-
fining. There is a smooth transition from the region where a Higgs description is
more appropriate to the region where a confining description is more appropriate.
Again, this is possible because of the presence of matter fields in the fundamental
representation of the gauge group [2].

Because the origin M = B = B = 0 is not on the quantum moduli space
(4.15), the quantum dynamics necessarily break the anomaly free, chiral SU(Nf) x
SU(ATf) x U(1)B x U(1)R symmetry in (4.1). Different points on the quantum
moduli space exhibit different patterns of chiral symmetry breaking. For example
at M-. = A2<5~, B = B = 0 the symmetry is broken as

SU{Nf)L x SU(Nf)R x U(1)B x U(1)R -> SU(Nf)v x V(l)B x U(l)R. (4.16)

At M - 0, B = -B = \N* the breaking pattern is

SU(Nf)L x SU(Nf)R x U(1)B x U(1)R -> SU(Nf)L x SU(Nf)R x U(1)R. (4.17)

Some of the moduli are Goldstone bosons of the broken symmetry whereas others
take the theory to vacua with different breaking patterns. For no vacuum in the
quantum moduli space (4.15) is the full chiral symmetry unbroken. It is straight-
forward to check that the massless fermion spectrum, consisting of the fermionic
components of the chiral superfield moduli, satisfies the 'tHooft anomaly conditions
for the unbroken symmetries.

The constraint (4.15) can be implemented with a superpotential W = A(det M—
BB — A2Wc), with A a Lagrange multiplier. The reader can verify that, upon adding
V̂ j-gg = mM^ to give a mass to the A ĉ-th flavor, the low energy theory with
Nf = Nc — 1 light flavors has the appropriate superpotential (4.6).

Jf.S. Nf = Nc + 1 - Confinement without chiral symmetry breaking

We now add another massless flavor to the previous case. The classical
moduli space is again described as in (3.4) by the mesons M, baryons Bi =

JN' and B{ = . Q-. subject to the constraints

det M I 4 ) - = 0
(4.18)

i.Bi = Mi.B> = 0.
i i
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Unlike the previous case, for Nf = Nc 4-1 the quantum moduli space is the same
as the classical one [33], This can be seen by adding WtrM = Tr mM, giving masses
to all Nf + 1 flavors. The expectation values of M are then given by (4.9). By
taking the limit m\ —> 0 in different ratios, it is found that (M~) can be anywhere
on the classical moduli space (4.18) of vacua.

Because the quantum moduli space of vacua is the same as the classical moduli
space, it has singularities at strong coupling. The singularities, however, are inter-
preted differently than in the classical theory. Rather than being associated with
massless gluons, the singularities are associated with additional massless mesons and
baryons! In particular, at the point M = B = B = 0 the global chiral symmetry

SU(Nf)L x SU(N,)R x J7(1)B X U(1)R (4.19)

is unbroken and all the components of M, B and B are massless and physical [33]. It
is a non-trivial consistency check that this massless spectrum at the origin satisfies
the 'tHooft anomaly matching conditions for the full global symmetry (4.19).

Away from the origin, all the degrees of freedom in M, B and B are physical
and they couple through the superpotential [33]

w" = J^T(M3B'§1 ~ det M)- (4-2°)
The classical constraints (4.18) appear as the equations of motion a^Tf = a^gff =
dw£< = 0. Far from the origin, in the region of weak coupling, the number of
independent massless fields is the same as in the classical theory because the com-
ponents of M, B, and B which are classically constrained get a large mass from
(4.20).

We conclude that the spectrum at the origin of field space consists of massless
composite mesons and baryons and that the chiral symmetry of the theory is un-
broken there. This is confinement without chiral symmetry breaking. Again, we
see a smooth transition [2] from the semi-classical region where a Higgs description
is more appropriate to a strongly coupled region where a confining description is
more appropriate.

The reader can verify that adding Wtree = mM - l i 1 to (4.20) to give a mass to

the Nc + 1-th flavor yields the quantum moduli space with constraint (4.15) in the
low energy theory with Nf = Nc light flavors.

5. SUSY QCD for Nf>Nc + l

5.1. Nf > 3NC

In this range the theory is not asymptotically free. This means that, because
of screening, the coupling constant becomes smaller at large distances. Therefore,
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the spectrum of the theory at large distance can be read off from the Lagrangian
- it consists of the elementary quarks and gluons. The long distance behavior of
the potential between external electric test charges has the free electric behavior in
(1.1). For this range of Nf, the theory is in a non-Abelian free electric phase.

We should add here that, strictly speaking, such a theory is not well defined
as an interacting quantum field theory because of the Landau pole at R ~ A"1.
However, it can be a consistent description of the low energy limit of another theory.

5.2. ^Nc < Nf < 3NC; Interacting non-Abelian Coulomb phase

In this range the theory is asymptotically free. This means that at short distance
the coupling constant is small and it becomes larger at longer distances. However,
for this range of Nf [33,8], rather than growing to infinity, it reaches a finite value
- a fixed point of the renormalization group.

The exact beta function in supersymmetric QCD satisfies [34,17]

(5.1)

7(<72) = - ;
NC

where f(g2) is the anomalous dimension of the mass. Since there are values of Nf
and Nc where the one loop beta function is negative but the two loop contribution
is positive, there might be a non-trivial fixed point [35]. Indeed, by taking Nc and
Nf to infinity holding Ncg

2 and jf- = 3 — e fixed, one can establish the existence

of a zero of the beta function at Ncgl = ^f-« + Therefore, at least for large

Nc and e = 3 — j / - <C 1, there is a non-trivial fixed point. It was argued in [8] that
such a fixed point exists for every |jVc < Nf < 3NC.

Therefore, for this range of Nf, the infrared theory is a non-trivial four dimen-
sional superconformal field theory. The elementary quarks and gluons are not con-
fined but appear as interacting massless particles. The potential between external
electric sources behaves as

v-I
and therefore we refer to this phase of the theory as the non-Abelian Coulomb
phase.

Given that such a fixed point exists, we can use the superconformal algebra to
derive some exact results about the theory. This algebra includes an R symmetry.
It follows from the algebra that the dimensions of the operators satisfy

D > \\R\; (5.2)
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the inequality is saturated for chiral operators, for which D = |i2, and for anti-chiral
operators, for which D — — | i t . Exactly as in N=2 theories in two dimensions, this
has important consequences. Consider the operator product of two chiral operators,
O1(x)O2(0). All the operators in the resulting expansion have R = R(OX) + R(O2)
and hence D > D(O\) 4- D(02)- Therefore, there is no singularity in the expansion
at x = 0 and we can define the product of the two operators by simply taking the
limit of x to zero. If this limit does not vanish, it leads to a new chiral operator
03 whose dimension is D(O3) = D(Oi) + D(O2). We conclude that the chiral
operators form a ring.

The R symmetry of the superconformal fixed point is not anomalous and com-
mutes with the flavor SU(Nf) x SU(Nf) X t /( l)s symmetry. Therefore, it must
be the anomaly free R symmetry appearing in (4.2). Hence the gauge invariant
operators QQ have [8]

D(QQ) = \R{QQ) = (5.3)

and similarly

(5.4)

The value of D{QQ) also follows from (5.1) - at the zero of the beta function
7 = -3$°- + 1 and hence D = 7 + 2 = 3-*'N, N,

All of the gauge invariant operators at the infrared fixed point should be in
unitary representations of the superconformal algebra. The complete list of such
representations was given in [36] by extending the analysis [37] of the ordinary
conformal algebra. One of the constraints on the representations which follows
already from the analysis of [37] is that spinless operators have D > 1 (except the
identity operator with D = 0) and the bound is saturated for free fields (satisfying
<9/13''"3> = 0). For D < 1 (D ^ 0) a highest weight representation includes a negative
norm state which cannot exist in a unitary theory.

The fixed point coupling g* gets larger as the number of flavors is reduced.
For Nf at or below ^Nc the theory is very strongly coupled and goes over to a
new phase, different from the interacting non-Abelian Coulomb phase. To see that
the theory must be in a different phase, note that the value of D(QQ) in (5.3) is
inconsistent with the unitarity bound D > 1 for Nf < ^Nc. The new phase will be
explained below. A clue is the fact that the dimension of M = QQ becomes one for
Nf = ^Nc, which shows that M becomes a free field, i.e. d2M = 0. This suggests
that in the correct description for Nf = |./VC the field M, and perhaps even the
whole IR theory, is free.
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5.3. Duality

The physics of the interacting fixed point obtained for the range |iVc < Nf <
3NC has an equivalent, "magnetic," description [8]. It is based on the gauge group
SU(Nf — Nc), with Nf flavors of quarks </; and q1 and gauge invariant fields M-.
with a superpotential

W=-Mijqicfi. (5.5)

We will refer to this gauge group as the magnetic gauge group and to its quarks as
magnetic quarks. Without the superpotential (5.5), the magnetic theory also flows
to a non-Abelian Coulomb phase fixed point because |(Ar/—Nc) < Nf < Z(Nf—Nc)
for the above range of Nf. At this fixed point M is a free field of dimension one
and, using (5.3), D(qq) — ZNC/Nf. Because the dimensions of chiral operators add,
the superpotential (5.5) has dimension D = 1 -f- 3NC/Nf < 3 at the fixed point of
the magnetic gauge theory and is thus a relevant perturbation, driving the theory
to a new fixed point. The surprising fact is that this new fixed point is identical
to that of the original, "electric," SU(NC) theory. Note that the two theories have
different gauge groups and different numbers of interacting particles. Nevertheless,
they describe the same fixed point. In other words, there is no experimental way
to determine whether the -̂  potential between external sources is mediated by the
interacting electric or the interacting magnetic variables. Such a phenomenon of
two different Lagrangians describing the same long distance physics is common in
two dimensions and is known there as quantum equivalence. These four dimensional
examples generalize the duality [3] in finite N — A supersymmetric theories [4] and
in finite N = 2 theories [5] to asymptotically free N = 1 theories.

The scale fi in (5.5) is needed for the following reason. In the electric description
Mi = Q'Qj has dimension two at the UV fixed point and acquires anomalous
dimension (5.3) at the IR fixed point. In the magnetic description, Mm is an
elementary field of dimension one at the UV fixed point which flows to the same
operator with dimension (5.3) at the IR fixed point. In order to relate Mm to M of
the electric description in the UV, a scale ^ must be introduced with the relation
M = fJ,Mm. Below we will write all the expressions in terms of M and jj, rather
than in terms of Mm.

The magnetic theory has a scale A which is related to the scale A of the electric
theory by

where p, is the dimensionful scale explained above. This relation of the scales has
several consequences:
1. It is easy to check that it is preserved under mass deformations and along the flat

directions (more details will be given below). The phase (—1)^/-^ [s ;mpOrtant
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in order to ensure that this is the case.
2. It shows that as the electric theory becomes stronger the magnetic theory be-

comes weaker and vice versa. It is the analog of g —> 1/g for asymptotically free
theories.

3. Differentiating the action with respect to log A relates the field strengths of
the electric and the magnetic theories as W2 = —W2. The minus sign in this
expression is common in electric magnetic duality, which maps E2—B2 = — (E2—
B2). In our case it shows that the gluino bilinear in the electric and the magnetic
theories are related by A A = — AA.

4. Because of the phase (-1)N'~N% the relation (5.6) does not look dual - if we
perform another duality transformation it becomes \3N^-Nt\HNi-N,,)-N, _
( - 1 ) ^ / ^ ' and therefore

/} = -p. (5.7)

This minus sign is important when we dualize again. The dual of the dual mag-
netic theory is an SU(NC) theory with scale A, quarks d' and dj, and additional

singlets Mi and Nj = qiq', with superpotential

W = i j + -MiN] = -Njl-tfdj + Mi). (5.8)

The first term is our standard superpotential of duality transformations4 and
the second term is simply copied from (5.5). M and N are massive and can be
integrated out using their equations of motion: N = 0, Mi = d'dj. This last

relation shows that the quarks d and d can be identified with the original electric
quarks Q and Q. The dual of the magnetic theory is the original electric theory.
The electric and magnetic theories have different gauge symmetries. This is

possible because gauge symmetries really have to do with a redundant descrip-
tion of the physics rather than with symmetry. There is no problem with hav-
ing two different redundant descriptions of the same physics. On the other hand,
global symmetries are physical and should be the same in the electric and mag-
netic theories. Indeed, the magnetic theory has the same anomaly free global
SU(Nf) x SU(Nf) x U(1)B x U(1)R as the electric theory, with the singlet Mi

transforming as Q'Q-j and the magnetic quarks transforming as

, ¥ . Nc Nc

_ . n M Nc Nc.
 ( 5 ' 9 )

4 The relative minus sign between it and (5.5), which follows from (5.7), is common in
Fourier or Legendre transforms. (Compare with (2.9) and (2.10).)
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This symmetry is anomaly free in the magnetic theory and it is preserved by the su-
perpotential (5.5). Furthermore, the magnetic spectrum with these charges satisfies
the 'tHooft anomaly matching conditions.

In order for the dual theory to describe the same physics as the electric theory,
there must be a mapping of all gauge invariant primary operators of the electric
theory to those of the dual theory. For example, the electric mesons Mi = Q'Qj and
the singlets Mi of the magnetic theory become identical in the infrared. All such
mappings must be compatible with the global symmetry charges discussed above.
Another set of gauge invariant operators of the electric theory are the baryons
gii...inc -Qh ... QiNc a n ( j B-h -iN =Q-h--- Q-iN . In the magnetic theory we can

similarly form the baryons fti,...^ = qit • • • qi^ and 611-"'#= = if1 • • • §*#=, where

Nc = Nf — Nc. At the fixed point, these operators are related via

V1-'**,
(5.10)

with C = y/-(-fi)Nc~N' AiN'~Ni. Note that these mappings respect the global
symmetries discussed above. The normalization constant C was fixed by symmetries
and by limits to be discussed below. It follows from (5.6) that (5.10) respects the
Z2 nature of the duality.

5.4. Nc + 2<Nf< |ATC

Recall that the electric SU(NC) theory with Nf flavors was in a non-Abelian free
electric phase for Nf > 3iVc and in the non-Abelian Coulomb phase for | JVC < Nf <
3NC, with the fixed point at larger electric coupling for smaller Nf. In the magnetic
description of the non-Abelian Coulomb phase fixed point, the magnetic coupling at
the fixed point is small for Nf near 3(Nf — Nc) and gets larger with 3(Nf — Nc) — Nf,
in the magnetic description the fixed point is at weaker coupling for smaller Nf.
It was seen that for Nf < |iVc the theory must be in a different phase. In the
magnetic description, the situation is clear: since 3(iV/ — iV,;) < Nf, the magnetic
SU(Nf — Nc) gauge theory is not asymptotically free (and the added superpotential
(5.5) is irrelevant) and thus weakly coupled at large distances. Therefore, the low
energy spectrum of the theory consists of the SU(Nf — Nc) gauge fields and the
fields M, q, and q in the dual magnetic Lagrangian [8]. These magnetic massless
states are composites of the elementary electric degrees of freedom. The massless
composite gauge fields exhibit gauge invariance which is not visible in the underlying
electric description. The theory generates new gauge invariance! Because there are
massless magnetically charged fields, the theory is in a non-Abelian free magnetic
phase.
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5.5. Deformations of the dual theories

We now consider deforming the theories, showing in detail how the electric-
magnetic duality exchanges strong coupling with weak coupling and Higgs with
confinement.

Consider starting from the electric theory and giving a mass to the Nf-th flavor

by adding Wtree = mM^' . The low energy theory has Nf-l light flavors and a scale

AL related to the scale A of the high energy theory by A£ ° ' = mAiN'~N'.
As expected, the low energy electric theory is at stronger coupling; the mass term
is a relevant operator, sending the theory to a more strongly coupled fixed point.

In the magnetic theory, adding Wt,ee gives

•N,

l+™<;-

'The equations of motion of Mc/, M\-, and M-. ' lead to

QN,qNf = - ( qiqN> = = 0,

(5.11)

(5.12)

(color indices are suppressed and summed) which show that the magnetic gauge
group is broken by the Higgs mechanism to SU(Nf — Nc — 1) with Nf — 1 quarks
left massless. The equations of motion of the massive quarks lead to

The low energy superpotential is

W=-M{qtf,

(5.13)

(5.14)

where M, q and q are the light fields with Nf — Nc — 1 colors and Nf — 1 fla-
vors. The scale of the low energy magnetic theory is given by A t ° ' =
AiN'-Nf/(qN/q

N!). Note that (5.6) and (5.10) axe preserved in the low energy
theories. The low energy magnetic theory is at weaker coupling and is the dual
of the low energy electric theory. The duality is preserved under the mass term
deformation and exchanges a more strongly coupled electric description of the new
fixed point with a more weakly coupled magnetic description of the new fixed point.

The above discussion of the mass term deformation is incomplete for Nf — Nc+2,

where the mass term for the (Nc + 2)-th flavor triggers complete breaking of the
magnetic gauge group. The low energy theory contains the mesons Ml, where the
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hat refers to the flavors i,i = 1. . . Nc + 1, and the singlets (J; and q1, which are the
components of the magnetic quarks remaining massless after the Higgs mechanism,
with a superpotential as in (5.14). The map (5.10) for Nf = Nc + 1 implies that the
singlets <J; and <p are, in fact, the baryons B{ and B' of the low energy electric theory.
It has already been suggested, at least for large Nc, that baryons can be thought
of as solitons in the pion Lagrangian [38]. Here we see an explicit realization of a
related idea - the baryons are magnetic monopoles of the elementary quarks and
gluons! Taking the normalization in (5.10) into account, the superpotential (5.14)
obtained in the low energy theory from flowing down from that of the magnetic,
Nf = Nc + 2, SU(2) theory is

Wn = -7TT, rMiBiS', (5.15)

where A^ is the scale of the low energy electric theory with Nf = Nc + 1 light
flavors. However, because the magnetic theory is completely Higgsed in the flow
down from Nf = Nc + 2, the low energy theory also includes instanton contributions
in the broken magnetic group. In particular, the superpotential has an additional
term which is the magnetic analog of (4.6)

detM
(5.16)

where use was made of (5.6). Adding this to the superpotential (5.15) and dropping
the hats and the L subscript, the superpotential of the low energy theory with
Nf = Nc + 1 light flavors is

(5.17)

This is precisely the superpotential (4.20). In the electric description (4.20) is asso-
ciated with strong coupling effects. In the magnetic description it is thus rederived
in a weakly coupled framework.

Another way to analyze the theory with mass terms is to consider the massless
theory for generic values of (M). The dual quarks acquire mass fx~lM and the
low energy magnetic theory is pure glue SU(Nf — Nc) Yang-Mills theory with scale
•jQNj-NJ = ^-Nffa(Nl-Nc)-Nl detM A s i n (4 1 Q^ g [ u i n o c o n d e n s a t i o n i n t h i s

theory leads to an effective superpotential

= iN^Nc)ll = {Nc-Nf)[^-)1
(5.18)

26



where we used (5.6) (the (—1)^' Nc sign in that relation plays a crucial role in
getting the correct overall sign here), which is the same as the continuation of (4.6)
to these values of Nc, Nf. This guarantees that the superpotentials (4.6) and the
expectation values of (Mi.) are reproduced correctly when mass terms are added to
the magnetic theory.

The infrared fixed point can also be deformed by giving the fields in the electric
theory expectation values along the Z)-flat directions (3.3). Consider, for example,
large (QN') = (Qfj ), breaking the electric SU(NC) theory with Nf flavors to
SU(NC — 1) with Nf — 1 light flavors. The low energy electric theory has scale
A3(A;-c-i)-(w/-i) = A3Ar=-;v//(Qw/QAf/) and the fixed point is at weaker coupling.
In the magnetic description, the large (M-1) gives a large mass /i"1 (M^1) to the

flavor qN;QN' • The low energy magnetic theory is SU(Nf — Nc) with Nf — 1 light
flavors and scale AL ' ' = ju"1 (M^1)A^NC~NI>~NI. The low energy
magnetic theory is at stronger coupling and is the dual of the low energy electric
theory. Note that the flow preserves (5.6) and (5.10). Deformations along the flat
directions with (B) j= 0 directions were analyzed in [39].

Classically, and to all orders of perturbation theory, the electric and mag-
netic theories have different moduli spaces of vacua - it is only after taking non-
perturbative effects into account that they are seen to be identical. For example, in
the electric theory there is a classical constraint rank(M) < Nc. In the dual theory,
M is an independent field whose expectation value is unconstrained to all orders of
perturbation theory - the constraint arises in the dual theory by quantum effects!
Defining Nf = qiq1, the M equations of motion imply that vacua of (5.5) are at
(Nf) = 0. However, because the magnetic theory has Nf — rank(M) massless fla-
vors, for Nf — rank(Af) < Nf — Nc the magnetic theory generates a superpotential
analogous to (4.6) and there is no vacuum with (N) = 0. The vacua of the dual
theory thus also satisfy rank(M) < Nc but as a result of quantum effects rather
than as a classical constraint. Similarly, for rank(Af) = Nc, the magnetic theory
has Nf — Nc = Nc massless fields and thus develops a constraint analogous to (4.15)

detN -bb = (5.19)

where Hf' = d e t ' ^ - ^ A 3 ^ - * ' , with d e t ' ^ M ) the product of the Nc non-
zero eigenvalues of (fj,~1M). Using the M equation of motion, (N) — 0, and the
mapping (5.10) and (5.6), the relation (5.19) yields

= det'(M). (5.20)

This derives a constraint which is classical in the electric description (it was dis-
cussed following (3.3)) via quantum dynamics in the dual theory. In addition to
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providing a necessary check on the duality, the fact that classical relations arise via
quantum effects in the dual is interesting in that, conversely, quantum effects in one
theory can be related to classical identities in the dual.

6. SO(NC) with Nf x Nc

In the SU(NC) theories discussed above, with matter in the fundamental rep-
resentation, there is no invariant distinction between Higgs and confinement [2].
This is not the case in theories based on SO(NC) with Nf X Nc because the matter
cannot screen sources in the spinor representation 5. These theories, therefore, lead
to a clearer picture of the dynamics. In particular, here the transition from the
Higgs phase to the Confining phase occurs with a well defined phase transition.

Many of the results in these SO(NC) theories [29,21,40,41,8,42] are similar to
the results in SU(NC), showing that some phenomena are generic. These SO(NC)
theories also exhibit many new phenomena, which are not present in the SU(NC)
examples. The most dramatic of them is oblique confinement [43,44], driven by the
condensation of dyons (particles with both electric and magnetic charges). This phe-
nomenon is best described by another equivalent theory - a dyonic theory. There-
fore, these theories exhibit electric-magnetic-dyonic triality [42,45]. The discussion
here will be brief; many more details can be found in [42].

6.1. The phases

For Nf > 3(NC — 2) massless quarks Q in the Nc dimensional representation of
SO(NC), the theory is not asymptotically free and the infrared theory is thus in a
free electric phase. For %(NC — 2)<Nf< 3(NC - 2), the theory is asymptotically
free and flows to a non-Abelian Coulomb phase fixed point in the infrared. This
phase has a dual magnetic description in terms of an SO(Nf — A^ + 4) gauge theory
which we review below. For Nc — 2 < Nf < ^(Nc — 2), the theory is in a free
magnetic phase with a dynamically generated composite SO(Nf — Nc + 4) gauge
invariance. For Nf = Nc — 2, the theory is in an Abelian Coulomb phase.

6.2. Duality

As discussed in [8,42], the infra-red behavior of these theories has a dual, mag-
netic description in terms of an SO( Nf—Nc +4) gauge theory with Nf flavors of dual
quarks </; and an additional gauge singlet field M'1 = Q' • Q' with a superpotential

1 {.
~~2ix q''q' .1)

5 We will limit our considerations to the Lie algebra and not distinguish between SO(NC)
and Spin(iVc)
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(an additional term is required for Nf = Nc — 1). The scale p is needed for the
same reason as in the SU(NC) duality. For generic Nc and Nf the scale A of the
magnetic theory is related to the scale A of the electric theory by

The constant 28 reflects the DR conventions6.
The electric theory has an anomaly free global SU(Nf) X U(1)R symmetry with

the fields Q transforming as (Nf)(Nf —NC+2)/N; • The dual theory has the same global
symmetry with M transforming as QQ and q transforming as (N f)(Ns-2)/Nf > which
is anomaly free and respected by the superpotential (6.1). Furthermore, the 'tHooft
anomalies of this magnetic spectrum match those of the electric spectrum.

For Nc - 2 < Nf < |(Ar
c - 2), the magnetic degrees of freedom are free in

the infra-red while, for §(JVC - 2) < Nf < 3(NC - 2), the electric and the mag-
netic theories flow to the same non-trivial fixed point of the renormalization group.
Although the two theories are different away from the extreme infra-red, they are
completely equivalent at long distance. This means that the two (super) conformal
field theories at long distance are identical, having the same correlation functions
of all of the operators, including high dimension (irrelevant) operators.

The gauge invariant (primary) chiral operators of the electric theory are

(a o\

with the gauge indices implicit and contracted. These operators get mapped to
gauge invariant operators of the magnetic theory as

(6.4)

In these conventions the matching relation between the scale of the high energy the-
ory with Nf flavors and the mass term Wtree = \mQN! • QN' and the low energy theory
with Nf - 1 flavors is A

3
1

( i v ^ 2 ) - ' v ' + 1 = mA»C=-»-"( (it is A ^ 2 ^ ' " 1 ' = m^A6"2"'
for Nc = 3). Similarly, the matching relation associated with breaking SO(NC) with
Nf vectors to SO(NC — 1) with Nf — 1 vectors by an expectation value (QNf) is

A3(Arc-2)-jv,-2 _ A3(Nc-2)-N^MAr /w /j-i (for b r e a l d n g S0{4) S SU{2)i X SU(2), to

50(3), it is A ^ " 2 ^ ' " 1 ' = 4Ai" JV/A2"'V/(M'v ' 'v ' )-2).
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where B, b, and Wa are the magnetic analogs of the operators in (6.3). These maps
are compatible with the global symmetries discussed above.

Deforming the electric theory along a flat direction of non-zero (QN'} gives
SO(NC — 1) with Nf — 1 massless flavors and the new fixed point is at weaker
coupling. In the dual description this deformation gives a mass [A~1 (MN!NI) to
qfit and the low energy dual theory is SO(Nf — Nc + 4) with Nf — 1 massless
quark flavors, which is the dual of the low energy electric theory. In the magnetic
description the new fixed point is at stronger coupling and the relation (6.2) is
preserved in the low energy theories.

Some classical identities of the electric theory arise from quantum effects in the
dual. For example, it is seen classically in the electric theory that rank(M) <
Nc- In the magnetic description, this condition arises because, for larger rank, a
superpotential is dynamically generated and the magnetic theory has no vacuum.
Similarly, the electric theory has a classical relation that, when rank(M) = JVC,
the baryon B^'1'"'"^ has the non-zero eigenvalue B = ivdet'Af. This is mapped
under duality to the relation that, for Nf = jVc — 4, the operator b defined above is
given by 6 = ±VA2(N'~1\ which is related to gaugino condensation.

Deforming the electric theory by giving a mass to QN/ gives SO(NC) with Nf —
1 massless flavors and the new fixed point is at stronger coupling. In the dual
description, adding Wtree = ^mMN'N' to (6.1) and integrating out the massive
fields gives {qNf • iNt)

 = — A*m which, along with the D-terms, implies that the
dual gauge group is broken by the Higgs mechanism to SO(Nf — JVC + 3) with
Nf — 1 massless flavors, which is the dual of the low energy electric theory. In
the magnetic description the new fixed point is at weaker coupling and the relation
(6.2) is preserved in the low energy theories.

For Nf = Nc — 1 the dual gauge group is 5O(3) and the superpotential (6.1) is
modified to

1 "•'• ft-.-.ttL. detM- (6-5)

Also, the relation (6.2) between the scales is modified in this case to

2 1 4 ( A 2
A 7 V _ 1 ) 2 A ^ 2 ° v r 1 ) =M2(A'C~1)- (6.6)

These modifications arise upon going from Ar/ = A^ with a mass term added for QN'
to the low energy theory with Nf = Nc — 1 because of peculiarities associated with
the breaking of the magnetic 5O(4) = 5(7(2) x SU(2) to the diagonally embedded
magnetic 5O(3) [8,42].
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7. Abelian Coulomb phase

7.1. General features

Consider a general theory with a low energy N = 1 Abelian Coulomb phase. For
simplicity we consider only the situation with a single photon. As discussed in sect.
2, the effective gauge coupling Tef;{Xr,gi) depends holomorphically on the light
fields Xr and the coupling constants, including the scale A of the underlying non-
Abelian G theory in which the low energy, Abelian theory is embedded. However,
reff is not a single valued function of Xr and the couplings. This is possible because
T gives a redundant description of the physics: r is physically identified under
SL(2, Z) transformations, generated by S : r —> — 1/T, which is associated with the
possibility of exchanging electric with magnetic in ordinary Maxwell theory, and
T : r -» r + 1, which is a unit shift of the theta angle. In order for physics to be
single valued, r need only be a section of an SL{2, Z) bundle [40].

For simplicity, we will consider the case where r only depends on a single light
field (or a single function of the light fields) U whose expectation value serves as an
order parameter for breaking the underlying non-Abelian G gauge theory to a U(\)
subgroup. For large U, the G gauge theory is weakly coupled and the one loop beta
function in the microscopic theory leads to

ib , U
log

2TT
 8

 AP,
(7.1)

for some integers b and p, where A is the scale of G. As we circle around infinity,
U —> eiT'U, T —Y T—b; i.e. r is transformed by Mao — T~b. So even at weak coupling
T is not single valued. The low energy effective gauge coupling -5— ~ Im r is
invariant under Mao- However, if Im r were single valued everywhere in the interior
of the moduli space, because it is a harmonic function, it couldn't be everywhere
positive definite [40]. There would then be regions in the moduli space where geff is
imaginary. This unphysical conclusion can be avoided if the topology of the moduli
space is complicated in the interior or, as found in [40], there are several (at least
two) singular values Ui of U with monodromies Mi around them which do not
commute with Moo = T~b.

The monodromies Mi around the Ui must have a physical interpretation. The
simplest one is that they are associated with fc; massless particles at the singularity.
The low energy superpotential near Ui then has the form

O((U - (7.2)
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where E] and EJ are the new massless states. If the constants c\ are nonzero,
these states acquire a mass of order O((U — Ui)) away from the singularity. There-
fore, the one loop beta function in the low energy theory leads to

(7.3)

(we assume for simplicity that, as in [40,5], all the Ej have charge one; the general-
ization to other cases is straightforward) where r; is the coupling to the low energy
photon. Ti is related to r in the asymptotic region by a duality transformation AT;.
It is clear from (7.3) that the monodromy in r; is Tki. Therefore, the rnonodromy
in T is

Mi = N-1TkiNi. (7.4)

For Mi to not commute with Mao = T~b, the transformation iV; must include S.
This means that the massless particles E\ at Ui are magnetically charged.

As discussed in [40], because r is a section of an SL(2, Z) bundle it is naturally
described as the modular parameter r of a torus. A torus is conveniently described
by the one complex dimensional curve in C2:

y2 = X* + Ax2 +Bx (7.5)

where (x,y) € C2 and A, B and C are parameters. The modular parameter of the
torus (7.5) is given by

r ii

r(A,B,C) = ^-£-, (7.6)
J« y

where a and 6 refer to a basis of cycles around the branch cuts of (7.5) in the x
plane. The problem of finding the section r is thus reduced to the simpler problem
of finding A, B, and C as functions (rather than sections) of U and the various
coupling constants and scales.

The T obtained from (7.5) is singular when the torus is singular, which is when

x3 + Ax2 + Bx + C = 0 and 3s2 + 2Ax + B = 0. (7.7)

Eliminating x, this is when the discriminant of the cubic equation in (7.7) vanishes:
A(A, B,C) = 0 where

A = AA3C - B2A2 - ISABC + 4B3 + 27C2. (7.8)

As discussed in [40,5] , the order of the zero can be used to determine the monodromy
(7.4) around the singularity and, thus, the charge of the associated massless fields.
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Important constraints [5] on the dependence of the coefficients in (7.5) on U and
the coupling constants are the following:

1. In the weak coupling limit A = 0 the curve should be singular for every U.
Without loss of generality we can then take y£ = x2(x — U).

2. The parameters A, B, C in (7.5) are holomorphic in U and the various coupling
constants. This guarantees that r is holomorphic in them.

3. The curve (7.5) must be compatible with all the global symmetries of the theory
including those which are explicitly broken by the coupling constants or the
anomaly.

4. In various limits (e.g. as some mass goes to zero or infinity) we should recover
the curves of other models.

5. The curve should have physical monodromies around the singular points.

7.2. SO(NC) with Nf = Nc-2

For Nf = Ne - 2 the gauge group is broken by (Q) to SO(2) = U(l) and the
theory has an Abelian Coulomb phase. Applying the considerations of the previous
section, it is found that the Abelian Coulomb phase has an effective gauge coupling
reff (det M, A) which is exactly given by the curve [42]

y2 = x" + x2{- det M + 8A2Ar '"4) + 16A4Ar '"8z. (7.9)

For example, at weak coupling (large det(M)), (7.9) properly reproduces the one
loop beta function of SO(NC) with Nf fields Q. The curve (7.9) has singularities
at the solutions of (7.8), which are det M = 0 and det M = 16A2Ar=~4.

Classically, the submanifold det M = 0 has a singularity associated with a non-
Abelian Coulomb phase with some of the SO(NC) gluons becoming massless. In
the quantum theory, the monodromy of r implied by (7.9) around det M = 0
reveals that this submanifold of the moduli space of vacua is actually in an Abelian
free magnetic phase associated with massless monopoles. At the origin there are
Nf massless monopoles qf. Away from the origin, they obtain a mass matrix
proportional to (M) via

W ~ MijqfqJ. (7.10)

The monodromy obtained from (7.9) around det M = \Qh.2N^~i reveals that this
submanifold is in a free dyonic phase associated with a single dyonically charged
field E which is massless at det Af = 16A2JV=~4; near the singularity the dyon gets

a mass via
W ~ (det M - 16A2Ar<=-4)E+E- (7.11)
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The quantum numbers of the dyon E are such that E ~ QiQ'- For example, if we
take the </; to be monopoles with zero electric charge, E is a dyon with electric
charge one. Thus, as a matter of convention, we will refer to the qi as monopoles
and to E as a dyon.

To summarize, we should expect to find two dual descriptions of the original
electric theory, one in which the monopoles qt are taken as fundamental fields and
one in which the dyon E is a taken as a fundamental field.

Consider the duality discussed in the previous section. For Nf = Nc — 2 the
dual magnetic theory is SO(2) = f (1) with Nf charged fields qf and neutral fields
M'' with a superpotential

W~Mi>qfqJ. (7.12)

To see the relation of this Abelian dual to the non-Abelian duals considered in the
previous section, consider flowing from Nf = iVc — 1 to Nf = Nc — 2 by giving an
electric quark a mass. In the magnetic theory this generically Higgses the magnetic
50(3) to a magnetic 5O(2) and the low energy superpotential is (7.12). (There are
additional contributions to (7.12) from instantons in the broken magnetic 50(3)
[42].) The components q^ of the magnetic quarks become magnetic monopoles in
the low energy Abelian Coulomb phase. The Nf monopoles qi with superpotential
(7.12) is precisely the situation (7.10), determined above from the curve (7.9).

The dyon (7.11) is seen by a strong coupling analysis in either the electric or the
magnetic theories [8,42]. There is also a dyonic dual description in which the dyons
E and E are taken as fundamental fields. Just as the Nf = Nc — 2, Abelian magnetic
dual can be obtained by flowing down from the non-Abelian, Nf = Nc — I, SU(2)
magnetic dual, the Abelian dyonic dual can be obtained by flowing down from a
dyonic dual, Nf = Nc- 1, SO(NC) gauge theory. This dyonic dual theory [42] has
composite SO(NC) gauge fields interacting with a theta angle which differs from
that of the original electric theory by ?r and it has composite quarks d', satisfying
d' • d' = M'1', with superpotential

W = - - det d • d. (7.13)

Adding Wtree = \mQN'-1 • QN'~l = \mdN-~l • dN-~l the low energy electric
theory has Nf = Nc — 2 and the low energy dyonic dual has an unbroken 50(2)
with a charged pair which becomes massless at det M = \&K2/lc~i, coming from
dNc~l, which is seen at weak coupling.

Consider giving a mass to the Nc—2-th flavor by adding Wtree = \mMN'~2'Nc~2,
giving SO(NC) with Nf — Nc—Z light flavors at low energy. Adding Wtree eliminates
the Coulomb phase and the low energy theory has two distinct branches. One branch
is associated with adding Wtree to (7.12) which, upon integrating out the massive
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fields, gives the monopole condensate (qNt QN,) ~ m, yielding a confining phase by
the dual Meissner effect. The low energy theory has a moduli space of vacua labeled
by (M) with Nc — 3 massless fields at the origin, with a superpotential given by

W ~ Mijqiqj, (7.14)

where we dropped the hats and i,j = 1... Nc — 3. In the magnetic description,
the fields qi are left-over components of the magnetic quarks. By the map (6.4),
the quark component qi in this case is mapped to the exotic qi ~ (Q)N'~iWaW.
Intuitively, one thinks of such exotics as being large and heavy bound states. Here
we see that they become massless at (M) = 0. This phenomenon is similar to the
massless composite mesons and baryons found in SU(NC) with Nf = Nc + 1 [33].
As was the case there, we have confinement without chiral symmetry breaking.

The other branch is associated with adding Wuee to (7.11). Integrating out the
massive fields gives the dyon condensate (E+E~) ~ m/det M, yielding an oblique
confining phase. The low energy theory has a superpotential

W,
8A2

oblique —
detM

(7.15)

In the electric description, this superpotential is associated with gaugino condensa-
tion in the unbroken electric SO(S) along with contributions from instantons in the
broken SO(Nc)/SO(3) [42]. In the magnetic description (7.15) arises from dyon
condensation. In the dyonic description (7.13) it arises at tree level.

8. SO(3) S SU(2) examples

The discussion of the previous sections is modified slightly for SO(3) = SU(2),
where the 3 dimensional representation is the adjoint representation.

8.1. One adjoint, Q; an Abelian Coulomb phase

This is the N = 2 theory discussed in [40], The theory has a quantum moduli
space of vacua labeled by the expectation value of the massless meson field M = Q2.
The SU(2) gauge symmetry is broken to {7(1) on this moduli space, so the theory
has a Coulomb phase with a massless photon.

As discussed in [40,5], the effective gauge coupling in the Coulomb phase is given
by the re(f(Af) obtained from the curve

y2 = x3 - Mx2 + 4A4z. S.I)

(This curve is expressed using the convention for the normalization of r discussed
in [5], T = — +8wig~2.) This gives a rcjf(M) which has singularities associated with
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a massless magnetic monopole field <?(+), at M = 4A2 and a massless dyon ?(_) at7

M = —4A2. Therefore, these two points are in a free magnetic and a free dyonic
phase, respectively. Here (j(+j is a doublet charged under the magnetic U(\)M,
which is related to the electric U(1)E by the electric-magnetic transformation S:
F -y F (modulo T(4) C SL(2, Z)). Similarly, <?(_) is a doublet charged under a
dyonic U{l)n, related to U{\)E by the SL(2, Z) transformation ST2 (again, modulo
T(4) C SL{2, Z)), where T is a rotation of the theta angle by ?r. Near where these
fields are massless, they couple through the effective superpotentials

Referring to the underlying SU(2) theory as "electric," we can say that it has
two dual theories. One of them, which we can refer to as the "magnetic dual,"
describes the physics around M — 4A2 with the superpotential W+. The other
dual, which can be called the "dyonic dual," is valid around M = —4A2 and is
described by W-.

Consider giving Q a mass by adding a term Wiree = \mM in the electric theory.
Adding Wtree to (8.2), the equations of motion give {q(±) • <2(±)) ~ rn and lock
(JW) = ±4A2. The condensate of monopoles/dyons Higgses the dual theory and thus
gives confinement/oblique confinement of the electric theory by the dual Meissner
effect [40].

Consider analyzing, as in sect. 2.3, the 1PI effective action for this theory with
sources. Starting from the analog of (4.10) for this theory, Wi(m) = ±2(A4m2)1/2,
equations (2.8) and (2.9) give W = 0 with the constraint (M) = ±4A2. Indeed,
adding the source m for M drives the theory to the confining or oblique confining
phase with (M) = ±4A2. The Coulomb phase cannot be explored in the theory
with a mass term for Q. As discussed in sect. 2.3, this method of analyzing the
theory must fail to capture some of the physics because the theory without sources
has massless fields (the monopole or dyon) which cannot be represented by the
gauge invariant observables.

Because this theory actually has Â  = 2 supersymmetry, it can be further an-
alyzed using the additional techniques applicable for N = 2 theories, yielding the
Kahler potential for Q and a BPS mass bound [40].

8.2. SU(2) with two adjoints; A non-Abelian Coulomb phase

This theory has iV = 1 (not N — 2) supersymmetry. Writing the matter fields
as Q' with i = 1,2 a flavor index, there is a 3 complex dimensional moduli space of

7 We use the conventions of [21,30] where the normalization of A2 (in the DR scheme)
differs by a factor of 2 from that of [40]; our order parameter M is related to u of [40] as
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classical vacua parameterized by the expectation values of the gauge singlet fields
Mij = Qi • Q\ In the generic vacuum (Q1) breaks SU(2) to a U(\) which is then
broken by (Q2). For det(M1J) ^ 0, the gauge group is completely broken and
the theory is in the Higgs phase. On the non-compact two complex dimensional
subspace of vacua with det M = 0, there is an unbroken £7(1) gauge symmetry and
thus a light photon along with a pair of massless electrically charged fields. At the
point (M) = 0 the SU(2) gauge group is unbroken.

We now turn to the quantum theory. The theory has the global symmetry group
SU(2) X J7(1)R, with Q transforming as 2 i , which determines that any dynamically
generated superpotential must be of the form

W=jdetM, (8.3)

with c a dimensionless constant. Its behavior at M —> oo is incompatible with
asymptotic freedom, as signaled by the presence of the scale A in the denominator.
Therefore, no superpotential can be generated and the classical vacuum degeneracy
outlined above is not lifted quantum mechanically.

The generic ground state with generic M is in the Higgs phase. Consider now the
subspace of the moduli space with det M = 0. The low energy degrees of freedom
there are a single photon, a pair of massless electrically charged fields and some
neutral fields. This theory cannot become strong in the infrared. In fact, the loops
of the massless charged fields renormalize the electric charge to zero. Therefore,
this subspace of the moduli space is in a free electric phase.

Now consider adding a tree level superpotential Wuee — jTr mM. Taking

I, Q2 gets a mass and can be integrated out. The low energy theory

is 5J7(2) with a single massless adjoint matter field, which is the example of the
previous subsection. This low energy theory has a scale At, which is related to
that of the original theory by A^ = m?,A2, and a massless monopole or dyon at
(Mn) = ±4Af, = ±4m2A. Note that as m2 -> 0 the point (M) = 0 has both
massless monopoles and dyons. These are mutually non-local8 and signal another
phase at this point in the theory with m2 = 0. We interpret this as a non-Abelian
Coulomb phase [41].

Starting from the theory with m2 ^ 0, turning on mi ^ 0 drives the monopole
or dyon to condense and the vacuum is locked at (Afu) = ±4m2A. The + sign is a
vacuum with monopole condensation and thus confinement. The — sign is a vacuum
with dyon condensation and thus oblique confinement. More generally, these vacua
are at {M'i) = ±4Adet m(m~1)'-'. These expectation values can be obtained from

We = 4" det M + ~8A 2
(8.4)

A similar situation was found in JV = 1 SU(3) Yang Mills theory [46].
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with e = =pl for confinement and oblique confinement, respectively.
The theory has various phase branches. For mass m = 0 there is a Higgs phase

which, in terms of We, corresponds to e = 0. There is a subspace det M = 0 in
the free electric phase and the point M = 0 in a non-Abelian Coulomb phase. For
m ^ O but with det m = 0 the theory is in the Coulomb phase with a free magnetic
point and a free dyonic point. For det m yt 0 the theory is either confining and
described by the superpotential (8.4) with e = —1 or it is oblique confining and
described by the superpotential (8.4) with e = 1.

If we consider the 1PI effective action, the analog of (4.10) is Wi,{m) =
±2(A2 detm)1/2. Integrating in gives the confining or oblique confining phase
branches of the superpotential (8.4), with e = ±1, missing the e = 0 Higgs phase
branch. Again, as discussed in sect. 2.3, the 1PI superpotential necessarily fails to
capture some of the physics because the theory without the sources has massless
particles, the quarks and the gluons, which cannot be represented by the gauge
invariant observables.

The analysis of [42] reveals that this electric theory has two dual descriptions,
similar to the magnetic and dyonic duals discussed in the previous section, labeled
by e = ±1. The two dual theories are based on an 517(2) gauge group with two fields
qi in its adjoint representation and three gauge singlet fields M'3. The difference
between the two theories is in the superpotential

W( = • e ( — - det M H det q{ •
V24A 24A

8.5)

where A is the scale of the dual SU{2) (we expressed jx in terms of A and A). The
theory with e = 1 is a "magnetic" dual and that with i = — 1 a "dyonic" dual.

We now analyze the dynamics of these dual theories. Since they are similar to
the original electric theory, we proceed as we did there. These theories have three
phases: Higgs, confining and oblique confining. We study them using the gauge
invariant order parameters JV.-y = qt • qj. Its effective superpotential is obtained by
writing the tree level superpotential (8.5) in terms of JV and adding to it -4= det JV
where, in the Higgs, confining and oblique confinement branches, e = 0 , -1 ,1 ,
respectively

We « = 1
1=TT MN + £ f — det M 4- - ^ det JV ) + 4 r det JV. (8.6)

12\/AI V24A 24A / 8A

Now we can integrate out the massive field JV to find

(8.7)
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This is the same as the effective superpotential (8.4) of the electric theory with

1 4- See'

We see that the various phases are permuted in the different descriptions as:

Theory Phases

electric Higgs (e = 0) conf. (e = —1) obi. conf. (e = 1)
magnetic (e = 1) obi. conf. (e = 1) Higgs (e = 0 ) conf. (e = —1)
dyonic (e = —1) conf. (e = —1) obi. conf. (e = 1) Higgs (e = 0)

It is a simple exercise to check that by dualizing the magnetic and dyonic theories
as we above dualized the electric theory (two duals of each), we find permutations
of the same three theories. The S3 triality permuting the phases and branches
is associated with a quotient of the SL(2, Z) electric-magnetic duality symmetry
group: the theories are preserved under F(2) C SL(2,Z), leaving the quotient
S3 = SL(2, Z)/T(2) with a non-trivial action.

This discussion leads to a new interpretation of the first term in (8.4). In the
electric theory this term appears as a consequence of complicated strong coupling
dynamics in the confining and the oblique confinement branches of the theory. In
the dual descriptions it is already present at tree level.

Consider the theory with a mass m2 for Q2. As discussed above, the low energy
electric theory has a Coulomb phase with massless monopoles or dyons at the strong
coupling singularities (M11) = ±4m2A. We now derive this result in the dual
theories. Adding WtTe<! = \m2M

22 to the superpotential (8.5) of the dual theory,
the equations of motion give

1

12\/AA
= 1 i • <72 24A

M1 + \m2 = 0

91 • 92 = 0

M22 = - l e J ^

_ 0

For ql ^ 0, (<72) breaks the gauge group to U(l) and the remaining charged fields
q1 couple through the low energy superpotential

1

16VAA
=(Mn - 3.10)

(This superpotential is corrected by contributions from instantons in the broken
magnetic SU(2) theory. However, these are negligible near M11 = 4em2A.) We
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see that the theory has a charged doublet of massless fields qx at M11 = 4em2A,
exactly as expected from the analysis of the electric theory. There these states
appeared as a result of strong coupling effects. Here we see them as weakly coupled
states in the dual theories. This is in accord with the interpretation of the e = 1
(e = —1) theory as magnetic (dyonic).

The other monopole point on the moduli space of the theory with m\ = 0 but
rn2 5̂  0 is at M11 = —4em2A. It arises from strong coupling dynamics in the dual
theories. To see that, note that the above analysis is not valid when the expectation
value of 52 is on the order of or smaller than the mass of q\. In that case, q\ should
be integrated out first. The equations of motion in the low energy theory yield a
single massless monopole point at Mn — -4em2A [42].

An analysis similar to the one above leads to a strongly coupled state in the
dual theories along the flat directions with det M = 0 in the m = 0 case. This state
can be interpreted as the massless quark of the electric theory in that free electric
phase.

To conclude, this theory has three branches which are in three different phases:
Higgs, confining and oblique confinement (various submanifolds of these branches
are in Coulomb, free electric, free magnetic and free dyonic phases). They touch
each other at a point in a non-Abelian Coulomb phase. Corresponding to the three
branches there are three different Lagrangian descriptions of the theory: electric,
magnetic and dyonic. Each of them describes the physics of one of the branches,
where it is Higgsed, in weak coupling and the other two in strong coupling.

In both examples of this section, the theory has a discrete symmetry which
relates the confining and the oblique confinement phases9. Therefore, in these
cases the effects of confinement are indistinguishable from the effects of oblique
confinement. Correspondingly, the magnetic and the dyonic descriptions are similar
- they differ only in the sign of e. In the other SO(NC) examples discussed in the
previous section, these two phases are not related by a symmetry and the two dual
descriptions look totally different.

9. Conclusions
To conclude, supersymmetric field theories are tractable and many of their ob-

servables can be computed exactly10. Our analysis led us to find new phases of

9 This symmetry is manifest only in the electric description. In the dual descriptions it
is realized as a quantum symmetry [42].
10 Although we did not discuss them here, we would like to point out that many
other examples were studied [29,11,47,21,5,41,8,48-67] exhibiting many new interesting
phenomena.
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non-Abelian gauge theories, like the non-Abelian Coulomb phase with its quantum
equivalence and the free magnetic phase with its massless composite gauge fields.
The main dynamical lesson is the role of electric-magnetic duality in non-Abelian
gauge theories in four dimensions. To be clear we should distinguish several different
notions of duality:
1. The exact r —> — 1/r duality of Maxwell theory and its generalization to the

Montonen-Olive [3] duality of finite, interacting, non-Abelian theories.
2. The Teff —¥ — l/rcff duality of low energy theories with an Abelian Coulomb

phase. This is not a symmetry but, rather, an ambiguity in the description of
the low energy physics.

3. The duality of two asymptotically free theories which flow to the same non-
Abelian Coulomb phase fixed point in the infrared.

4. The duality of the free magnetic phase, which provides a relation between the
UV and the IR behavior of a theory which is free in the IR.

There are relations between many of the phenomena discussed above [42,52] but,
at a deeper level, they remain to be really understood.
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